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Lecture 18.   PLANAR KINEMATICS OF RIGID BODIES,
GOVERNING EQUATIONS

Planar kinematics of rigid bodies involve no new equations.  The
particle kinematics results of Chapter 2 will be used.

 

Figure 4.1  Planar motion of a rigid body moving in the
plane of the page. Point o’s position in the body is defined in
the X, Y coordinate system by .  The orientation
of the body with respect to the X, Y coordinate system is
defined by θ.  (a). The body at time t and orientation θ. (b).
The body at a slightly later time t + Δt with a new position

 and new orientation  θ + Δθ.

The  coordinate system is fixed to the body; the 
system is fixed to “ground.”

 = angular speed of rigid body and  coordinate
system relative to ground or the  system.
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Right-hand rule, angular velocity vector of the rigid body and the 
x, y coordinate system is 

= angular velocity of  x, y, z relative to X, Y, Z.

Figure 4.2 Rigid body moving in the X, Y  plane with its
angular velocity vector  aligned with the z and Z
axes.
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     (2.41)

(2.42a)

Figure 2.21 

X, Y  and x, y coordinate systems.

Components of B:

Coordinate Transformation for components

or
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(2.42b)

Unit vector definitions:

Derivatives of unit vectors with respect to X, Y coordinate
system:

Differentiating  with respect to the X, Y system, 

or
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Derivatives with respect to coordinate systems:
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Figure 2.23 An airplane
passenger moving down the
aisle, as the airplane moves
with respect to ground and
pitches upwards relative to
ground.

VELOCITY AND ACCELERATION RELATIONSHIPS IN
TWO COORDINATE SYSTEMS

Figure 4.5 Two-coordinate
arrangement for general
planar kinematics

The point P is located in the X,Y system by
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(2.59)

(2.60)

(2.62a)

(2.62b)

P is located in the x,y,z system by 

Velocity Equations
Taking the time derivative of Eq.(2.59) with respect to the X, Y
system yields: 

Applying   to obtain , nets

or 
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(2.63)

(2.64)

(2.65)

(2.66)

Acceleration Equations
Differentiating Eq.(2.62b),

Applying ,

nets

Comparisons to Polar-Coordinate Definitions
Parallels between the present vector results and earlier polar-

coordinate definitions for velocity and acceleration become more
apparent if we require that  and that ρ lies along the x axis; 
i.e.,

Hence,
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(2.67)

(2.27)

Substitution into Eq.(2.62) (with ) gives

Comparing this result to 

shows the following parallel in physical terms:
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(2.68)

(2.30)

For comparison of the acceleration terms, substituting from
Eq.(2.67) into Eq.(2.65) gives (with ) :

By comparison to the polar-coordinate definition,

the following physical equivalence of terms is established:
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Hence, Eq.(2.65) merely presents old physical terms in a new
vector format.

VELOCITY AND ACCELERATION RELATIONSHIPS
FOR TWO POINTS IN A RIGID BODY

Velocity Equations
The x, y, z system is fixed in a rigid body.  

 = position vector locating a point in the rigid
body. Hence,



12

and

becomes

Alternatively,
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Example Problem 4.1

Given:

Figure XP4.1a Bar with points A,
B, and C

(i)

(ii)
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Tasks: 
a.  Determine the velocity and acceleration vectors for points
C and B.
b.  Draw the velocity and acceleration vectors for points A, 
B, and C.

Solution:  Applying the first of Eqs.(4.3) gives

The acceleration vectors of points B is obtained from the second
of Eqs.(4.3) as

Similarly for point C  
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Figure XP4.1 (b) Velocity (mm/sec) and (c) Acceleration
( )
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Example Problem 4.2 

Example Problem 4.2  Point A, the end of the left cable has a
velocity of .6 m/sec and an acceleration of .13 m/sec2 .  Point B,
the end of the right cable has a velocity of 1.2 m/sec and an
acceleration of -.13m/sec2.  The central pulley has a radius of 0.4
m.  Point o is at the center of the pulley, and point P is at the top
of the pulley

Tasks: Determine the velocity and acceleration of points o and
P.

Solution: We are going to use Eqs.(4.3), the velocity and
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(i)

acceleration vectors for two points on a rigid body to work
through this example.  The rigid body is the central pulley
illustrated in figure 4.2b.  Since the cable is inextensible, points

and  on the central pulley have the same velocities and
vertical acceleration magnitudes as A and B , respectively. 
Specifically,

Velocity results. We start this development knowing ,
and needing .  We could use the velocity relationship to
find these unknowns providing that we knew . We
can determine  by applying   for points 
and  on the pulley.  Substituting for  from Eq.(i) and 

 gives

Proceeding with this result for  gives:

                                 (ii)
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As expected,  velocity is vertically upwards.  Because of the
pulley’s rotation, point P has a velocity component in the -X
direction.  Note that we could have just as easily used the
equations,  and  to get
these results since we know .

