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Lecture 24.  INERTIA PROPERTIES AND THE PARALLEL-
AXIS FORMULA

Figure 5.1 Rigid body with an imbedded x,y,z coordinate
system.

The body’s mass is defined by

where  is the body’s density at  point  x, y, z .  

With the position vector of a point in the rigid body defined by
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(5.2)

(5.3)

the body’s mass center is located in the x, y, z system by the
vector , defined by

The mass moment of inertia about a  z axis through o is defined
by

Figure 5.2 Triangular mass of unit depth and uniform mass per
unit area .

Applying Eq.(5.1) to the example of  Figure 5.2 gives: 
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(5.4)

Applying  Eq.(5.2) to find the mass center gives

Hence,

and:

The mass center is located in the x, y system by 
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(5.5)

.

Proceeding from Eq.(5.3) for the moment-of-inertia definition
about o is,

A considerable amount of work is hidden in getting across the
last equality sign.

The radius of gyration  is defined as the radius at which all of the
mass could be concentrated to obtain the correct moment of
inertia.  For this example, 

   A particle has all of its mass concentrated at a point and has
negligible dimensions of length, breadth, depth, etc.  Rigid
bodies have finite dimensions, yielding properties such as area,
volume, and moment of inertia. Observe that continuing to
reduce the dimensions of the triangular plate in figure 5.2 will
cause the moment of inertia defined by Eq.(5.5) to rapidly
approach zero, which is consistent with a  particle.

The Parallel-Axis Formula
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Figure 5.3 (a)
Two coordinate systems fixed in a rigid body,  (b) End view
looking in along the z axis.

The x, y, z axes are parallel, respectively, to the  axes. 
The mass center of the body is located at the origin of the 
coordinate system and is located in the x, y, z coordinate system
by the vector .  The question of interest
is: 

Suppose that we know the moment of inertia about the 
axis, what is it about the z axis ?

Figure 5.3B provides an end view along the z axis of the 
and x, y axes.  A point that is located in the   coordinate
system by the vector  is located in the x, y, z
system by , or = 
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(5.6)

(5.7)

; hence,

The moment of inertia about the z axis is defined to be 

Substituting for x and y gives

Because the mass center is at the origin of the   coordinate
system, the last two integrals in  Eq.(5.6) are zero, and we obtain

Note that this expression is only valid when the mass center of
the body is at the origin of the    coordinate system.
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Example 1

Figure 5.4 Two coordinate
systems in the triangular plate of
figure 5.2.

From Eq.(5.5)   

Wanted: the moment of inertia about a z axis (perpendicular to
the plate) through point A at the right-hand corner.  

Procedure: 

1. Use Eq.(5.7) to go from o to g and find Ig. 

2. Use Eq.(5.7) to go from g to A and find IA.   

The vector from point o to g is ; hence, step 1
gives
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The vector from point  g to point A is .  Hence,
step 2 gives   

Note
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Example 2 

Figure XP5.1 (a) Assembly rotating about axis o-o,  (b)
Modeling approach for the hollow cylinder.

Figure XP5.1A illustrates a welded assembly consisting of a
uniform bar with dimensions  ,   attached to
a hollow cylinder with length and inner and outer radii

, respectively.  The assembly is made 
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( i )

from steel with density .  The assembly rotates
about the o-o axis. 

The following engineering-analysis tasks apply:

a.  Determine the moment of inertia of the assembly about
the o-o axis.

b.  Determine the assembly’s radius of gyration for rotation
about the o-o axis.

b.  Determine the assembly’s mass-center location.

Solution  Break the assembly into two pieces and analyze the bar
and hollow cylinder separately.  

Slender Bar: The moment of inertia for a slender bar about a
transverse axis at its end is , and the moment of
inertia for a transverse axis through the mass center is

.  These results are related to each other via the
parallel-axis formula as 

You should work at committing the bar’s inertia-property
definition to memory.  The bar’s mass is
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(iv)

(vi)

(v)

(ii)

(iii)

Hence, from Eq.( i ), 

Hollow Cylinder: figure XP5.1B shows that the hollow cylinder
can be “constructed” by subtracting a solid cylinder (denoted )
with the inner diameter  from a solid cylinder (denoted )
with the outer radius .  Starting with the inner cylinder

From Appendix C, the moment of inertia for a transverse axis
through the inner cylinder’s mass center is

For the solid outer cylinder,
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(viii)

(vii)

and

From Eqs.(iv) through (vii),

These values conclude the individual results for the hollow
cylinder.

Combining the results for the bar and the hollow cylinder via the
parallel-axis formula, the assembly moment of inertia is

and concludes Task a.  The radius of gyration kg  is obtained
from where m is the assembly moment of inertia; hence,

and concludes Task b.
The assembly mass location is found from



13

hence, 

Note that the mass center location defined by d is not related to
the radius of gyration  kg .  
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Lecture 25.  GOVERNING FORCE AND MOMENT
EQUATIONS FOR PLANAR MOTION OF A RIGID BODY
WITH APPLICATION EXAMPLES

Given:   for a particle.  

Find:  force and moment differential equations of motion for
planar motion of a rigid body. 

Force Equation

Figure 5.5 Rigid body acted on by external forces. The x,y,z 
coordinate system is fixed in the rigid body; the X, Y, Z 

system is an inertial coordinate system.
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X, Y, Z inertial coordinate system

 x, y, z coordinate system fixed in the rigid body.

θ defines the orientation of the rigid body (and the x, y, z
coordinate system) with respect to the  X, Y, Z system.

 is the angular velocity of the rigid body and the  x, y, z
coordinate system, with respect to X, Y, Z coordinate system.
 

  locates the origin of the x, y, z system in the X,
Y, Z system. 

Point P in the rigid body is located in the X, Y, Z system by
 .  

Point is located in the x, y, z  system by the vector 
 

Hence,
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(5.8)

Force Equation.   Applying Newton’s second law to the particle
at P gives 

where: 

fP  is the resultant force

 is the acceleration of the particle with respect to the
inertial X, Y, Z system. 

 where γ is the mass density of the rigid body. 

The resultant force at P is
 

On the left hand side of Eq.(5.8), integrating over the mass of the
body gives

i.e., when integrated over the whole body, the internal forces
cancel.
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(5.9)

(5.10)

(5.11)

(5.12)

The integral expression of Eq.(5.8) is then

For the two points o and P in the rigid body

Since  and  locate points P and o, respectively, in the X, Y, Z
system, and ρ is the vector from point  o to  P,

Since ,  integration extends over the volume of the
rigid body.

Since and ω are constant with respect to the x, y, z
integration variables they can be brought outside the integral sign
yielding

The mass center is located in the x, y, z system by , defined
by
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(5.13)

Substituting from Eq.(5.12) into Eq.(5.11) gives

Figure 5.6  A rigid body with a mass center located in the body-
fixed x, y, z coordinate system by the vector  and located in
the inertial X, Y, Z system by Rg .

Since g and o are fixed in the rigid body, their accelerations are
related by

But , and ; hence,
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(5.14)

(5.15a)

(5.15b)

and the force equation can be written (finally) as 

In words, Eq.(5.14) states that a rigid body can be treated like a
particle, in that the summation of external forces acting on the
rigid body equals the mass of the body times the acceleration of
the mass center with respect to an inertial coordinate system. 

Cartesian component of Force equations:

Polar version
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(5.16)

(5.17)

Moment Equation

A rigid body acted on by several external forces  fi acting on the
body at points located by the position vectors  ai and moments Mi

In figure 5.5, the position vector ρ extends from o to a particle at
point P. For moments about o,  ρ is the moment arm, and the
particle moment equation is

Integrating Eq.(5.16) over the mass of the rigid body yields

The vector Mo on the left is the resultant external moment acting
on the rigid body about point o, the origin of the x, y,  z
coordinate system. 
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(5.18)

(5.19)

Kinematics:  Substituting from Eq.(5.10) gives

The vector identity,

gives

Since , and ω are not functions of the variables of
integration, substitution from Eq.(5.18) into Eq.(5.17) gives

with  defined by Eq.(5.12).

