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Lecture 3.  PARTICLE MOTION IN A PLANE, NORMAL-
TANGENTIAL (PATH) COORDINATES

Figure 2.8  Path-
coordinate unit vectors;

Unit Vectors:

Radius of curvature of a path  y = f (x) is
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(2.32)

(2.33)

(2.34)

where  and   

Velocity of point P with respect to the X, Y system

where s defines the distance traveled along the path from some
arbitrary reference point O. 

Note that

Acceleration of point P with respect to the X, Y system. 
Taking the time derivative of   with respect to the X, Y
coordinate system gives

This result requires , the time derivative of  with respect to
the X, Y system.  Differentiating   while
holding I and J constant yields
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(2.35)

(2.36)

(2.37)

(2.38)

Substituting this result into Eq.(2.34) then gives

Substituting     from Eq.(2.33) gives  the following
alternative expressions for :

or 

Since

Eqs.(2.35) through (2.37) provide the following component
definitions for at and an:
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 is the more generally useful expression.

Figure 2.9  Constant-radius
circular motion with   and
   unit vectors.

Polar and path coordinate relationships.  For ,  ,
, and and  are oppositely directed.  Hence the polar

coordinate model gives

For this reduced case, , and  
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Example Problem 2.7  As illustrated in figure XP 2.7a, a track
lies in the horizontal plane and is defined by  with X and
Y in meters and .  At , the velocity and
acceleration components along the path are  and

, respectively.  The relevant engineering-analysis
tasks are:

a.  Determine the normal and tangential components of  v

Figure XP2.7a Track segment in the horizontal X-Y
system
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and a, and

b.  Determine v and a’s components  in the X, Y system.

Solution.  From the definitions of the coordinate system, v
and  are colinear, and both are directed along the tangent of the
path.  Hence, . The velocity vector v has no
component along .   The problem statement gives

.  From Eq.(2.38), the normal component is 
.  We are given ; however, we need to

define the radius of curvature.  

For , , and 

gives

and
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The answer for Task a is stated

Moving to Task b , the first question to answer in finding the
components of v and a in the X, Y system  is, “How are 
oriented in the X, Y system?”  Since  is directed along the
tangent of the path, we can find the orientation of  with respect
to the X axis via,

Figure XP 2.7b shows this orientation of the  coordinate
system at .

Figure XP2.7b orientation at 
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From this figure, v’s  X and Y components are:

Figure 2.10 Coordinate
transformation development
to move from components in
the , coordinate system
to the X, Y coordinate system.

To find a’s components in the X, Y system, consider the
components of the arbitrary vector B in Figure 2.10.  This figure
is very similar to figure XP2.7d (page 27, Lecture 2) that we
developed to move from components in the   system to
components in the X, Y system.  Summing components in the X
and Y directions gives

In matrix notation, these results become
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Substituting the acceleration components and . gives

This step concludes Task b.  Note that a’s magnitude is
unchanged by the transformation.

In reviewing the steps involved in working out this example,
applying the definitions to find the components of v and a in the
path coordinate system is relatively straightforward, except for a
modest effort to determine the radius of curvature ρ.  The
essential first step in finding  v and a’s components in the X, Y
system is in recognizing that  lies along the path’s tangent. 
Following this insight, projecting  v’s components into the X, Y
system is simple, as is finding a’s components via the coordinate
transformation.


