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Lecture 20.  PLANAR KINEMATIC-PROBLEM EXAMPLES

Figure 4.15  Slider-crank
mechanism.

TASK:  For a given constant rotation rate , find the
velocity  and acceleration  terms of the piston for one
cycle of  θ .  

Geometric Approach:  There are three variables (θ, φ, and Xp )
but only one degree of freedom.  The following (constraint)
relationships may be obtained by inspection:
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(4.16)

(4.17)

With θ as the input (known) variable, these equations can be
easily solved for the output variables . The vector diagram
in figure 4.15 shows the position vectors rAB ,  rBC , and rCA .  For
these vectors, 

Substituting, 

gives :

Differentiating Eq.(4.16) w.r.t. time gives:
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(4.18a)

(4.18b)

(4.19a)

(4.19b)

Differentiating again gives:

Matrix equations of unknowns

The engineering-analysis tasks are accomplished by the
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following steps:

1.  Vary θ over the range of [ 0, 2π ], yielding discrete values
θi .

2.  For each θi value, solve Eq.(4.16) to determine
corresponding values for φi .

3.  Use Eqs.(4.18) with known values for  θi and φi to
determine .

4.  Use Eqs.(4.19) with known values for θi , φi , and  to
determine .

5.  Plot  versus θi.
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Spread-sheet solution for  for one θ cycle with
.

Xp ddot (g's) versus Theta
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(4.20a)

(4.20b)

(4.20c)

For XP (t) as the input, with  (θ and φ ), (  and ), and (  and
) as  the desired output coordinates.  The equations for the

coordinates are:

From Eq.(4.20a), the velocity relationships are:

From Eq.(4.20b), the required acceleration component equations
are:

Figure 4.18 Slider crank mechanism with
displacement input from a hydraulic cylinder.
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The problem solution is obtained for specified values of
 by proceeding sequentially through

Eqs.(4.20a), (4.20b), and (4.20c).  Note that Eqs.(4.20a) defining
θ and φ are nonlinear, while Eqs.(4.20b) for  and , and
Eqs.(4.20c) for  and  are linear.

The essential first step in developing kinematic equations for
planar mechanisms via geometric relationships is drawing a
picture of the mechanism in a general orientation, yielding
equations that can be subsequently differentiated.

Figure 4.19 
Disassembled  view of
the slider-crank
mechanism for vector
analysis.

Vector Approach for Velocity and Acceleration Results
Applying the velocity result of Eq.(4.3) separately to links 1

and 2, gives:

Equating the two answers that these equations provide for vB ,
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Since point A is fixed in the X ,Y system, vA = 0.  Similarly, given
that point C can only move horizontally, vC = I .  The vector
ω1 is the angular velocity of link 1 with respect to the X,Y
system.  Using the right-hand rule,

The position vectors rAB and rBC are defined by

Substitution gives

Carrying out the cross products and gathering terms,

To find the acceleration relationships, applying the second of
Eqs.(4.3) to figure 4.17 :
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Equating the separate definitions for aB   gives

Since point A is fixed, aA = 0.  Also, since point C is constrained
to move in the horizontal plane, aC = I .  The remaining
undefined variables are , the angular acceleration of
link 1 with respect to the X, Y system, and , the angular
acceleration of link 2 with respect to the X, Y system. 
Substituting gives

Completing the cross products and algebra gives the following
component equations:
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(4.21)

4.5b A Four-Bar-Linkage Example

.

Consider the following engineering-analysis task: For a constant
rotation rate ,  determine the angular velocities ,  and
angular accelerations ,  for one rotation of α.

Geometric Approach
Inspecting figure 4.19a yields:

Figure 4.19 (a) Four-bar linkage, (b) Vector diagram for
linkage
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(4.22)

(4.23)

(4.23)

Figure 4.19b shows a closed-loop vector representation that can
be formally used to obtain Eqs.(4.21).  The results from figure
4.19b can be stated, .  Substituting:

gives the same result as Eqs.(4.21).  
Restating Eqs.(4.21) as:

shows  α as the input coordinate and β and γ as output
coordinates. Differentiating with respect to time gives:

In matrix format,
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(4.24)

Using Cramers rule to solve these equations gives

The solution is undefined for 

Differentiating Eqs.(4.23) gives:

Setting =0, and  reduces them to:

or, in matrix format,
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(4.26)

Using Cramer’s rule, the solution is

The solution is undefined for .

The engineering-analysis task is accomplished by executing the
following sequential steps:

1. Vary α over the range [ 0, 2π ], yielding discrete values .

2.  For each α i value, solve Eq.(4.22) to determine
corresponding values for βi  and  γi.
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3.  Enter Eqs.(4.23a) with known values for α i , βi and γi. to
determine  and .

4.  Enter Eqs.(4.26a) with known values for α i , βi , γi ,  
and  to determine  and .

5.  Plot   ,  ,  and  versus α I.

Eqs.(4.22) can be solved analytically, starting with the
restatement

 and  are defined in terms of α and
are known quantities. Squaring both of these equations and
adding them together gives

Rearranging gives
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where .  Restating this result gives

The equation   has the two roots:

Depending on values for B and C, this equation can have one real
root, two real roots, or two complex roots.  Two real roots
implies two distinct solutions, and this possibility is illustrated
by figure 4.20 below where the same α  value gives an
orientation that differs from figure 4.19a. 