To find component equations from Eq.(5.19)
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(5.20)

In carrying out the cross product, note that   is stated in terms
of its components in the x, y, z coordinate system, versus the
customary X, Y, Z system.

Defining the vectors in Eq.(5.19) in terms of their components
gives

Hence,

and
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(5.21)

(5.22)

(5.23)

(5.24)

Similarly,

Substituting from Eqs.(5.20)-(5.22)into Eq.(5.19) gives the z
component equation

The last expression in this equation is zero because .  
Since 

the moment Eq.(5.23) can be stated (finally) as 
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(5.15)

(5.24)

(5.25)

Summary of governing equations of motion for planar
motion of a rigid body

Force-Equation Cartesian Components

Moment Equation

Reduced Forms for the Moment Equation

Moments taken about the mass center.  If the point o about
which moments are taken coincides with the mass center g,

, and Eq.(5.24) reduces to 

This equation is only  correct for moments taken about the mass
center of the rigid body.
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(5.26)

Moments taken about a fixed point in inertial space.  When
point o is fixed in the (inertial) X, Y, Z coordinate system, ,
and the moment equation is

Fixed-Axis-Rotation Applications of the Force and Moment
equations for Planar Motion of a Rigid Body

Rotor in Bearings

Figure 5.8 A disk mounted on a massless shaft, supported by
two frictionless bearings, and acted on by the applied torque

.
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Derive the differential equation of motion for the rotor.  The
governing equation of motion for the present system is

The moment  is positive because it is acting in the same
direction as +θ.   This is basically the same second-order
differential equation obtained for a particle of mass m acted on
by the force , namely, , where x locates the particle
in an inertial coordinate system.

   Figure 5.9  Free-body diagram
for the rotor of figure 5.8 with a 
drag torque  acting at each
bearing.
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The shaft is rotating in the  direction; hence, the drag moment
terms have negative signs because they are acting in -θ direction. 
The differential equation of motion to be obtained from the
moment equation is

This equation has the same form as a particle of mass m acted on
by the force f(t) and a linear dashpot with a damping coefficient c
; namely, .
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A-One Degree of Freedom Torsional Vibration Example

Twisting the rod about its axis through an angle θ will create a
reaction moment, related to θ by 

, where G is the shear modulus of the rod, and
  is the rod’s area polar moment of inertia.  Recall that

Figure 5.11 (a) Circular disk of mass m and
radius R, supported by a slender rod of length l,
radius  r, and shear modulus G, (b) Free-body
diagram for 
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the SI units for G is N/m2; hence, kθ has the units: N-m/ radian,
i.e., moment per unit torsional rotation of the rod.

Derive the differential equation of motion for the disk.  Applying
Eq.(5.26) yields the moment equation

The signs of the moments on the right hand side of this moment
equation are positive or negative, depending on whether they are,
respectively, in the +θ or -θ direction.  

The differential equation of motion to be obtained from the
moment equation is

This result is analogous to the differential equation of motion for
a particle of mass m, acted on by an external force  , and
supported by a linear spring with stiffness coefficient k ; viz.,

 For comparison, look at Eq.(3.13).  This equation
can be rewritten as
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where the undamped natural frequency ωn is defined by

Torsional Vibration Example with Viscous Damping

Figure 5.11 (a) The disk of figure 5.10 is now immersed in a
viscous fluid, (b) Free-body diagram

Rotation of the disk at a finite rotational velocity  within the
fluid causes the drag moment, , on the disk.  The negative
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(5.27)

sign for the drag term is chosen because it acts in the -θ
direction.  The complete moment equation is 

with the governing differential equation

This differential equation has the same form as a particle of mass
m supported by a parallel arrangement of a spring with stiffness
coefficient k and a linear damper with damping coefficient c;
namely, 

Eq.(5.27) can be restated as

where ζ is the damping factor, defined by   

The models developed from figures 5.10 and 5.11 show the same
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damped and undamped vibration possibilities for rotational
motion of a  disk that we reviewed earlier for linear motion of a
particle.  The same possibilities exist to define damped and
undamped natural frequencies, damping factors, etc.

An example involving  kinematics between a disk and a particle

Figure 5.12 (a) Disk of mass M and radius r supported in
frictionless bearings and connected to a particle of mass m by a
light and inextensible cord, (b) Coordinates, (c) Free-body
diagram. 

Derive the differential equation of motion for the system.  

Kinematics:
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(5.28)

(5.29)

(5.30)

From the free-body diagram, the equation of motion for the disk
is obtained by writing a moment equation about its axis of
rotation.  The equation of motion for mass m follows from 

 for a particle.  The governing equations are:

where Tc is the tension in the cord. ( The mass of the cord has
been neglected in stating these equations.) In the first of
Eq.(5.29), the moment term Tc r is positive because it acts in the
+θ direction.  The sign of w is positive in the force equation
because it acts in the + x direction ; Tc has a negative sign
because it is directed in the -x direction.   

Eqs.(5.29) provides two equations for the three unknowns:
, and Tc .  Eliminating the tension  Tc  from Eqs.(5.29) gives

Substituting from the last of Eq.(5.28) for  gives the final
differential equation
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Two driven pulleys connected by a belt

Figure 5.13 (a). Two disks connected by a belt.  (b). Free-body
diagram.

Figure 5.13A illustrates two pulleys that are connected to each
other by a light and inextensible belt.  The pulley at the left has
mass m1, radius of gyration  about the pulley’s axis of
rotation, and is acted on by the counterclockwise moment Mo . 
The pulley at the right has mass m2 and a radius of gyration 
about its axis of rotation.  (The radius of gyration  defines the

moment of inertia about the axis of rotation by ) The belt
runs in a groove in pulley 1 with inner radius r1 .  The inner
radius of the belt groove for pulley 2 is r2.  The angle of rotation
for pulleys 1 and 2 are, respectively, θ and φ . 

Derive the governing differential equation of motion in terms of
θ and its derivatives.  
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(5.31)

(5.32)

From the free-body diagram the fixed-axis rotation moment
Eq.(5.26) gives:

where Tc1  and  Tc2 are the tension components in the upper and
lower belt segments.  has a positive sign because it is
acting in the +θ direction; has a negative sign
because it acts in the -θ direction.  Similarly, has a
positive sign in the second of Eq.(5.31) because it is acting in the
+φ direction.

The moments of inertia in Eq.(5.31) are defined in terms of
their masses and radii of gyrations by

Returning to Eq.(5.31), we can eliminate the tension terms in
the two equations, obtaining

We now have one equation for the two unknowns and , and
need an additional kinematic equation relating these two angular
acceleration terms.   Given that the belt connecting the pulleys is
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inextensible (can not stretch) the velocity v of the belt leaving
both pulleys must be equal; hence,

Substituting this result back into Eq.(5.32) gives the desired final
result

Note that coupling the two pulleys’ motion by the belt acts to
increase the effective inertia Ieff in resisting the applied moment.
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Lecture 25.  GOVERNING FORCE AND MOMENT
EQUATIONS FOR PLANAR MOTION OF A RIGID BODY
WITH APPLICATION EXAMPLES

Given:   for a particle.  

Find:  force and moment differential equations of motion for
planar motion of a rigid body. 

Force Equation

Figure 5.5 Rigid body acted on by external forces. The x,y,z 
coordinate system is fixed in the rigid body; the X, Y, Z 

system is an inertial coordinate system.
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X, Y, Z inertial coordinate system

 x, y, z coordinate system fixed in the rigid body.

θ defines the orientation of the rigid body (and the x, y, z
coordinate system) with respect to the  X, Y, Z system.

 is the angular velocity of the rigid body and the  x, y, z
coordinate system, with respect to X, Y, Z coordinate system.
 

  locates the origin of the x, y, z system in the X,
Y, Z system. 

Point P in the rigid body is located in the X, Y, Z system by
 .  

