
21

Lecture 19.  ROLLING WITHOUT SLIPPING

Figure 4.8  Gear rolling in
geared horizontal guides.

Figure 4.9  Wheel rolling on a
horizontal surface.

The derivation and understanding of velocity and acceleration
relationships for a wheel that is rolling without slipping is the
fundamental objective of this lecture.
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   Figure 4.10  Wheel rolling without slipping on a horizontal
surface.

Geometric Development
The wheel in figure 4.10 advances to the right as θ increases. 

The question is: Without slipping, how is the rotation angle θ
related to the displacement of the wheel center Xo ?  Note first
that the contact point between the wheel, denoted as C, advances
to the right precisely the same distance as point o.  If the wheel
starts with θ and Xo  at zero, and rolls forward through one
rotation without slipping, both the new contact point and the now
displaced point o  will have moved to the right a distance equal
to the circumference of the wheel; i.e., .  It may help

you to think of the wheel as a paint roller and imagine the length
of the paint strip that would be laid out on the plane during one
rotation.  Comparable to the result for a full rotation, without
slipping the geometric constraint relating  Xo and θ is
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(4.4)

(4.5)

(4.6)

Differentiating with respect to time gives :

These are the desired kinematic constraint equations for a wheel
that is rolling without slipping.

We want to define the trajectory of the point P on the wheel
located by  θ.  The coordinates of the displacement vector
locating P are defined by 

The trajectory followed by point P as the wheel rolls to the right
is the cycloid traced out in figure 4.11.  The cycloid was obtained
for r =1 by varying θ through two cycles of rotation to generate
coordinates  X (θ) and Y (θ) and then plotting Y versus X .  
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(4.7)

Figure 4.11  Cycloidal path traced out by a point on a wheel that
is rolling without slipping.  The letters A through D on the wheel
indicate locations occupied by point P on the cycloid.

Referring to the locations A through D of figures 4.10 and
4.11, point P starts at A, reaches B after the wheel has rotated π/2
radians, reaches the contact location after π radians, reaches D
after 3π/2 radians and then returns to A after a full rotation.  

Differentiating the components of the position vector locating P
(defined by Eq.(4.6)) to obtain components of the velocity vector
for point P with respect to the X,Y coordinate system gives: 

Note that  and  are components of the velocity vector of a
point P on the wheel, located by the angle θ.  The corresponding
acceleration components are:
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(4.8)

(4.9)

Eqs.(4.7) and (4.8) can be used to evaluate the instantaneous
velocity and acceleration components of any point on the wheel
by specifying an appropriate value for θ.  Values for  θ = 0, π/2,
π, and 3π/2 correspond, respectively, to locations A, B, C, and D
in figure 4.10.

Position A ( top of the wheel; θ = 0 ):
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(4.10)

(4.11)

(4.12)

Position B (right-hand side of the wheel; θ = π/2 ) :

Position C (bottom of the wheel at the contact location; θ = π) :

Position D (left-hand side of the wheel; θ = 3π/2):



27

Figure 4.12  Velocity vectors for points on the wheel at locations
A  through D and  o.

Figure 4.13  Acceleration vectors for points on the wheel at
locations A through D.
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The point P in contact with the ground has zero velocity at the
instant of contact.  Constant-velocity components over a finite
time period are required to give zero acceleration.   Note
carefully that a point on the wheel at the contact location has a

vertical acceleration of r .

Geometric approach :
a. State (write out) the geometric X and Y component

equations.

b. Differentiate the displacement component equations to
obtain velocity component equations.

c. Differentiate the velocity component equations to obtain
acceleration component equations. 
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Vector Development of Velocity Relationships

  for point  o .  Using the right-hand-rule convention for

defining  angular velocity vectors, the wheel’s angular velocity
vector is .  ( If the wheel were rolling to the

left,  would be negative, and the angular velocity vector would

be .)  C is a point on the wheel at the instantaneous
contact location between the wheel and the ground, and has a
velocity of zero; i.e., vC = I 0 + J 0.
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(4.3)

(4.5a)

Vector Velocity and Acceleration Relationships

Applying the first of Eqs.(4.3) to points o and C gives

Setting vC  to zero and substituting: , ,

, gives

Hence, the rolling-without-slipping kinematic result for velocity
is (again)

Predictably, the vector approach has given us the rolling-
without-slipping kinematic condition for velocity.
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Find the velocity vectors for points A through D of figure
4.10. Starting with point A, and applying the velocity
relationship from Eqs.(4.3) to points A and C on the wheel gives

Substituting: vC = 0, , and rCA =J 2r yields

The velocity of a point on the wheel at location B can be
found by applying Eqs.(4.3) as: 

The first equation defines vB  by starting from a known velocity at
point o ; the second equation starts from a known velocity at
point C.  The vectors vo , vC , and ω have already been identified. 
The required new vectors are roB = I r and . 