Acceleration Development. Recall in the sentence above Eq.(i)
that the vertical acceleration of points  have the same
magnitudes, respectively,  as  .  The acceleration vectors

have horizontal components due to the pulley’s rotation;
hence, , and .  We can
verify this statement starting with , the acceleration of
point o, even though  is unknown.  Applying the acceleration
equation from Eqs.(4.3) gives:
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                          (iv)

Note particularly the horizontal components of  arising
from the centripetal acceleration term  induced by the pulley
rotation.  With that result firmly in mind, we can proceed to
solve for .  

The first step is solving for .  Applying
 gives

Taking the I and J components separately gives:

The X component result gave nothing; the Y component allowed
us to solve for .  At this point, we are in a position to directly
solve for  as:
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As expected, point o’s acceleration is vertical.  Also, P’s vertical
acceleration is entirely due to the  term.  This last step could
have proceeded equally well from  instead of , since we
also know .

The customary development in this type of problem uses the
following sequential steps:

(1).  Starting with known velocities at two points, in this case
 and , calculate .  Then using a known velocity and

 calculate any additional required velocities.

(2).  Starting with known accelerations at two points,
calculate .  Then using one of the known accelerations
plus  and , calculate other required accelerations.
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Lecture 19.  ROLLING WITHOUT SLIPPING

Figure 4.8  Gear rolling in
geared horizontal guides.

Figure 4.9  Wheel rolling on a
horizontal surface.

The derivation and understanding of velocity and acceleration
relationships for a wheel that is rolling without slipping is the
fundamental objective of this lecture.

lsanandres
Rectangle



22

   Figure 4.10  Wheel rolling without slipping on a horizontal
surface.

Geometric Development
The wheel in figure 4.10 advances to the right as θ increases. 

The question is: Without slipping, how is the rotation angle θ
related to the displacement of the wheel center Xo ?  Note first
that the contact point between the wheel, denoted as C, advances
to the right precisely the same distance as point o.  If the wheel
starts with θ and Xo  at zero, and rolls forward through one
rotation without slipping, both the new contact point and the now
displaced point o  will have moved to the right a distance equal
to the circumference of the wheel; i.e., .  It may help

you to think of the wheel as a paint roller and imagine the length
of the paint strip that would be laid out on the plane during one
rotation.  Comparable to the result for a full rotation, without
slipping the geometric constraint relating  Xo and θ is
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(4.4)

(4.5)

(4.6)

Differentiating with respect to time gives :

These are the desired kinematic constraint equations for a wheel
that is rolling without slipping.

We want to define the trajectory of the point P on the wheel
located by  θ.  The coordinates of the displacement vector
locating P are defined by 

The trajectory followed by point P as the wheel rolls to the right
is the cycloid traced out in figure 4.11.  The cycloid was obtained
for r =1 by varying θ through two cycles of rotation to generate
coordinates  X (θ) and Y (θ) and then plotting Y versus X .  
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(4.7)

Figure 4.11  Cycloidal path traced out by a point on a wheel that
is rolling without slipping.  The letters A through D on the wheel
indicate locations occupied by point P on the cycloid.

Referring to the locations A through D of figures 4.10 and
4.11, point P starts at A, reaches B after the wheel has rotated π/2
radians, reaches the contact location after π radians, reaches D
after 3π/2 radians and then returns to A after a full rotation.  

Differentiating the components of the position vector locating P
(defined by Eq.(4.6)) to obtain components of the velocity vector
for point P with respect to the X,Y coordinate system gives: 

Note that  and  are components of the velocity vector of a
point P on the wheel, located by the angle θ.  The corresponding
acceleration components are:
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(4.8)

(4.9)

Eqs.(4.7) and (4.8) can be used to evaluate the instantaneous
velocity and acceleration components of any point on the wheel
by specifying an appropriate value for θ.  Values for  θ = 0, π/2,
π, and 3π/2 correspond, respectively, to locations A, B, C, and D
in figure 4.10.

Position A ( top of the wheel; θ = 0 ):
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(4.10)

(4.11)

(4.12)

Position B (right-hand side of the wheel; θ = π/2 ) :

Position C (bottom of the wheel at the contact location; θ = π) :

Position D (left-hand side of the wheel; θ = 3π/2):
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Figure 4.12  Velocity vectors for points on the wheel at locations
A  through D and  o.