Point is located in the x, y, z  system by the vector 
 

Hence,
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(5.8)

Force Equation.   Applying Newton’s second law to the particle
at P gives 

where: 

fP  is the resultant force

 is the acceleration of the particle with respect to the
inertial X, Y, Z system. 

 where γ is the mass density of the rigid body. 

The resultant force at P is
 

On the left hand side of Eq.(5.8), integrating over the mass of the
body gives

i.e., when integrated over the whole body, the internal forces
cancel.
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(5.9)

(5.10)

(5.11)

(5.12)

The integral expression of Eq.(5.8) is then

For the two points o and P in the rigid body

Since  and  locate points P and o, respectively, in the X, Y, Z
system, and ρ is the vector from point  o to  P,

Since ,  integration extends over the volume of the
rigid body.

Since and ω are constant with respect to the x, y, z
integration variables they can be brought outside the integral sign
yielding

The mass center is located in the x, y, z system by , defined
by
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(5.13)

Substituting from Eq.(5.12) into Eq.(5.11) gives

Figure 5.6  A rigid body with a mass center located in the body-
fixed x, y, z coordinate system by the vector  and located in
the inertial X, Y, Z system by Rg .

Since g and o are fixed in the rigid body, their accelerations are
related by

But , and ; hence,
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(5.14)

(5.15a)

(5.15b)

and the force equation can be written (finally) as 

In words, Eq.(5.14) states that a rigid body can be treated like a
particle, in that the summation of external forces acting on the
rigid body equals the mass of the body times the acceleration of
the mass center with respect to an inertial coordinate system. 

Cartesian component of Force equations:

Polar version
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(5.16)

(5.17)

Moment Equation

A rigid body acted on by several external forces  fi acting on the
body at points located by the position vectors  ai and moments Mi

In figure 5.5, the position vector ρ extends from o to a particle at
point P. For moments about o,  ρ is the moment arm, and the
particle moment equation is

Integrating Eq.(5.16) over the mass of the rigid body yields

The vector Mo on the left is the resultant external moment acting
on the rigid body about point o, the origin of the x, y,  z
coordinate system. 
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(5.18)

(5.19)

Kinematics:  Substituting from Eq.(5.10) gives

The vector identity,

gives

Since , and ω are not functions of the variables of
integration, substitution from Eq.(5.18) into Eq.(5.17) gives

with  defined by Eq.(5.12).

To find component equations from Eq.(5.19)
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(5.20)

In carrying out the cross product, note that   is stated in terms
of its components in the x, y, z coordinate system, versus the
customary X, Y, Z system.

Defining the vectors in Eq.(5.19) in terms of their components
gives

Hence,

and
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(5.21)

(5.22)

(5.23)

(5.24)

Similarly,

Substituting from Eqs.(5.20)-(5.22)into Eq.(5.19) gives the z
component equation

The last expression in this equation is zero because .  
Since 

the moment Eq.(5.23) can be stated (finally) as 
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(5.15)

(5.24)

(5.25)

Summary of governing equations of motion for planar
motion of a rigid body

Force-Equation Cartesian Components

Moment Equation

Reduced Forms for the Moment Equation

Moments taken about the mass center.  If the point o about
which moments are taken coincides with the mass center g,

, and Eq.(5.24) reduces to 

This equation is only  correct for moments taken about the mass
center of the rigid body.
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(5.26)

Moments taken about a fixed point in inertial space.  When
point o is fixed in the (inertial) X, Y, Z coordinate system, ,
and the moment equation is

Fixed-Axis-Rotation Applications of the Force and Moment
equations for Planar Motion of a Rigid Body

Rotor in Bearings

Figure 5.8 A disk mounted on a massless shaft, supported by
two frictionless bearings, and acted on by the applied torque

.
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Derive the differential equation of motion for the rotor.  The
governing equation of motion for the present system is

The moment  is positive because it is acting in the same
direction as +θ.   This is basically the same second-order
differential equation obtained for a particle of mass m acted on
by the force , namely, , where x locates the particle
in an inertial coordinate system.

   Figure 5.9  Free-body diagram
for the rotor of figure 5.8 with a 
drag torque  acting at each
bearing.
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The shaft is rotating in the  direction; hence, the drag moment
terms have negative signs because they are acting in -θ direction. 
The differential equation of motion to be obtained from the
moment equation is

This equation has the same form as a particle of mass m acted on
by the force f(t) and a linear dashpot with a damping coefficient c
; namely, .
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A-One Degree of Freedom Torsional Vibration Example

Twisting the rod about its axis through an angle θ will create a
reaction moment, related to θ by 

, where G is the shear modulus of the rod, and
  is the rod’s area polar moment of inertia.  Recall that

Figure 5.11 (a) Circular disk of mass m and
radius R, supported by a slender rod of length l,
radius  r, and shear modulus G, (b) Free-body
diagram for 
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the SI units for G is N/m2; hence, kθ has the units: N-m/ radian,
i.e., moment per unit torsional rotation of the rod.

Derive the differential equation of motion for the disk.  Applying
Eq.(5.26) yields the moment equation

The signs of the moments on the right hand side of this moment
equation are positive or negative, depending on whether they are,
respectively, in the +θ or -θ direction.  

The differential equation of motion to be obtained from the
moment equation is

This result is analogous to the differential equation of motion for
a particle of mass m, acted on by an external force  , and
supported by a linear spring with stiffness coefficient k ; viz.,

 For comparison, look at Eq.(3.13).  This equation
can be rewritten as
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where the undamped natural frequency ωn is defined by

Torsional Vibration Example with Viscous Damping

Figure 5.11 (a) The disk of figure 5.10 is now immersed in a
viscous fluid, (b) Free-body diagram

Rotation of the disk at a finite rotational velocity  within the
fluid causes the drag moment, , on the disk.  The negative
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(5.27)

sign for the drag term is chosen because it acts in the -θ
direction.  The complete moment equation is 

with the governing differential equation

This differential equation has the same form as a particle of mass
m supported by a parallel arrangement of a spring with stiffness
coefficient k and a linear damper with damping coefficient c;
namely, 

Eq.(5.27) can be restated as

where ζ is the damping factor, defined by   

The models developed from figures 5.10 and 5.11 show the same
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damped and undamped vibration possibilities for rotational
motion of a  disk that we reviewed earlier for linear motion of a
particle.  The same possibilities exist to define damped and
undamped natural frequencies, damping factors, etc.

An example involving  kinematics between a disk and a particle

Figure 5.12 (a) Disk of mass M and radius r supported in
frictionless bearings and connected to a particle of mass m by a
light and inextensible cord, (b) Coordinates, (c) Free-body
diagram. 

Derive the differential equation of motion for the system.  

Kinematics:
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(5.28)

(5.29)

(5.30)

From the free-body diagram, the equation of motion for the disk
is obtained by writing a moment equation about its axis of
rotation.  The equation of motion for mass m follows from 

 for a particle.  The governing equations are:

where Tc is the tension in the cord. ( The mass of the cord has
been neglected in stating these equations.) In the first of
Eq.(5.29), the moment term Tc r is positive because it acts in the
+θ direction.  The sign of w is positive in the force equation
because it acts in the + x direction ; Tc has a negative sign
because it is directed in the -x direction.   

Eqs.(5.29) provides two equations for the three unknowns:
, and Tc .  Eliminating the tension  Tc  from Eqs.(5.29) gives

Substituting from the last of Eq.(5.28) for  gives the final
differential equation
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Two driven pulleys connected by a belt

Figure 5.13 (a). Two disks connected by a belt.  (b). Free-body
diagram.

Figure 5.13A illustrates two pulleys that are connected to each
other by a light and inextensible belt.  The pulley at the left has
mass m1, radius of gyration  about the pulley’s axis of
rotation, and is acted on by the counterclockwise moment Mo . 
The pulley at the right has mass m2 and a radius of gyration 
about its axis of rotation.  (The radius of gyration  defines the

moment of inertia about the axis of rotation by ) The belt
runs in a groove in pulley 1 with inner radius r1 .  The inner
radius of the belt groove for pulley 2 is r2.  The angle of rotation
for pulleys 1 and 2 are, respectively, θ and φ . 