Substitution gives:
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The velocity of point D can be obtained by any of the
following:

We know the velocity vectors for point o, A, B, and C, and can
write expressions for the vectors roD , rAD , rBD , and rCD . 
Applying (arbitrarily) the last equation with rCD = -Ir + Jr gives

Results From Vector Developments of Acceleration

In this subsection, we will use Eqs.(4.3), relating the
acceleration vectors of two points on a rigid body to: (i) derive
the rolling-without-slipping acceleration result of Eq.(4.5) (

)  and (ii) determine the acceleration vectors of points A

through D.  Starting with points o and C, we can apply the
acceleration result of Eq.(4.3)  as
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(4.13)

Substituting  , , and our earlier result  

gives:

Equating the I and J components gives:

The accelerations of points A, B and D can also be obtained
via Eqs.(4.3), starting from any point on the wheel where the
acceleration vector is known.  Choosing point o (arbitrarily)
gives

Substituting for the variables on the right-hand side of these
equations gives
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Example Problem 4.3

   
The lower wheel assembly is rolling without slipping on a plane
that is inclined at  to the horizontal.  It is connected to the
top spool via an inextensible cable that is playing out cable.  The
center of the lower spool and its contact point are denoted,

Figure XP4.3 Rolling-wheel assembly 
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respectively by o and C.  Point A denotes the top of the spool.  At
the instant of interest, the acceleration of the center of the lower
spool is , and its velocity is .

Tasks: For the instant considered, determine the velocity and
acceleration of points C and  A.  Determine the top spool’s
angular velocity and acceleration.

Solution. 
Rolling without slipping Y , plus from Eqs.(4.5) 

With  defined, starting from either  o or C,   is

The velocity of the lower spool at the cable contact point is
.  Since the cable is inextensible, the cable

contact point on the upper spool has the same velocity, and
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, and 

 . 

From Eq.(4.11),

 .  

The rolling-without-slipping conditions of Eqs.(4.5) relates o’s
acceleration to the spool’s angular acceleration as

Starting at o,  is

Starting at C,  is
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Solving for : The acceleration of the wheel assembly at A

is .  The acceleration of spool 2 at its

contact point B  is .  Because the cable

is inextensible, the J components of these accelerations (along
the cable) must be equal.  Hence,

 , and .
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Figure XP4.4 Cylinder rolling without slipping
on a horizontal (moving surface) while being
restrained by a cord from D

Example Problem 4.4 A cylinder of radius  is rolling

without slipping on a horizontal surface.  At the instant of
interest, the surface is moving to the left with

, and has an acceleration to the right of

.  An inextensible cord is wrapped around an

inner cylinder of radius  and anchored to a wall at D. 

Determine the angular velocity and acceleration of the
cylinder and the velocity and acceleration of points A, o, B,
and C.
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( i )

Solution.  First find .  Point C, the contact point between the
outer surface of the cylinder and the moving surface, has the
velocity .  Point  A, the contact point of the inner

cylinder with the cord, has zero velocity , .  The

cylinder can be visualized as rolling without slipping (to the
right) on the cord line A-D.  We could use the vector equation

 to state multiple correct equations between the

velocities of points A, B, o, and C, and most of these equations
would not be helpful in determining .  We will use A and C
because we know their velocities, and we do not know the
velocities of the remaining points.  Since points C and A are
on the cylinder (rigid body),

Hence, the cylinder is rotating in a clockwise direction.  
 We can determine the velocity of point o at the center of

the cylinder using either or ,

because we know  and .  Proceeding

from point A, 
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Hence, point  o at the center of the cylinder moves
horizontally to the right.  Similarly, 

We have now completed the velocity analysis determining
.

 For the acceleration analysis, our first objective is the
solution for .  Point A has a zero horizontal acceleration
component; i.e., .  From the nonslipping condition,

point C has the horizontal acceleration component,
; hence, . 

Hence,
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(ii)

Taking the I and J components separately gives:

The I component result is immediately useful, determining .  
The J component result is not helpful, since it only

provides a relationship between the two unknowns  and

.  We still need to calculate these components.  Point o has

no vertical motion; i.e, . Hence,

The I and J components give:
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(iii)

We substituted and  into the I
and J component equations, respectively.  You can verify that
we could have also used 

successfully to determine .

From Eq.(ii), ; hence, using the

second of Eq. (ii), .  Note

that .  In this example, point A

corresponds to the “contact point C”.  It is in contact with
cord line AD, and its only acceleration is vertical due to the
centrifugal acceleration term.

We now have 
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The acceleration of point B can be obtained starting from
points A, o, or C , since we have the acceleration of all these
points.  Starting from o, 

Note in reviewing this example the key to the solution is:
(i) first find , and (ii)  then find .  We used a velocity

relation between points A and C to find  and an acceleration

relation between the same two points to find .  These points
work because we know the X components of . 

We can write valid equations relating the velocity and
acceleration for any two of the points; however, only the
combination of points A and C will produce directly useful
results in calculating  and .  

Also, note that to determine the Y components of
, we needed to use an acceleration relationship

involving , the acceleration of center of the cylinder.  Valid

acceleration relationships can certainly be stated between the
points A, B, and C   However, the results are not helpful; e.g.,
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we obtained in Eq.(ii), which

involves two unknowns  and .   Point o “works”

because we know that its vertical acceleration is zero.

NOTE: THE GEOMETRIC APPROACH WORKS
WELL ON MECHANISMS.  THE VECTOR
APPROACH GENERALLY WORKS BETTER IN
ROLLING-WITHOUT-SLIPPING PROBLEMS WHEN
YOU NEED TO FIND THE ACCELERATION OF A
POINT OR THE ANGULAR VELOCITY OR
ACCELERATION OF A WHEEL.