Figure 4.13  Acceleration vectors for points on the wheel at
locations A through D.
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The point P in contact with the ground has zero velocity at the
instant of contact.  Constant-velocity components over a finite
time period are required to give zero acceleration.   Note
carefully that a point on the wheel at the contact location has a

vertical acceleration of r .

Geometric approach :
a. State (write out) the geometric X and Y component

equations.

b. Differentiate the displacement component equations to
obtain velocity component equations.

c. Differentiate the velocity component equations to obtain
acceleration component equations. 
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Vector Development of Velocity Relationships

  for point  o .  Using the right-hand-rule convention for

defining  angular velocity vectors, the wheel’s angular velocity
vector is .  ( If the wheel were rolling to the

left,  would be negative, and the angular velocity vector would

be .)  C is a point on the wheel at the instantaneous
contact location between the wheel and the ground, and has a
velocity of zero; i.e., vC = I 0 + J 0.
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(4.3)

(4.5a)

Vector Velocity and Acceleration Relationships

Applying the first of Eqs.(4.3) to points o and C gives

Setting vC  to zero and substituting: , ,

, gives

Hence, the rolling-without-slipping kinematic result for velocity
is (again)

Predictably, the vector approach has given us the rolling-
without-slipping kinematic condition for velocity.



31

Find the velocity vectors for points A through D of figure
4.10. Starting with point A, and applying the velocity
relationship from Eqs.(4.3) to points A and C on the wheel gives

Substituting: vC = 0, , and rCA =J 2r yields

The velocity of a point on the wheel at location B can be
found by applying Eqs.(4.3) as: 

The first equation defines vB  by starting from a known velocity at
point o ; the second equation starts from a known velocity at
point C.  The vectors vo , vC , and ω have already been identified. 
The required new vectors are roB = I r and . 

Substitution gives:
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The velocity of point D can be obtained by any of the
following:

We know the velocity vectors for point o, A, B, and C, and can
write expressions for the vectors roD , rAD , rBD , and rCD . 
Applying (arbitrarily) the last equation with rCD = -Ir + Jr gives

Results From Vector Developments of Acceleration

In this subsection, we will use Eqs.(4.3), relating the
acceleration vectors of two points on a rigid body to: (i) derive
the rolling-without-slipping acceleration result of Eq.(4.5) (

)  and (ii) determine the acceleration vectors of points A

through D.  Starting with points o and C, we can apply the
acceleration result of Eq.(4.3)  as
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(4.13)

Substituting  , , and our earlier result  

gives:

Equating the I and J components gives:

The accelerations of points A, B and D can also be obtained
via Eqs.(4.3), starting from any point on the wheel where the
acceleration vector is known.  Choosing point o (arbitrarily)
gives

Substituting for the variables on the right-hand side of these
equations gives
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Example Problem 4.3

   
The lower wheel assembly is rolling without slipping on a plane
that is inclined at  to the horizontal.  It is connected to the
top spool via an inextensible cable that is playing out cable.  The
center of the lower spool and its contact point are denoted,

Figure XP4.3 Rolling-wheel assembly 
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respectively by o and C.  Point A denotes the top of the spool.  At
the instant of interest, the acceleration of the center of the lower
spool is , and its velocity is .

Tasks: For the instant considered, determine the velocity and
acceleration of points C and  A.  Determine the top spool’s
angular velocity and acceleration.

Solution. 
Rolling without slipping Y , plus from Eqs.(4.5) 

With  defined, starting from either  o or C,   is

The velocity of the lower spool at the cable contact point is
.  Since the cable is inextensible, the cable

contact point on the upper spool has the same velocity, and
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, and 

 . 

From Eq.(4.11),

 .  

The rolling-without-slipping conditions of Eqs.(4.5) relates o’s
acceleration to the spool’s angular acceleration as

Starting at o,  is

Starting at C,  is
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Solving for : The acceleration of the wheel assembly at A

is .  The acceleration of spool 2 at its

contact point B  is .  Because the cable

is inextensible, the J components of these accelerations (along
the cable) must be equal.  Hence,

 , and .
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Figure XP4.4 Cylinder rolling without slipping
on a horizontal (moving surface) while being
restrained by a cord from D

Example Problem 4.4 A cylinder of radius  is rolling

without slipping on a horizontal surface.  At the instant of
interest, the surface is moving to the left with

, and has an acceleration to the right of

.  An inextensible cord is wrapped around an

inner cylinder of radius  and anchored to a wall at D. 