Derive the governing differential equation of motion in terms of
θ and its derivatives.  
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(5.31)

(5.32)

From the free-body diagram the fixed-axis rotation moment
Eq.(5.26) gives:

where Tc1  and  Tc2 are the tension components in the upper and
lower belt segments.  has a positive sign because it is
acting in the +θ direction; has a negative sign
because it acts in the -θ direction.  Similarly, has a
positive sign in the second of Eq.(5.31) because it is acting in the
+φ direction.

The moments of inertia in Eq.(5.31) are defined in terms of
their masses and radii of gyrations by

Returning to Eq.(5.31), we can eliminate the tension terms in
the two equations, obtaining

We now have one equation for the two unknowns and , and
need an additional kinematic equation relating these two angular
acceleration terms.   Given that the belt connecting the pulleys is
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inextensible (can not stretch) the velocity v of the belt leaving
both pulleys must be equal; hence,

Substituting this result back into Eq.(5.32) gives the desired final
result

Note that coupling the two pulleys’ motion by the belt acts to
increase the effective inertia Ieff in resisting the applied moment.
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Lecture 25.  GOVERNING FORCE AND MOMENT
EQUATIONS FOR PLANAR MOTION OF A RIGID BODY
WITH APPLICATION EXAMPLES

Given:   for a particle.  

Find:  force and moment differential equations of motion for
planar motion of a rigid body. 

Force Equation

Figure 5.5 Rigid body acted on by external forces. The x,y,z 
coordinate system is fixed in the rigid body; the X, Y, Z 

system is an inertial coordinate system.
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X, Y, Z inertial coordinate system

 x, y, z coordinate system fixed in the rigid body.

θ defines the orientation of the rigid body (and the x, y, z
coordinate system) with respect to the  X, Y, Z system.

 is the angular velocity of the rigid body and the  x, y, z
coordinate system, with respect to X, Y, Z coordinate system.
 

  locates the origin of the x, y, z system in the X,
Y, Z system. 

Point P in the rigid body is located in the X, Y, Z system by
 .  

Point is located in the x, y, z  system by the vector 
 

Hence,
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(5.8)

Force Equation.   Applying Newton’s second law to the particle
at P gives 

where: 

fP  is the resultant force

 is the acceleration of the particle with respect to the
inertial X, Y, Z system. 

 where γ is the mass density of the rigid body. 

The resultant force at P is
 

On the left hand side of Eq.(5.8), integrating over the mass of the
body gives

i.e., when integrated over the whole body, the internal forces
cancel.
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(5.9)

(5.10)

(5.11)

(5.12)

The integral expression of Eq.(5.8) is then

For the two points o and P in the rigid body

Since  and  locate points P and o, respectively, in the X, Y, Z
system, and ρ is the vector from point  o to  P,

Since ,  integration extends over the volume of the
rigid body.

Since and ω are constant with respect to the x, y, z
integration variables they can be brought outside the integral sign
yielding

The mass center is located in the x, y, z system by , defined
by
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(5.13)

Substituting from Eq.(5.12) into Eq.(5.11) gives

Figure 5.6  A rigid body with a mass center located in the body-
fixed x, y, z coordinate system by the vector  and located in
the inertial X, Y, Z system by Rg .

Since g and o are fixed in the rigid body, their accelerations are
related by

But , and ; hence,
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(5.14)

(5.15a)

(5.15b)

and the force equation can be written (finally) as 

In words, Eq.(5.14) states that a rigid body can be treated like a
particle, in that the summation of external forces acting on the
rigid body equals the mass of the body times the acceleration of
the mass center with respect to an inertial coordinate system. 

Cartesian component of Force equations:

Polar version
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(5.16)

(5.17)

Moment Equation

A rigid body acted on by several external forces  fi acting on the
body at points located by the position vectors  ai and moments Mi

In figure 5.5, the position vector ρ extends from o to a particle at
point P. For moments about o,  ρ is the moment arm, and the
particle moment equation is

Integrating Eq.(5.16) over the mass of the rigid body yields

The vector Mo on the left is the resultant external moment acting
on the rigid body about point o, the origin of the x, y,  z
coordinate system. 
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(5.18)

(5.19)

Kinematics:  Substituting from Eq.(5.10) gives

The vector identity,

gives

Since , and ω are not functions of the variables of
integration, substitution from Eq.(5.18) into Eq.(5.17) gives

with  defined by Eq.(5.12).

To find component equations from Eq.(5.19)
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(5.20)

In carrying out the cross product, note that   is stated in terms
of its components in the x, y, z coordinate system, versus the
customary X, Y, Z system.

Defining the vectors in Eq.(5.19) in terms of their components
gives

Hence,

and
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(5.21)

(5.22)

(5.23)

(5.24)

Similarly,

Substituting from Eqs.(5.20)-(5.22)into Eq.(5.19) gives the z
component equation

The last expression in this equation is zero because .  
Since 

the moment Eq.(5.23) can be stated (finally) as 
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(5.15)

(5.24)

(5.25)

Summary of governing equations of motion for planar
motion of a rigid body

Force-Equation Cartesian Components

Moment Equation

Reduced Forms for the Moment Equation

Moments taken about the mass center.  If the point o about
which moments are taken coincides with the mass center g,

, and Eq.(5.24) reduces to 

This equation is only  correct for moments taken about the mass
center of the rigid body.
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(5.26)

Moments taken about a fixed point in inertial space.  When
point o is fixed in the (inertial) X, Y, Z coordinate system, ,
and the moment equation is

Fixed-Axis-Rotation Applications of the Force and Moment
equations for Planar Motion of a Rigid Body

Rotor in Bearings

Figure 5.8 A disk mounted on a massless shaft, supported by
two frictionless bearings, and acted on by the applied torque

.
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Derive the differential equation of motion for the rotor.  The
governing equation of motion for the present system is

The moment  is positive because it is acting in the same
direction as +θ.   This is basically the same second-order
differential equation obtained for a particle of mass m acted on
by the force , namely, , where x locates the particle
in an inertial coordinate system.

   Figure 5.9  Free-body diagram
for the rotor of figure 5.8 with a 
drag torque  acting at each
bearing.
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The shaft is rotating in the  direction; hence, the drag moment
terms have negative signs because they are acting in -θ direction. 
The differential equation of motion to be obtained from the
moment equation is

This equation has the same form as a particle of mass m acted on
by the force f(t) and a linear dashpot with a damping coefficient c
; namely, .
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A-One Degree of Freedom Torsional Vibration Example

Twisting the rod about its axis through an angle θ will create a
reaction moment, related to θ by 

, where G is the shear modulus of the rod, and
  is the rod’s area polar moment of inertia.  Recall that

Figure 5.11 (a) Circular disk of mass m and
radius R, supported by a slender rod of length l,
radius  r, and shear modulus G, (b) Free-body
diagram for 
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the SI units for G is N/m2; hence, kθ has the units: N-m/ radian,
i.e., moment per unit torsional rotation of the rod.

Derive the differential equation of motion for the disk.  Applying
Eq.(5.26) yields the moment equation

The signs of the moments on the right hand side of this moment
equation are positive or negative, depending on whether they are,
respectively, in the +θ or -θ direction.  

