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Lecture 18.   PLANAR KINEMATICS OF RIGID BODIES,
GOVERNING EQUATIONS

Planar kinematics of rigid bodies involve no new equations.  The
particle kinematics results of Chapter 2 will be used.

 

Figure 4.1  Planar motion of a rigid body moving in the
plane of the page. Point o’s position in the body is defined in
the X, Y coordinate system by .  The orientation
of the body with respect to the X, Y coordinate system is
defined by θ.  (a). The body at time t and orientation θ. (b).
The body at a slightly later time t + Δt with a new position

 and new orientation  θ + Δθ.

The  coordinate system is fixed to the body; the 
system is fixed to “ground.”

 = angular speed of rigid body and  coordinate
system relative to ground or the  system.
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Right-hand rule, angular velocity vector of the rigid body and the 
x, y coordinate system is 

= angular velocity of  x, y, z relative to X, Y, Z.

Figure 4.2 Rigid body moving in the X, Y  plane with its
angular velocity vector  aligned with the z and Z
axes.
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     (2.41)

(2.42a)

Figure 2.21 

X, Y  and x, y coordinate systems.

Components of B:

Coordinate Transformation for components

or
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(2.42b)

Unit vector definitions:

Derivatives of unit vectors with respect to X, Y coordinate
system:

Differentiating  with respect to the X, Y system, 

or
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Derivatives with respect to coordinate systems:



6

Figure 2.23 An airplane
passenger moving down the
aisle, as the airplane moves
with respect to ground and
pitches upwards relative to
ground.

VELOCITY AND ACCELERATION RELATIONSHIPS IN
TWO COORDINATE SYSTEMS

Figure 4.5 Two-coordinate
arrangement for general
planar kinematics

The point P is located in the X,Y system by
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(2.59)

(2.60)

(2.62a)

(2.62b)

P is located in the x,y,z system by 

Velocity Equations
Taking the time derivative of Eq.(2.59) with respect to the X, Y
system yields: 

Applying   to obtain , nets

or 
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(2.63)

(2.64)

(2.65)

(2.66)

Acceleration Equations
Differentiating Eq.(2.62b),

Applying ,

nets

Comparisons to Polar-Coordinate Definitions
Parallels between the present vector results and earlier polar-

coordinate definitions for velocity and acceleration become more
apparent if we require that  and that ρ lies along the x axis; 
i.e.,

Hence,
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(2.67)

(2.27)

Substitution into Eq.(2.62) (with ) gives

Comparing this result to 

shows the following parallel in physical terms:
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(2.68)

(2.30)

For comparison of the acceleration terms, substituting from
Eq.(2.67) into Eq.(2.65) gives (with ) :

By comparison to the polar-coordinate definition,

the following physical equivalence of terms is established:
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Hence, Eq.(2.65) merely presents old physical terms in a new
vector format.

VELOCITY AND ACCELERATION RELATIONSHIPS
FOR TWO POINTS IN A RIGID BODY

Velocity Equations
The x, y, z system is fixed in a rigid body.  

 = position vector locating a point in the rigid
body. Hence,
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and

becomes

Alternatively,
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Example Problem 4.1

Given:

Figure XP4.1a Bar with points A,
B, and C

(i)

(ii)
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Tasks: 
a.  Determine the velocity and acceleration vectors for points
C and B.
b.  Draw the velocity and acceleration vectors for points A, 
B, and C.

Solution:  Applying the first of Eqs.(4.3) gives

The acceleration vectors of points B is obtained from the second
of Eqs.(4.3) as

Similarly for point C  
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Figure XP4.1 (b) Velocity (mm/sec) and (c) Acceleration
( )
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Example Problem 4.2 

Example Problem 4.2  Point A, the end of the left cable has a
velocity of .6 m/sec and an acceleration of .13 m/sec2 .  Point B,
the end of the right cable has a velocity of 1.2 m/sec and an
acceleration of -.13m/sec2.  The central pulley has a radius of 0.4
m.  Point o is at the center of the pulley, and point P is at the top
of the pulley

Tasks: Determine the velocity and acceleration of points o and
P.

Solution: We are going to use Eqs.(4.3), the velocity and
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(i)

acceleration vectors for two points on a rigid body to work
through this example.  The rigid body is the central pulley
illustrated in figure 4.2b.  Since the cable is inextensible, points

and  on the central pulley have the same velocities and
vertical acceleration magnitudes as A and B , respectively. 
Specifically,

Velocity results. We start this development knowing ,
and needing .  We could use the velocity relationship to
find these unknowns providing that we knew . We
can determine  by applying   for points 
and  on the pulley.  Substituting for  from Eq.(i) and 

 gives

Proceeding with this result for  gives:

                                 (ii)
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As expected,  velocity is vertically upwards.  Because of the
pulley’s rotation, point P has a velocity component in the -X
direction.  Note that we could have just as easily used the
equations,  and  to get
these results since we know .

Acceleration Development. Recall in the sentence above Eq.(i)
that the vertical acceleration of points  have the same
magnitudes, respectively,  as  .  The acceleration vectors

have horizontal components due to the pulley’s rotation;
hence, , and .  We can
verify this statement starting with , the acceleration of
point o, even though  is unknown.  Applying the acceleration
equation from Eqs.(4.3) gives:
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                          (iv)

Note particularly the horizontal components of  arising
from the centripetal acceleration term  induced by the pulley
rotation.  With that result firmly in mind, we can proceed to
solve for .  

The first step is solving for .  Applying
 gives

Taking the I and J components separately gives:

The X component result gave nothing; the Y component allowed
us to solve for .  At this point, we are in a position to directly
solve for  as:
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As expected, point o’s acceleration is vertical.  Also, P’s vertical
acceleration is entirely due to the  term.  This last step could
have proceeded equally well from  instead of , since we
also know .

The customary development in this type of problem uses the
following sequential steps:

(1).  Starting with known velocities at two points, in this case
 and , calculate .  Then using a known velocity and

 calculate any additional required velocities.

(2).  Starting with known accelerations at two points,
calculate .  Then using one of the known accelerations
plus  and , calculate other required accelerations.


