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(3.139)
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Lecture 15.  EIGENANALYSIS FOR 2DOF VIBRATION
EXAMPLES 

Thinking about solving coupled linear differential equations by
considering the problem of developing a solution to the
following homogeneous version of Eq.(3.124)

To find a solution to the one-degree-of-freedom problem
, we “guessed” a solution of the form

.  Substituting this guess netted

A nontrivial solution ( A … 0 ) requires that .

For Eq.(3.139) we will guess

Substituting this guessed solution gives
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(3.141)

or

Solving for  via Cramer’s rule gives:

where Δ is the determinant of the coefficient matrix.  For a
nontrivial solution ,  Δ = 0; i.e., the coefficient

matrix must be singular.  
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(3.142)

(3.143)

(3.144)

This is the characteristic equation.  It is quadratic and  defines

two natural frequencies versus the single natural

frequency for the one-degree-of-freedom vibration examples.

Numerical Example:

For these data, the differential Eq.(3.139) becomes

and the frequency Eq.(3.142) becomes

with the solutions:
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(3.145)

The first (lowest) root   is the first eigenvalue

and defines the first natural frequency  The

next root   is the second eigenvalue and defines

the second natural frequency  .  

  
Solving  for the   coefficients.  Substituting the data of

Eq.(3.145)  into Eq.(3.141) gives

Now substituting     gives

The coefficient-matrix determinant is zero, which implies that
there is only one independent equation for the two unknowns. 
Hence, we can use either equation to solve for the ratios of the
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(3.147)
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two unknowns.  Setting gives: 

Hence, the first “eigenvector” is

Multiplying this vector by any finite constant ( positive or
negative) will yield an equally valid first eigenvector, since the
vector is defined only in terms of the ratio of its components.  
In vibration problems, an eigenvector is also called a “mode
shape.”

Substituting into Eq.(3.141), nets

The matrix of eigenvectors is 
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(3.148a)

(3.148b)

Figure 3.52 illustrates the two eigenvectors.  

Figure 3.52  Eigenvectors for the two-mass system of figure
3.47, with the numerical values of Eq.(3.143).

Consider the following coordinate transformation for Eq.(3.139)

where the right  vector is the vector of modal coordinates.
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(3.150)
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(3.148)

(3.149)

Substituting from Eqs.(3.148) into Eq.(3.124) gives 

Premultiplying Eq.(3.149) by the transpose of   gives 

We can now show by substitution (for this example problem)
that 

where the “modal mass matrix”  and “modal stiffness

matrix are diagonal.  Note

233

(3.150)

(3.151)

The modal mass matrix  is diagonal, with the first and

second “modal masses” defined by .

We want to “normalize” the eigenvectors with respect to the
mass matrix such that  the modal mass matrix  reduces to

the identity matrix [ I ].   The modal-mass coefficient for the jth
mode is defined by .  Dividing the jth

eigenvector  by will yield an eigenvector with a modal

mass equal to 1, yielding

Normalizing the current eigenvector set means dividing the first

and second eigenvectors by  and

, respectively, obtaining

You may want to repeat calculations for this set of eigenvectors
to confirm that the modal mass matrix is now the identity
matrix.  Proceeding with this normalized version of the
eigenvector matrix to verify that the modal stiffness matrix is
diagonal yields
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(3.152)

The normalized matrix of eigenvectors yields a diagonalized
modal stiffness matrix [ Kq ]; moreover, the diagonal entries are
the eigenvalues defined in Eq.(3.142); i.e., 

where is the diagonal matrix of eigenvalues.
The resultant modal equations are:

The transformation from modal to physical coordinates is
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Modal Units
Given that , and ,

the units for an entry in normalized eigenvector matrix  is

.  Hence, for the SI system, the eigenvector units are

; for the USA standard unit system, the units are

.  From the coordinate transformation ,

the units for a modal coordinate is .  For the SI
and USA standard systems, the appropriate units are,
respectively, and .  Looking at the first of
Eq.(3,154), a dimensional analysis yields

confirming the correctness of these dimensions.
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Lessons:
a.  Vibration problems can have multiple degrees of
freedom.

b.  Multiple-degree-of-freedom (MDOF) vibration problems
can be coupled by either the stiffness (linear spring-mass
system) or inertia (double pendulum) matrices.

c.  For a neutrally stable system, the inertia and stiffness
matrices should be symmetric and the diagonal elements
should be positive.

d.  Free vibrations of a MDOF vibration problem leads to an
eigenvalue problem.  The solution to the eigenvalue

problem yields eigenvalues, , which define the natural

frequencies , and eigenvectors that define the system

mode shapes.

e.  The matrix of eigenvectors can be normalized such
that it diagonalizes the original inertia and stiffness matrices
as

where  is the identity matrix, and is the diagonal
matrix of  eigenvalues.