The differential equation of motion to be obtained from the
moment equation is

This result is analogous to the differential equation of motion for
a particle of mass m, acted on by an external force  , and
supported by a linear spring with stiffness coefficient k ; viz.,

 For comparison, look at Eq.(3.13).  This equation
can be rewritten as
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where the undamped natural frequency ωn is defined by

Torsional Vibration Example with Viscous Damping

Figure 5.11 (a) The disk of figure 5.10 is now immersed in a
viscous fluid, (b) Free-body diagram

Rotation of the disk at a finite rotational velocity  within the
fluid causes the drag moment, , on the disk.  The negative
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(5.27)

sign for the drag term is chosen because it acts in the -θ
direction.  The complete moment equation is 

with the governing differential equation

This differential equation has the same form as a particle of mass
m supported by a parallel arrangement of a spring with stiffness
coefficient k and a linear damper with damping coefficient c;
namely, 

Eq.(5.27) can be restated as

where ζ is the damping factor, defined by   

The models developed from figures 5.10 and 5.11 show the same
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damped and undamped vibration possibilities for rotational
motion of a  disk that we reviewed earlier for linear motion of a
particle.  The same possibilities exist to define damped and
undamped natural frequencies, damping factors, etc.

An example involving  kinematics between a disk and a particle

Figure 5.12 (a) Disk of mass M and radius r supported in
frictionless bearings and connected to a particle of mass m by a
light and inextensible cord, (b) Coordinates, (c) Free-body
diagram. 

Derive the differential equation of motion for the system.  

Kinematics:
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(5.28)

(5.29)

(5.30)

From the free-body diagram, the equation of motion for the disk
is obtained by writing a moment equation about its axis of
rotation.  The equation of motion for mass m follows from 

 for a particle.  The governing equations are:

where Tc is the tension in the cord. ( The mass of the cord has
been neglected in stating these equations.) In the first of
Eq.(5.29), the moment term Tc r is positive because it acts in the
+θ direction.  The sign of w is positive in the force equation
because it acts in the + x direction ; Tc has a negative sign
because it is directed in the -x direction.   

Eqs.(5.29) provides two equations for the three unknowns:
, and Tc .  Eliminating the tension  Tc  from Eqs.(5.29) gives

Substituting from the last of Eq.(5.28) for  gives the final
differential equation
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Two driven pulleys connected by a belt

Figure 5.13 (a). Two disks connected by a belt.  (b). Free-body
diagram.

Figure 5.13A illustrates two pulleys that are connected to each
other by a light and inextensible belt.  The pulley at the left has
mass m1, radius of gyration  about the pulley’s axis of
rotation, and is acted on by the counterclockwise moment Mo . 
The pulley at the right has mass m2 and a radius of gyration 
about its axis of rotation.  (The radius of gyration  defines the

moment of inertia about the axis of rotation by ) The belt
runs in a groove in pulley 1 with inner radius r1 .  The inner
radius of the belt groove for pulley 2 is r2.  The angle of rotation
for pulleys 1 and 2 are, respectively, θ and φ . 

Derive the governing differential equation of motion in terms of
θ and its derivatives.  
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(5.31)

(5.32)

From the free-body diagram the fixed-axis rotation moment
Eq.(5.26) gives:

where Tc1  and  Tc2 are the tension components in the upper and
lower belt segments.  has a positive sign because it is
acting in the +θ direction; has a negative sign
because it acts in the -θ direction.  Similarly, has a
positive sign in the second of Eq.(5.31) because it is acting in the
+φ direction.

The moments of inertia in Eq.(5.31) are defined in terms of
their masses and radii of gyrations by

Returning to Eq.(5.31), we can eliminate the tension terms in
the two equations, obtaining

We now have one equation for the two unknowns and , and
need an additional kinematic equation relating these two angular
acceleration terms.   Given that the belt connecting the pulleys is
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inextensible (can not stretch) the velocity v of the belt leaving
both pulleys must be equal; hence,

Substituting this result back into Eq.(5.32) gives the desired final
result

Note that coupling the two pulleys’ motion by the belt acts to
increase the effective inertia Ieff in resisting the applied moment.



37

(5.2)

Lecture 26.  KINETIC-ENERGY FOR PLANAR MOTION OF
A RIGID BODY WITH APPLICATION EXAMPLES

Given:  for a particle

Find: Kinetic Energy for a rigid body

Figure 5.63  Rigid body with an imbedded x, y, z coordinate
system.  Point o , the origin of the   system, is located
in the inertial X, Y system by the vector Ro.

The mass center of the body is located in the x, y, z system by the
position vector  defined earlier in section 5.2 as
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(5.178)

(5.179)

(5.180)

where γ is the mass density of the body at point P.   A point P in
the body is located in the X, Y coordinate system by the position
vector r and in the   x, y, z  system by the vector .

The kinetic energy of the mass can be stated

where  is the velocity of a particle of mass dm at point P with
respect to the  X, Y coordinate system .  

Since, points o and P are both fixed in the rigid body,

Hence,

Substituting from Eq.(5.179) into the integral of Eq.(5.178) gives
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(5.181)

(5.182)

where  is not a function of the integration variables x, y, z and

has been taken outside the integrals.

Continuing, 

and

Substituting from Eqs.(5.181) into (5.180) gives

where 

is the moment of inertia about a  z axis through point o , the
origin of the  x, y, z  system.  

If  o the origin of the x, y, z  system coincides with g the body’s
mass center,  bog = 0, and Eq.(5.182) reduces  to
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(5.183)

(5.184)

This equation states that the kinetic energy of a rigid body is the
sum of the following terms:

a. The translational energy of the body assuming that all of
its mass is concentrated at the mass center, and 

b. The rotational energy of the rigid body from rotation
about the mass center.

Rotation about a Fixed Axis

For pure rotation about o,  in Eq.(5.182) and the following

simplified definition applies 

Eq.(5.184) defines the kinetic energy of the body for pure
rotation about an axis through a point o fixed in space.
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(5.207)

Applications of the Energy Equation

Rotor in Bearings

Assume that the rotor has
an initial angular velocity
of , and is acted

on by a constant drag
moment  , how many
revolutions will it take to
come to rest?

There is no change in potential energy, and the final kinetic
energy is zero; hence, the energy equation

gives

We need to calculate the work done by the resistance torque. 
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(5.210)

(5.209)

(5.208)

The differential work due to a applied force f acting through the
differential distance ds is .  We can replace a moment 
M  by a force acting at a fixed radius , such that .  When
the moment M rotates through the differential angle dθ, the force
will act through the arc distance , and the differential
work will be 

Using Eq.(5.208), Eq.(5.207) becomes

The work integral is negative because it decreases the energy of
the system.

Assume that the rotor is acted on by the positive (in the direction
of +θ) applied moment , and derive the equation of motion. 
For this task,  gives
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Differentiating Eq.(5.210) with respect to θ gives the differential
equation of motion

Derive the governing equation of
motion for the rotor including the
applied moment M(t) and viscous
drag moment .  

For this task,  becomes

and differentiation with respect to θ gives 
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(5.211)

Using the work-energy equation has no particular advantage in
developing these last two equations of motion.  As with the
Newtonian approach, a free-body diagram is required to define
the applied moment, and the nonconservative moments can not
be  integrated with respect to θ. 

A Torsional-Vibration Example

Derive the governing equation of motion. The external moment
M(t) is adding energy to the system; hence, the work-energy
equation is 
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(5.191)

In this example, the potential energy of the system is stored in
the shaft due to the torsional rotation θ.  Recall that the reaction
moment is defined from

where G is the shear modulus of the rod, and   is the
rod’s area polar moment of inertia.  The requirement that a
potential force (or moment) be derivable as the negative gradient
of a potential function gives

Substituting for  into Eq.(5.211) gives

Differentiating with respect to θ gives the differential equation of
motion

Torsional Vibration Example with viscous drag
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(5.213)

(5.213a)

For the viscous drag moment , the integrand in the work-

energy Eq.(5.211) gives

Differentiating with respect to θ gives the final equation of
motion

For this example, deriving the equation of motion using the
moment or the work-energy equation  requires about the same
effort.  The equation of motion can be derived by including the
external driving moment  or viscous damping moment
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(5.214)

(5.215)

 in the work integral, but the integral is now a function of 

t or , not θ, and can not be integrated.

Recall that the moment equation gave

where is the resultant moment about the vertical axis. 