Determine the angular velocity and acceleration of the
cylinder and the velocity and acceleration of points A, o, B,
and C.
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( i )

Solution.  First find .  Point C, the contact point between the
outer surface of the cylinder and the moving surface, has the
velocity .  Point  A, the contact point of the inner

cylinder with the cord, has zero velocity , .  The

cylinder can be visualized as rolling without slipping (to the
right) on the cord line A-D.  We could use the vector equation

 to state multiple correct equations between the

velocities of points A, B, o, and C, and most of these equations
would not be helpful in determining .  We will use A and C
because we know their velocities, and we do not know the
velocities of the remaining points.  Since points C and A are
on the cylinder (rigid body),

Hence, the cylinder is rotating in a clockwise direction.  
 We can determine the velocity of point o at the center of

the cylinder using either or ,

because we know  and .  Proceeding

from point A, 
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Hence, point  o at the center of the cylinder moves
horizontally to the right.  Similarly, 

We have now completed the velocity analysis determining
.

 For the acceleration analysis, our first objective is the
solution for .  Point A has a zero horizontal acceleration
component; i.e., .  From the nonslipping condition,

point C has the horizontal acceleration component,
; hence, . 

Hence,
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(ii)

Taking the I and J components separately gives:

The I component result is immediately useful, determining .  
The J component result is not helpful, since it only

provides a relationship between the two unknowns  and

.  We still need to calculate these components.  Point o has

no vertical motion; i.e, . Hence,

The I and J components give:
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(iii)

We substituted and  into the I
and J component equations, respectively.  You can verify that
we could have also used 

successfully to determine .

From Eq.(ii), ; hence, using the

second of Eq. (ii), .  Note

that .  In this example, point A

corresponds to the “contact point C”.  It is in contact with
cord line AD, and its only acceleration is vertical due to the
centrifugal acceleration term.

We now have 
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The acceleration of point B can be obtained starting from
points A, o, or C , since we have the acceleration of all these
points.  Starting from o, 

Note in reviewing this example the key to the solution is:
(i) first find , and (ii)  then find .  We used a velocity

relation between points A and C to find  and an acceleration

relation between the same two points to find .  These points
work because we know the X components of . 

We can write valid equations relating the velocity and
acceleration for any two of the points; however, only the
combination of points A and C will produce directly useful
results in calculating  and .  

Also, note that to determine the Y components of
, we needed to use an acceleration relationship

involving , the acceleration of center of the cylinder.  Valid

acceleration relationships can certainly be stated between the
points A, B, and C   However, the results are not helpful; e.g.,
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we obtained in Eq.(ii), which

involves two unknowns  and .   Point o “works”

because we know that its vertical acceleration is zero.

NOTE: THE GEOMETRIC APPROACH WORKS
WELL ON MECHANISMS.  THE VECTOR
APPROACH GENERALLY WORKS BETTER IN
ROLLING-WITHOUT-SLIPPING PROBLEMS WHEN
YOU NEED TO FIND THE ACCELERATION OF A
POINT OR THE ANGULAR VELOCITY OR
ACCELERATION OF A WHEEL.



45

Lecture 20.  PLANAR KINEMATIC-PROBLEM EXAMPLES

Figure 4.15  Slider-crank
mechanism.

TASK:  For a given constant rotation rate , find the
velocity  and acceleration  terms of the piston for one
cycle of  θ .  

Geometric Approach:  There are three variables (θ, φ, and Xp )
but only one degree of freedom.  The following (constraint)
relationships may be obtained by inspection:

lsanandres
Rectangle
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(4.16)

(4.17)

With θ as the input (known) variable, these equations can be
easily solved for the output variables . The vector diagram
in figure 4.15 shows the position vectors rAB ,  rBC , and rCA .  For
these vectors, 

Substituting, 

gives :

Differentiating Eq.(4.16) w.r.t. time gives:
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(4.18a)

(4.18b)

(4.19a)

(4.19b)

Differentiating again gives:

Matrix equations of unknowns

The engineering-analysis tasks are accomplished by the
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following steps:

1.  Vary θ over the range of [ 0, 2π ], yielding discrete values
θi .

2.  For each θi value, solve Eq.(4.16) to determine
corresponding values for φi .

3.  Use Eqs.(4.18) with known values for  θi and φi to
determine .

4.  Use Eqs.(4.19) with known values for θi , φi , and  to
determine .

5.  Plot  versus θi.
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Spread-sheet solution for  for one θ cycle with
.

