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 Lecture 17.  MORE TRANSIENT MOTION USING
MODAL COORDINATES
Example

At the left is an assembly that is released from a height 
above the ground.  In the middle, the assembly has just contacted
the ground.  The subsequent positions of  and  are defined,

respectively, by  and .  At the time of contact,

, and 

.

Engineering-analysis tasks:
a.  Draw free-body diagrams and derive the equations of motion.

b.  State the matrix equations of motion.
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c.  Solve for two cycles of motion for the lowest natural
frequency.

Equation of Motion from Free-body diagrams:

Matrix Format:

Equations for Modal Coordinates using Modal damping to
account for internal damping 

(1)
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Component modal differential equations:

The homogeneous version of Eq.(3) is

with solutions:

The  particular solutions  corresponding to Eq.(3)

are

yielding the complete modal-coordinate solutions   
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The constants   must be determined from the modal-

coordinate initial conditions.

The modal-coordinate initial conditions are defined by

Similarly, the modal-velocity initial conditions are defined by
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A previous undamped model had the physical parameters:

yielding

The eigenvalues and natural frequencies are:

The matrix of normalized eigenvectors is 
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From,

the model (with 5% modal damping) is

From , the modal-coordinate initial

conditions are zero. From ,  the modal-

velocity initial conditions are
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Substituting into,

nets

where

Imposing initial conditions for 
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Further

The complete solution satisfying the initial conditions is

Similarly, the complete solution for  is
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The complete solution for  satisfying the initial conditions

is

The physical solution is