Substituting the energy-integral substitution 
yields

Multiplying through by dθ and integrating gives

This result coincides with Eq.(5.213a), obtained from  the work-
energy-equation.
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An Example Involving Connected Motion of a Disk and a
Particle

Derive the governing equation of
motion using conservation of
energy.

 
There are no nonconservative forces ; hence, energy is
conserved.  Using a plane through the bearing as datum for
potential energy due to gravity

We need , and  the kinematics of Eq.(5.28),

, to obtain
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Differentiating with respect to θ gives the differential equation of
motion

Two Driven Pulleys Connected by a Belt

The left and right pulleys have radii and radii of gyrations
and  , respectively. There is no energy

dissipation (frictionless bearings), and the belt connecting the
two pulleys does not slip.

a. If the system starts from rest, and the applied moment
 is constant, find the angular velocity of both pulleys

after 10 complete rotations of the left (driven )pulley.

b. Derive the differential equations of motion.
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(5.195)

(5.196)

(5.197)

There is no change in the potential energy of this system; hence,
 yields

Since the belt does not slip, the tangential velocities at the rims
of the pulleys must equal, providing the kinematic condition,

, which reduces Eq.(5.195) to

Using  to define the work integral on the left-hand
side gives

and the angular velocity after the moment has been applied for
ten rotations  is

which concludes Task a.   The work integral is positive in
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Eq.(5.197) because it is increasing the mechanical energy of the
system.

Differentiating Eq.(5.197) with respect to θ gives the
governing differential equation of motion

which coincides with our earlier result and concludes Task b.
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Particle Dynamics versus Rigid Body Dynamics

Derive the equation of motion for the system illustrated

Moment Equation

Force  Equations

(72)

(73)
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For negligible pulley inertia, , and Eq.(2)
becomes

Subtracting the 1st from the 2nd gives

Kinematic Constraint

Substitute from Eq.(6) into (5) gives

This is a particle dynamics result.

(3)

(4)

(5)

(6)
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For finite moment of inertia, , solve for  and  from
Eq.(2) and substitute into Eq.(1) to obtain

Substitute the kinematics relationships,

to obtain

or

All of the contributions to  should be positive. 

Compare (7) and (6).  Setting  equal to zero in (7) and

substituting  gives

(7)
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Equation of Motion from conservation of energy

The datum for V goes through the center of the pulley.

Kinematics:

Substitution gives

Hence,  gives

Differentiate w.r.t. θ gives
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or

 which coincides with Eq.(7).
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Figure 5.16 Compound pendulum: (a) At rest in
equilibrium, (b) General position with coordinate θ, (c) Free-
body diagram

Lecture 27.  THE  COMPOUND PENDULUM

The term “compound” is used to distinguish the present rigid-
body pendulum from the “simple” pendulum  of Section 3.4b,
which consisted of a particle at the end of a massless string.

Derive the general differential equation of motion for the
pendulum of figure 5.16a and determine its undamped natural
frequency for small motion about the static  equilibrium 
position.  



59

(5.33)

(5.34)

(5.35)

From the free-body diagram the moment equation is

The minus sign on the right-hand side term applies because the
moment is acting in the -θ direction.  For a uniform bar,

; hence, the governing differential equation of motion
is

or 

For small motion, sin θ –  θ, and the nonlinear differential
equation reduces to

This differential equation is the rotation analog of the single-
degree-of-freedom, displacement, vibration problem of

.  The compound pendulum’s natural frequency is
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(5.36)

(5.37)

Assuming that the pendulum is released from rest at
,define the reaction force components

 as a function of  θ (only).  

From figure 5.16c applying  in polar coordinates for
the mass center of the rod gives: 

In the acceleration terms, , because  is a
constant.  Eqs.(5.36) define the reaction force components  
, but not as a function of  θ alone.  Direct substitution from
Eq.(5.34) into the second of Eqs.(5.36) defines  as

Finding a comparable relationship for  is more complicated,
because the first of Eqs.(5.36) involves .  We will need to
integrate the differential equation of motion via the energy-
integral substitution to obtain  as a function of  θ , proceeding
from
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(5.38)

(5.39)

Multiplying through by dθ and integrating both sides of this
equation gives

Substituting this result into the first of Eq.(5.36) gives

This result shows that the dynamic reaction force will be 2.5
times greater than the static weight w when the rod reached its
lowest position (θ = 0).  

Alternative Moment Equation with Moments about g
Suppose that we had chosen to take moments about g, the

mass center of the rod in figure 5.16c, obtaining
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(5.40)

The moment has a negative sign because it is acting in the -θ
direction.  In this equation, the required moment of inertia about
g is  Substituting for oθ  from  Eq.(5.37) gives

or

Writing the moment equation about g involves more work but
gets tha same equation.  Note in the intermediate step of
Eq.(5.40) that we are accomplishing the parallel-axis formula in
moving from  to , via

where bgo is the vector from the
mass center g to the pivot point o.

Deriving The Equation of Motion From The Energy Equation
There are no external time varying forces or moments and no

energy dissipation; hence, mechanical energy is conserved; i.e.,
.  Using a horizontal plane through the pendulum’s

pivot point as a datum for gravity potential energy gives



63

For rotation about the fixed point o, the kinetic energy of the
pendulum is defined by

Hence,

Differentiating w.r.t. θ gives
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(5.41)

Static stability about equilibrium points.

From

Equilibrium for small Motion about the equilibrium
position .
 
Small motion about the equilibrium position  gives the
linearized differential equation of motion

For the initial conditions, , the solution to the
linearized Eq.(5.35) can be stated

consisting of a stable oscillation at the natural frequency. Hence,
is said to be a stable equilibrium point for the body.
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(5.34)

(5.42)

(5.43)

Equilibrium for small Motion about the equilibrium position

Motion is governed by the nonlinear equation of motion,

Expanding  in a Taylor’s series about  gives

Retaining only the linear term in Eq.(5.42) and substituting back
into Eq.(5.34) gives

Observe the negative sign in the coefficient for .   If this were
a harmonic oscillator consisting of a spring supporting a mass, a
comparable negative sign would imply a negative stiffness,
yielding a differential equation of the form
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Substituting the assumed solution  into Eq.(5.43) gives

Hence the solution to Eq.(5.43) for small motion about  is

The first term in this solution grows exponentially with time. 
Hence, any small disturbance of the pendulum from the
equilibrium position will grow exponentially with time, and

is a statically unstable equilibrium point for the pendulum.
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A Swinging-Plate Problem

Figure XP5.2 (a) Rectangular plate supported at o by a
frictionless pivot and at B by a ledge,  (b) Free-body diagram that
applies after the support at B has been removed.

The plate has mass m , length 2a, and width a , and is supported
by a frictionless pivot at o and a ledge at B.  The engineering
tasks associated with this problem follow.  Assuming that the
support at B is suddenly removed, carry out the following steps.:

a. Derive the governing differential equation of motion.

b. Develop relationships that define the components of the
reaction force as a function of the rotation angle only.
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(5.56)

c. Derive the governing differential equation of motion for
small motion about the plate’s equilibrium position . 
Determine the natural frequency of the plate for small
motion about this position.

Kinematics: θ in the free-body diagram defines the plate’s
orientation with respect to the horizontal.  The angle α lies
between the top surface of the plate and a line running from the
pivot point o through the plate’s mass center at g, and is defined
by

Θ = ( θ + α ) is the rotation angle (from the horizontal) of a line
running from o through g .

Moment equation with moments taken about o:

The distance from o to g is , and the weight develops the
external moment acting through the moment arm  

.  The moment is positive because it is acting in
the +θ direction.  
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(5.57)

(5.58)

(5.59)

Applying the parallel-axis formula  gives

Substitution gives the governing differential equation of motion

and we have completed Task a.  

To define the reaction forces, we need to state .  The
polar-coordinate version of this equation works best for the
current problem, and the free-body diagram has been drawn
using polar coordinates with or aligned with the radial
acceleration component of point g , and   is aligned with the
circumferential component. 