Xp ddot (g's) versus Theta
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(4.20a)

(4.20b)

(4.20c)

For XP (t) as the input, with  (θ and φ ), (  and ), and (  and
) as  the desired output coordinates.  The equations for the

coordinates are:

From Eq.(4.20a), the velocity relationships are:

From Eq.(4.20b), the required acceleration component equations
are:

Figure 4.18 Slider crank mechanism with
displacement input from a hydraulic cylinder.
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The problem solution is obtained for specified values of
 by proceeding sequentially through

Eqs.(4.20a), (4.20b), and (4.20c).  Note that Eqs.(4.20a) defining
θ and φ are nonlinear, while Eqs.(4.20b) for  and , and
Eqs.(4.20c) for  and  are linear.

The essential first step in developing kinematic equations for
planar mechanisms via geometric relationships is drawing a
picture of the mechanism in a general orientation, yielding
equations that can be subsequently differentiated.

Figure 4.19 
Disassembled  view of
the slider-crank
mechanism for vector
analysis.

Vector Approach for Velocity and Acceleration Results
Applying the velocity result of Eq.(4.3) separately to links 1

and 2, gives:

Equating the two answers that these equations provide for vB ,
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Since point A is fixed in the X ,Y system, vA = 0.  Similarly, given
that point C can only move horizontally, vC = I .  The vector
ω1 is the angular velocity of link 1 with respect to the X,Y
system.  Using the right-hand rule,

The position vectors rAB and rBC are defined by

Substitution gives

Carrying out the cross products and gathering terms,

To find the acceleration relationships, applying the second of
Eqs.(4.3) to figure 4.17 :
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Equating the separate definitions for aB   gives

Since point A is fixed, aA = 0.  Also, since point C is constrained
to move in the horizontal plane, aC = I .  The remaining
undefined variables are , the angular acceleration of
link 1 with respect to the X, Y system, and , the angular
acceleration of link 2 with respect to the X, Y system. 
Substituting gives

Completing the cross products and algebra gives the following
component equations:
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(4.21)

4.5b A Four-Bar-Linkage Example

.

Consider the following engineering-analysis task: For a constant
rotation rate ,  determine the angular velocities ,  and
angular accelerations ,  for one rotation of α.

Geometric Approach
Inspecting figure 4.19a yields:

Figure 4.19 (a) Four-bar linkage, (b) Vector diagram for
linkage
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(4.22)

(4.23)

(4.23)

Figure 4.19b shows a closed-loop vector representation that can
be formally used to obtain Eqs.(4.21).  The results from figure
4.19b can be stated, .  Substituting:

gives the same result as Eqs.(4.21).  
Restating Eqs.(4.21) as:

shows  α as the input coordinate and β and γ as output
coordinates. Differentiating with respect to time gives:

In matrix format,
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(4.24)

Using Cramers rule to solve these equations gives

The solution is undefined for 

Differentiating Eqs.(4.23) gives:

Setting =0, and  reduces them to:

or, in matrix format,
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(4.26)

Using Cramer’s rule, the solution is

The solution is undefined for .

The engineering-analysis task is accomplished by executing the
following sequential steps:

1. Vary α over the range [ 0, 2π ], yielding discrete values .

2.  For each α i value, solve Eq.(4.22) to determine
corresponding values for βi  and  γi.
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3.  Enter Eqs.(4.23a) with known values for α i , βi and γi. to
determine  and .

4.  Enter Eqs.(4.26a) with known values for α i , βi , γi ,  
and  to determine  and .

5.  Plot   ,  ,  and  versus α I.

Eqs.(4.22) can be solved analytically, starting with the
restatement

 and  are defined in terms of α and
are known quantities. Squaring both of these equations and
adding them together gives

Rearranging gives
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where .  Restating this result gives

The equation   has the two roots:

Depending on values for B and C, this equation can have one real
root, two real roots, or two complex roots.  Two real roots
implies two distinct solutions, and this possibility is illustrated
by figure 4.20 below where the same α  value gives an
orientation that differs from figure 4.19a. 

(4.27)
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The one real-root solution corresponding to  defines an
extreme “locked” position for the mechanism, as illustrated in
figure 4.21.  Note that this position corresponds to  
netting , which also caused the angular velocities
and angular accelerations to be undefined in Eqs.(4.23) and
(4.25), respectively.  

Figure 4.20 Alternate
configuration for the linkage
of figure 4.19a

Figure 4.21 Locked position for
the linkage of figure 4.19a with
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We can solve for the limiting α  value in figure 4.21 by
substituting  into Eq.(4.22) to get

Squaring both equations and adding them together gives

If the parameters  are such that a solution exists for ,
then a locked position can occur.  For figure 4.21, the limiting
value for  corresponds to

For  there is no limiting rotation angle , and the
left hand link can rotate freely through 360 degrees.