(4.27)



60

The one real-root solution corresponding to  defines an
extreme “locked” position for the mechanism, as illustrated in
figure 4.21.  Note that this position corresponds to  
netting , which also caused the angular velocities
and angular accelerations to be undefined in Eqs.(4.23) and
(4.25), respectively.  

Figure 4.20 Alternate
configuration for the linkage
of figure 4.19a

Figure 4.21 Locked position for
the linkage of figure 4.19a with
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We can solve for the limiting α  value in figure 4.21 by
substituting  into Eq.(4.22) to get

Squaring both equations and adding them together gives

If the parameters  are such that a solution exists for ,
then a locked position can occur.  For figure 4.21, the limiting
value for  corresponds to

For  there is no limiting rotation angle , and the
left hand link can rotate freely through 360 degrees.

Figure 4.22 illustrates a solution for  with 
 and  for

over [0, 2π ].  The solution illustrated corresponds to the first
solution (positive square root) in Eq.(4.27).

(4.28)
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Caution is advisable in using Eq.(4.27) to solve for  to make
sure that the solution is in the correct quadrant.
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Vector Approach for Velocity and Acceleration Relationships

Figure 4.21  Disassembled  view of the three-bar linkage of
figure 4.19 for vector analysis.

Starting on the left with link 1, and looking from point A to B
gives

Next, for link 3, looking from point D back to point C we can
write

Finally, for link 2, looking from point B to point C gives
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Substituting into this last equation for vB and vC , and observing
that vA = vD = 0 gives

Eqs.(4.22) define the position vectors of this equation.  Using the
right-hand rule, the angular velocity vectors are defined as

, , and .  Substituting gives

Carrying out the cross products  gives:

The acceleration relationships are obtained via the same logic
from
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Substituting from the first and second equations for aB and aC

into the last gives

Noting that aD and aA are zero, and substituting  ,
, and  into this equation gives

Carrying out the cross products and gathering terms,

If general governing equations are required, the geometric
relationships of  Eq.(4.23) must be developed.
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Example Problem 4.5  Figure XP4.5a illustrates an oil pumping
rig that is typically used for shallow oil wells. An electric motor
drives the rotating arm OA at a constant, clock-wise angular
velocity .  A cable attaches the pumping rod at D to
the end of the rocking arm BE.  Rotation of the driving link
produces a vertical oscillation that drives a positive-displacement
pump at the bottom of the well.

Tasks: 
a.  Draw the rig in a general position and select coordinates
to define the bars’ general position.  State the kinematic

Figure XP5.4a Oil well pumping rig, adapted
from Meriam and Kraige (1992)
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constraint equations defining the angular positions of bars
AB and BCE in terms of bar OA’s angular position. 

b.  Outline a solution procedure to determine the orientations
of bars AB and BCE in terms of bar OA’s angular position. 

c.  Derive general expressions for the angular velocities of
bars AB and BCE  in terms of bar OA’s angular position and
angular velocity.  Solve for the unknown angular velocities.

d.  Derive general expressions for the angular accelerations
of bars AB and BCE  in terms of bar OA’s angular position,
velocity, and acceleration.  Solve for the unknown angular
accelerations.

e.  Derive general expressions for the change in vertical
position and vertical acceleration of point D as a function of
bar OA’s angular position.
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Solution.  The sketch of figure XP4.5b  shows the angles 
defining the angular positions of bars OA, AB and BC,
respectively.  α is the (known) input variable, while β and γ are
the (unknown) output variables.  The length  extends from B to
C.  Stating the components of the bars in the X and Y directions
gives:

Figure XP5.4b Pumping rig in a general position
with coordinates

(i)
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and concludes Task a.  

As a first step in solving for ( ), we state the equations as 

Squaring these equations and adding them together gives:

where .  Substituting  nets  

For a specified value of α, solving this quadratic equation gives
Y , and back substitution into Eq.(i) nets β.  These

steps concludes Task b, and figure XP4.5b illustrates the results

    (ii)
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(iv)

for the lengths of figure XP4.5a.
Proceeding to Task c, we can differentiate Eq.(i) with respect

to time to obtain:

In matrix format, these equations become

Using Cramer’s rule (Appendix A), their solution can be stated:

concluding Task c.  Figure XP 4.5c illustrates versus α 

     (iii)
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(vi)

Moving to Task d, we can differentiate Eq.(iii) with respect
to time to obtain:

In matrix format, these equations become

The solution can be stated:

concluding Task d.
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In regard to Task e, as long as the circular arc at the end of
the rocker arm is long enough, the tangent point of the cable with
the circular-faced end of the rocker arm will be at a horizontal
line running through C.  Hence, the change in the horizontal
position of point D is the amount of cable rolled off the arc due
to a change in the rocker arm γ, i.e., .  Similarly, the
vertical acceleration of the sucker rod at D is the circumferential
acceleration of a point on the arc, i.e,   . 
Figure XP4.5 d illustrates  as a function of alpha.  The
distance traveled by  the pump rod in one cyle is .633 - (-.633) =
1.27 m.  The peak positive acceleration is 1.17 g and the
minimum is   -0.63 g.  Note that , indicating from
a rigid-body viewpoint  that the cable will remain in tension
during its downward motion.
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Figure XP4.5d Vertical acceleration and change in
position of the pumping rod