Force equation components:

, because  is a constant, and   
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Eliminate  by substitution

This result states that  starts at  for θ = 0, and is
zero when the mass center is directly beneath the pivot point o, at

 .  

To obtain as a function of θ,  use the energy-integral
substitution to integrate Eq.(5.58).  Starting with 

multiplying through by dθ , and integrating both sides of the
equation gives

Substituting this result back into the first of Eq.(5.59) gives
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and Task b is now completed .
The equilibrium condition for the pendulum is obtained by

setting the right-hand side of Eq.(5.47) equal to zero, obtaining

To get the governing equation of motion for small motion about
the equilibrium condition, start by substituting  into
Eq.(5.58), obtaining

Expanding the last term on the right in a Taylor’s series gives
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(5.60)

Retaining only the linear term in this expansion gives the
linearized differential equation of motion

hence, the natural frequency is defined by 
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Alternative Development for motion about equilibrium

Taking moments about O in figure XP5.2d gives

Task c is now completed.

Figure XP5.2 (c) Plate in its
equilibrium position, (d) Free-body
diagram for motion away from
equilibrium
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Deriving the Equation of Motion from the Energy Equation
Energy is conserved; hence, .  Using a horizontal
plane through the pivot point as the datum for gravity potential
energy gives

Substituting  and differentiating w.r.t. θ gives
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Lecture 28.  MORE COMPOUND-PENDULUM
EXAMPLES

Spring-Connection Vibration Examples

Nonlinear-Linear Spring relationships

We considered linearization of the pendulum equation earlier in
this section.  Linearization of connecting spring and damper
forces for small motion of a pendulum is the subject of this
lecture.

Figure 5.18 Compound pendulum with spring attachment to
ground. (a) At rest in equilibrium, (b) General position, (c)
Small-angle free-body diagram
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(5.56)

(5.57)

The spring has length  and  is undeflected at .  The
following engineering-analysis tasks apply:

a.  Draw free-body diagrams and derive the EOM

b.  For small θ develop the linearized EOM.

Figure 5.18B provides the free-body diagram illustrating the
stretched spring.  The deflected spring length is

Hence, the spring force is 

and it acts at the angle β from the horizontal defined by
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(5.58)

       The pendulum equation of motion is obtained by a moment
equation about the pivot point, yielding

Substituting for  ( plus a considerable amount of
algebra) yields  

This is a “geometric” nonlinearity.  The spring is linear, but the
finite θ rotation causes a  nonlinearity.  

For small θ, expanding  with  defined by
Eq.(5.56) in a Taylor’s series expansion gives .  Also, for
small θ, a Taylor series expansion gives ;
hence, for small θ,  the spring force acts
perpendicular to the pendulum axis.  For small θ, the moment
equation reduces to
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(5.59)

For small θ, the spring deflection is , the spring force,
, acts perpendicular to the pendulum, and the

moment of the spring force about o is .   Also, note that the
spring force is independent of its initial spring length.  Figure
5.18c provides the small-angle free body diagram  From
Eq.(5.59), the natural frequency is 

showing (as expected) an increase in the pendulum natural
frequency  due to the spring’s stiffness.
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Figure 5.19  Compound pendulum.  (a) At rest in
equilibrium, (b) General-position free-body diagram, (c)
Small rotation free-body diagram 

Nonlinear-Linear Damper forces

For  large θ  the damper reaction force, , acts at the
angle β from the horizontal.  From Eq.(5.56),

For small θ, , and the damping force acts perpendicular to
the pendulum axis and reduces to , where  is the
pendulum’s circumferential velocity  at the attachment point. 
Figure 5.19c provides a “small θ ” free-body diagram, yielding
the following equation of motion,
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with  defined in Appendix C.  The natural frequency
and damping factor are:

As with the spring, for small θ the damping force  is
independent of the initial damper length.  
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Figure XP5.3a shows a pendulum with mass  and length
  supported by a pivot point located  from the

pendulum’s end.  Two linear spring with stiffness coefficient
 are attached to the pendulum a distance  down

from the pivot point, and a linear damper with damping
coefficient  is attached to the pendulum’s end.  The
spring is undeflected when the pendulum is vertical.  The
following engineering analysis tasks apply to this system: 

Figure XP5.3 (a) Pendulum attached to
ground by two linear springs and a viscous
damper, (b) Coordinate and free-body
diagram



82

a.  Draw a free-body diagram and derive the differential
equation of motion.

b.  Determine the natural frequency and damping factor.

A “small θ” free-body diagram is given in figure 5.22B. 

Taking moments about the pivot point gives

From Appendix C and the parallel-axis formula,
 .  For , the linearized
EOM is 

The natural frequency and damping factor are:
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EOM from Energy, neglecting damping

Select datum through pivot point; hence, .

Differentiating w.r.t. θ gives

, and for small θ, 
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Spring Supported Bar — Preload and Equilibrium

Bar of mass m and length l in equilibrium at  with linear
springs having stiffness coefficients  counteracting the
weight w.  The springs act at a distance 2l / 3 from the pivot
support point and have been preloaded (stretched or compressed)
to maintain the bar in its equilibrium position.  

Draw a free-body diagram, derive the EOM, and determine the
natural frequency.

Figure 5.20 Uniform bar, (a) In equilibrium at the angle ,
(b) Equilibrium free-body diagram, (c) Displaced position
free-body diagram
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(5.84)

Equilibrium Conditions.  Taking moments about O in Figure
5.20b  gives

Non-equilibrium reaction forces. 

Figure 5.20c provides a free-body diagram for a general
displaced position defined by the rotation angle .  For
small  the spring-support point moves the perpendicular
distance .  Hence, the stretch of the upper spring
decreases from  δ1 to , and the compression of the
lower spring decreases from  δ2  to .  The spring
reaction forces are:
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(5.85)

Moment Equation  about O 

after dropping second-order terms in . Rearranging provides
the EOM ,

The right-hand side of Eq.(5.85) is zero from the equilibrium
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(5.87)

(5.86)

result of Eq.(5.84).  If the bar is in equilibrium in a vertical
position , the weight contribution to the EOM
reverts to the compound pendulum results of Eq.(3.60).   For a
horizontal equilibrium position, , and the
weight term is eliminated.  The natural frequency is 

Alternative Equilibrium Condition In figure 5.21a, the lower
spring is also assumed to be in tension with a static stretch  δ2 ,
developing the tension force  at equilibrium.  Taking
moments about O gives the static equilibrium  requirement

The  rotation increases the stretch in the lower spring from  δ2 
to , decreases the stretch in the upper spring from

 to , and the reaction forces are:
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Figure 5.21 Uniform bar: (a) Alternative static
equilibrium free-body diagram, (b) Displaced-
position free-body diagram

From figure 5.21b, 
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(5.88)

and the EOM  is (again)

The right-hand side is zero from the equilibrium requirement of
Eq.(5.87), and Eq.(5.88) repeats the EOM of  Eq.(5.85).  
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The lesson from this second development is: For small
motion about equilibrium, the same EOM is obtained
irrespective of the initial equilibrium forces in the (linear)
springs.  The spring-force contributions to the differential
equation arise from the change in the equilibrium forces due to a
change in position.  This is the same basic outcome that  we
obtained for a mass m supported by linear springs in figure 3.7. 
The change in equilibrium angle  changes w’s contribution to
the EOM , because , the moment due to w,  is a
nonlinear function of  θ.
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(5.24)

(5.26)

Prescribed acceleration of a Pivot Support Point
 Moment equations for the fixed-axis rotation problems of

the preceding section were taken about a fixed pivot point,
employing the moment equation

where o identifies the axis of rotation.    The problems involved
in this short section concerns situations where the pivot point is
accelerating, and the general moment equation,

is required.  In applying Eq.(5.24), recall the following points:
a.  Moments are being taken about the body-fixed axis o ,
and Io is the moment of inertia through axis o .

b. The vector bog goes from a  z axis through o to a z axis
through the mass center at g.

c. The positive rotation and moment sense in Eq.(5.24)
correspond to a counter clockwise rotation for θ.  