Figure 4.22 illustrates a solution for  with 
 and  for

over [0, 2π ].  The solution illustrated corresponds to the first
solution (positive square root) in Eq.(4.27).

(4.28)



62

Caution is advisable in using Eq.(4.27) to solve for  to make
sure that the solution is in the correct quadrant.

gamma & beta (degrees)
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Figure 4.22 Numerical solution for
versus α for 
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Vector Approach for Velocity and Acceleration Relationships

Figure 4.21  Disassembled  view of the three-bar linkage of
figure 4.19 for vector analysis.

Starting on the left with link 1, and looking from point A to B
gives

Next, for link 3, looking from point D back to point C we can
write

Finally, for link 2, looking from point B to point C gives
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Substituting into this last equation for vB and vC , and observing
that vA = vD = 0 gives

Eqs.(4.22) define the position vectors of this equation.  Using the
right-hand rule, the angular velocity vectors are defined as

, , and .  Substituting gives

Carrying out the cross products  gives:

The acceleration relationships are obtained via the same logic
from
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Substituting from the first and second equations for aB and aC

into the last gives

Noting that aD and aA are zero, and substituting  ,
, and  into this equation gives

Carrying out the cross products and gathering terms,

If general governing equations are required, the geometric
relationships of  Eq.(4.23) must be developed.
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Example Problem 4.5  Figure XP4.5a illustrates an oil pumping
rig that is typically used for shallow oil wells. An electric motor
drives the rotating arm OA at a constant, clock-wise angular
velocity .  A cable attaches the pumping rod at D to
the end of the rocking arm BE.  Rotation of the driving link
produces a vertical oscillation that drives a positive-displacement
pump at the bottom of the well.

Tasks: 
a.  Draw the rig in a general position and select coordinates
to define the bars’ general position.  State the kinematic

Figure XP5.4a Oil well pumping rig, adapted
from Meriam and Kraige (1992)
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constraint equations defining the angular positions of bars
AB and BCE in terms of bar OA’s angular position. 

b.  Outline a solution procedure to determine the orientations
of bars AB and BCE in terms of bar OA’s angular position. 

c.  Derive general expressions for the angular velocities of
bars AB and BCE  in terms of bar OA’s angular position and
angular velocity.  Solve for the unknown angular velocities.

d.  Derive general expressions for the angular accelerations
of bars AB and BCE  in terms of bar OA’s angular position,
velocity, and acceleration.  Solve for the unknown angular
accelerations.

e.  Derive general expressions for the change in vertical
position and vertical acceleration of point D as a function of
bar OA’s angular position.
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Solution.  The sketch of figure XP4.5b  shows the angles 
defining the angular positions of bars OA, AB and BC,
respectively.  α is the (known) input variable, while β and γ are
the (unknown) output variables.  The length  extends from B to
C.  Stating the components of the bars in the X and Y directions
gives:

Figure XP5.4b Pumping rig in a general position
with coordinates

(i)
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and concludes Task a.  

As a first step in solving for ( ), we state the equations as 

Squaring these equations and adding them together gives:

where .  Substituting  nets  

For a specified value of α, solving this quadratic equation gives
Y , and back substitution into Eq.(i) nets β.  These

steps concludes Task b, and figure XP4.5b illustrates the results

    (ii)
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(iv)

for the lengths of figure XP4.5a.
Proceeding to Task c, we can differentiate Eq.(i) with respect

to time to obtain:

In matrix format, these equations become

Using Cramer’s rule (Appendix A), their solution can be stated:

concluding Task c.  Figure XP 4.5c illustrates versus α 

     (iii)
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Figure XP 4.5c   and  versus α 
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(vi)

Moving to Task d, we can differentiate Eq.(iii) with respect
to time to obtain:

In matrix format, these equations become

The solution can be stated:

concluding Task d.
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In regard to Task e, as long as the circular arc at the end of
the rocker arm is long enough, the tangent point of the cable with
the circular-faced end of the rocker arm will be at a horizontal
line running through C.  Hence, the change in the horizontal
position of point D is the amount of cable rolled off the arc due
to a change in the rocker arm γ, i.e., .  Similarly, the
vertical acceleration of the sucker rod at D is the circumferential
acceleration of a point on the arc, i.e,   . 
Figure XP4.5 d illustrates  as a function of alpha.  The
distance traveled by  the pump rod in one cyle is .633 - (-.633) =
1.27 m.  The peak positive acceleration is 1.17 g and the
minimum is   -0.63 g.  Note that , indicating from
a rigid-body viewpoint  that the cable will remain in tension
during its downward motion.
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Figure XP4.5d Vertical acceleration and change in
position of the pumping rod
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(4.25)

Lecture 21. MORE PLANAR KINEMATIC EXAMPLES

4.5c  Another Slider-Crank Mechanism

Figure 4.24 Alternative
slider-crank
mechanism.

Engineering-analysis task:  For = ω = constant, determine φ
and S and their first and second derivatives for one cycle of θ.  

Geometric Approach.  From figure 4.22:

Reordering these equations to

lsanandres
Rectangle
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(4.27a)

(4.28a)

(4.27b)

(4.27c)

emphasizes that θ is the input coordinate, with φ and S the output
coordinates.  These equations are nonlinear but can be solved for
φ and S in terms of  θ, via

and

Differentiating Eqs.(4.25) nets:

or
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(4.28b)

(4.29)

(4.30a)

(4.30b)

Differentiating Eq.(4.28a) w.r.t. time nets:

Substituting , ,and rearranging gives:

The matrix equation for the unknown  and  is 
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The engineering-analysis task is accomplished by executing the
following sequential steps:

1.  Vary θ over the range [ 0, 2π ], yielding discrete values θi

.

2.  For each θi value, solve Eq.(4.25) to determine
corresponding values for φi and Si.

3.  Enter Eqs.(4.28) with known values for  θi ,  φi and Si. to
determine  and .

4   Enter Eqs.(4.30) with known values for θi ,  φi , Si ,  and
 to determine  and .

5.  Plot ,  ,  and  versus θi  .
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Figure 4.24 Alternate
version of the mechanism
in figure 4.22 with S as the
input.

For S as the input, Eqs.(4.28a) are reordered as: 

to define  and .   Rearranging Eqs.(4.29) defines  and
via:
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(4.1)

The basic geometry of figures 4.22 and 4.24 tends to show up
regularly in planar mechanisms.

Vector, Two-Coordinate-System Approach for Velocity and
Acceleration Relationships
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Figure 4.26 
Two-coordinate arrangement for rod BD of the slider-crank
mechanism in figure 4.22.

The vector ω is defined as the angular velocity of the x, y system
relative to the X,Y system.  From figure 4.26 , using the right-
hand-screw convention, 

Given that  , we obtain by direct differentiation

From figure 4.26, 
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(4.31)

Differentiating this vector holding  j constant gives 

Differentiating again gives

Substituting these results into the definitions provided by
Eqs.(4.1) gives:

Carrying through the cross products and completing the algebra
nets:

By comparison to figure 4.25, the unit vectors i and  j of the x,y
system coincide with the unit vectors εφ  and  εr2    used in the
polar-coordinate solution for vB and aB .

Returning to figure 4.25, we can apply Eq.(4.3) to state the
velocities and accelerations of points A and B as:
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(4.32)

Since point A is fixed, vA = aA = 0.   From the right-hand-rule
convention, , .  From figure 4.25, rAB = l1 ( I
cosθ + J sinθ ).  Substituting, we obtain

Carrying out the cross products and algebra gives:

The results in Eqs.(4.32) are given in terms of  I and J unit
vectors, versus i and j  for Eq.(4.31).  
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(4.33)

Figure 4.27  Velocity and acceleration definitions for the
velocity  point B in the x, y system.

From figure 4.27:

Equating these definition with the result from Eqs.(4.32) gives:
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and

which repeats our earlier results.

Solution for the Velocity and Acceleration of Point D

The simplest approach ( given that we now know and ) is
the direct vector formulation.  Applying Eqs.(4.3) to points A and
B gives:

We have already worked through these equations, obtaining
solutions for vB and aB in Eqs.(4.32).  We can also apply
Eqs.(4.3) to points B and D, since they are points on a rigid body
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(unlike point C ), obtaining:

Substituting from Eq.(4.34) for vB and aB plus  ,
, and into these equation

gives:

Carrying out the cross products and gathering terms yields:

These are general equations for vD and aD .  Substituting 
and  completes the present effort, with , and defined,
respectively, by Eqs.(4.28), (4.29), and (4.30).
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Lesson: The “best” method for finding the velocity and
acceleration of a specific point is frequently not the “best”
method for finding kinematic relationships.
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Example Problem 4.6  Figure XP4.6a provides a top view of a
power-gate actuator.  An electric motor drives a lead screw
mounted in the arm connecting points C and D.  Lengthening
arm CD closes the gate; shortening it opens the gate. During
closing action, arm CD extends from a length of 3.3 ft to 4.3 ft   
in about 17 seconds to proceed from a fully open to fully closed
positions.  The gate reaches its steady extension rate quickly at
the outset and decelerates rapidly when the gate nears the closed
position.
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Tasks: 
a. Draw the gate actuator in a general position and derive
governing equations that define the orientations of bars CD
and BC as a function of the length of arm CD.

b. Assume that arm CD extends at a constant rate (gate is
closing) and determine a relationship for the angular
velocities of arms CD and BE. 

c.  Continuing to assume that bar CD extends at a constant
rate, determine a relationship for the angular accelerations of
arms CD and BE. 

Solution From figure XP4.6b:

S is the input and  are the unknown output variables.  
Differentiating Eq.(i) with respect to time gives:

(i)

(ii)
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(iii)

(v)

Rearranging Eq.(ii) and putting them in matrix format gives

 Differentiating Eq.(ii) gives:

Rearranging the equations gives:

In matrix format, Eq.(iv) becomes

(iv)
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Figure XP4.6c illustrates the solution for , , and  
versus S. 

Figure XP4.6c Angular positions,
velocity, and accelerations versus S
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Lecture 22.  PLANAR KINEMATIC PROBLEM
EXAMPLES

Meriam 5/33.

The hydraulic cylinder is causing the distance OA to increase at
the constant rate of 50 mm/sec.  Calculate the velocity and
acceleration of the pin at C when .

GEOMETRY

lsanandres
Rectangle
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(i)

(ii)

Geometric constraint equations:

Differentiating w.r.t. time

Setting  and solving for  at θ = 50E
gives

Solving for ,

Differentiating Eq.(i) w.r.t time gives

Substituting  and  nets
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(iii)

Substituting and   gives

Hence, .

Meriam  5/40

For the time of interest, the hydraulic cylinder is extending at the
rate   .  Determine relationships for the vertical velocity of the
lift.
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(iv)

GEOMETRY

Geometric constraint equations:

Differentiating the geometric constraint equations w.r.t. time
gives:

In Matrix format,

Solution from Cramer’s Rule
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Substituting to define 

If we needed , we could differentiate this equation w.r.t. time .
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Meriam 5/49

For the instant when
, the hydraulic

cylinder at C provides the
vertical motion defined by

 and 
.  Solve for

the angular velocity and
angular acceleration of link
AB.
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(v)

GEOMETRY

Kinematic constraint equation

Differentiating w.r.t. time gives

For y = 200 mm, θ = 60E

 400 mm / sec = -2(200 mm)sin (60E)   

ˆ  

 -100 = -2(200) cos (60E) (1.155)2 -2(200) sin(60E) 

ˆ  
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Meriam 5/53

The Geneva wheel produces
intermittent motion of the right-
hand side wheel due to a constant
rotation rate of the left-hand (drive)
wheel.  For , ,
determine  and .

Geometry
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Differentiating w.r.t. time gives

 is given;  and  are the unknowns.

Matrix equation of unknowns,

Solving using Cramer’s rule, , and 

and .    Solving for ,
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Differentiating  yields:

since .  Hence

and .

Differentiating  gives



96

(1)

(2)

Lecture 23.  PLANAR KINEMATIC EXAMPLE
PROBLEMS

Crank OA is rotating with constant angular velocity .  Derive
general expressions for the angular velocity and angular
acceleration of link AC.  Also, derive general expressions for 
and .  What is the velocity and acceleration of point C?

Geometric-constraint equations:

Differentiating w.r.t. time gives:

Matrix equation for unknowns

lsanandres
Rectangle
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Solving using Cramer’s rule,  

Differentiating    w.r.t. time with  gives
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Differentiating   w.r.t. time with gives

Alternatively, differentiate Eq. (2) to obtain

Matrix equations
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Vector-approach solution to find the velocity and acceleration of
C. 

Vector relations for points A and O:

Vector relations Vector relations for points A and C:
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2.The wheel rolls to the right without
slipping, and its center O has a constant
velocity vo.  Determine the velocity v and
acceleration a of a point A on the rim of
the wheel in terms of the angle β
measured clockwise from the horizontal. 
Note, β is not the rotation angle of the
wheel.  It simply locates point A.

Rolling without slipping implies:

The velocity equation gives

The acceleration equation gives
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(1)

3.  Link OB has a constant clockwise angular velocity .  For
general positions of the assembly, derive general expressions for
the angular velocities and angular accelerations of links BA and
AC.

Kinematic-constraint equations:

or restated with as the input variable

Differentiating w.r.t. time gives
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(2)

In matrix format,

Differentiate Eq.(2) w.r.t. time to obtain:
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In matrix format,

where

Solve using Cramer’s rule.