The last term in the moment equation is positive because the
positive right-hand-rule convention for the cross-product in this
term coincides with the +θ sense.  For a rigid body with a
positive clockwise rotation angle this last term requires a
negative sign.
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Figure 5.24   (a). An accelerating pickup truck with a loose tail
gate.  (b). Free-body diagram for the tail gate.

The pickup has a constant acceleration of g /3.  Neglecting
friction at the pivot and assuming that the tailgate can be
modeled as a uniform plate of mass m, carry out the following
engineering tasks:

a. Derive the governing equation of motion.

b. Assuming that the tailgate starts from rest at θ = 0, what
will  be at ?

c. Determine the reactions at pivot point o as a function of  θ
(only).

In applying Eq.(5.24) for  moments about axis  o, we can observe
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(5.61)

(5.62)

Hence, Eq.(5.24) gives

We have now completed Task a. We can use the energy-integral
substitution to integrate this nonlinear equation of motion as 

Multiplying by dθ reduces both sides of this equation to exact
differentials. Integrating both sides with the initial condition

 gives
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(5.63)

(5.64)

Hence, at θ = π / 2 , and we have completed
Task b.  We used the energy-integral substitution,  but note that
the tail gate’s mechanical energy energy is not conserved. The
truck’s acceleration is adding energy to the tail gate. 

Moving on to Task c, stating   for the mass center
gives:

We need to determine  in these equations.  From figure
5.19B,

Differentiating twice with respect to time gives:
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(5.65)

Substituting into Eqs.(5.64) gives:

where   has been replaced with , the pick-up truck’s
acceleration.  Substituting from Eqs.(5.62) and (5.63) for  and

, respectively, (and some algebra) gives:

and completes Task c. 
The decision to use the general moment Eq.(5.24) and sum

moments about the pivot point o instead of the mass center g
saves a great deal of effort in arriving at the differential equation
of motion.  To confirm this statement, consider the following
moment equation about g 
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Substituting from Eq.(5.65) for  gives

Gathering like terms gives

Simplifying these equations gives Eq.(5.62) ,the original
differential equation of motion.

The lesson from this short section is: In problems where a
pivot support point has a prescribed acceleration, stating the
moment equation (correctly) about the pivot point will lead to
the governing equation of motion much more quickly and easily
than taking moments about the mass center. 

Note: Energy is not conserved with base acceleration! 
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(5.15)

(5.24)

(5.25)

(5.26)

(5.205)

Lecture 29.  GENERAL MOTION/ROLLING-WITHOUT-
SLIPPING EXAMPLES
General equations of Motion

Force Equation

General Moment Equation

Moments About the Mass Center

Moments About a Fixed axis

The examples of this lecture will be analyzed using and
.

Kinetic Energy of a Rigid Body
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(5.75)

A Cylinder Rolling Down An Inclined Plane

Figure 5.25 (a) Uniform disk of radius r and mass m rolling
(without slipping) down an inclined plane, (b) Free-body
diagram.  The static Coulomb coefficient of friction for the plane
is μs.

Derive the governing differential equation of motion for rolling
without slipping.

Force Equation Components

Moment Equation 
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(5.76)

(5.77)

(5.78)

Eq.(5.76) and the first of Eq.(5.75) constitute two equations in
the three unknowns: and ff . 
 
Rolling-without-slipping kinematic constraint

Solving for ff  from Eq.(5.76), and substituting into the first of
Eq.(5.75) gives

Now, substituting for  from Eq.(5.77) gives

Using θ as the dependent variable, solve the first of Eq.(5.75) for
ff and then substitute into Eq.(5.76) to obtain

Substituting  from Eq.(5.77) gives
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(5.79)

(5.80)

(5.81)

Comparisons of Eqs.(5.78) and (5.79) show basically the same
equation.

Friction Force

The friction force causes the cylinder to rotate and reduces the
acceleration to .  

How much Coulomb friction is required to prevent slipping ?

Since, , the “required” static Coulomb friction force
coefficient to prevent slipping is
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(i)

(ii)

If this calculated value is less than or equal to μs, the wheel will
roll without slipping.  If it greater than μs, the wheel will slip,
and   

Slipping Motion Equations of Motion.  For slipping
, the cylinder has two degrees of freedom,

and the equations of motion are

Deriving the equation of Motion for Rolling-Without-Slipping
from Conservation of Energy   

Without slipping, energy is conserved and . 
Taking the origin of the X, Y system as the datum for potential
energy,

The kinetic energy is defined to be
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where the rolling without slipping relationship  has been
used.  Substituting from (i) and (ii) gives

Differentiating w.r.t. X 

An Imbalanced Cylinder Rolling Down an Inclined Plane

Figure 5.26 (a) Disk with its mass center displaced a distance e
from its geometrical center, rolling down an inclined plane, (b)
Free-body diagram.
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(5.84)

(5.85)

(5.83)

The disk’s mass center is located in the X, Y system by:

The rolling-without-slipping kinematic condition for figure
5.26A is

Without slipping, the disk has two variables, X and β, but only
one degree of freedom.  The radius of gyration of the disk about
point o is kog ; hence, .  

Derive the governing differential equation of motion.  

Solution A.  Take moments about the mass center.

Applying   for the disk’s mass center gives:

In reviewing these equations, note that .

Taking moments about the mass center, the moment equation is
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(5.86)

(5.87)

Note that positive moments are in the +β , clockwise direction. 
Also, from the parallel-axis formula, .  

Eqs.(5.84), ( 5.85) and (5.86) provide four equations in the six
unknowns: and ff .  

Kinematics. Differentiating Eqs.(5.83) once with respect to time
gives

Differentiating a second time and substituting for  gives

which provides our final two equations.  

The governing equation of motion is obtained by the following
steps:

a.  Substitute for   from Eq.(5.87) into Eqs (5.85),
obtaining
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(5.89)

(5.88)

b. Substitute for N and ff  into Eq.(5.86), obtaining

After a fair amount of algebra, the governing equation is

Note: . 

This equation reduces to Eq.(5.79) if  e = 0, and .  

The energy-integral substitution, , converts
Eq.(5.89) to 



105

(5.90)

For the boundary conditions ( ); integration
gives

Without slipping, there is no energy dissipation.

Solution B: Take moments about C.

For moments about C, the EOM is

where clockwise moments are positive (positive β rotation).
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(5.89)

Kinematics:

Inertia properties:

External moment about C due to weight

Plugging in the results gives (again)

This approach is obviously quicker.
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(5.223)

(5.224)

Deriving the equation of Motion from Conservation of Energy

Applying , and using the origin of the X, Y system
for the gravity potential-energy function gives

This example has three coordinates . To eliminate
unwanted coordinates, we need the rolling-without-slipping
condition , plus the  kinematic conditions,

Substituting into Eq.(5.223) gives

Differentiating with respect to β gives the DEQ. of motion
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(5.204)
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Figure 5.28 (a) Spring-restrained cylinder, (b)
Kinematic variables, (c) Free-body diagram

Lecture 30.  MORE GENERAL-MOTION/ROLLING-
WITHOUT-SLIPPING EXAMPLES

A Cylinder, Restrained by a Spring and Rolling on a Plane 

The cylinder rolls without slipping.  The spring is undeflected
when .  

The following engineering-analysis tasks apply:

a.  Draw a free body diagram and derive the equation of
motion, and

b.  Determine the natural frequency for small amplitude
vibrations.

Applying  for the mass center of the cylinder nets
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(5.117b)

(5.117c)

(5.118)

(5.117a)

Stating the moment equation about the cylinder’s mass center
gives

We now have two equations in the three unknowns .  The
rolling-without-slipping kinematic condition,

provides the missing equation.  Substituting for ff  from
Eq.(5.117a) into Eq.(5.117b) gives

We can use Eqs.(5.117c) to eliminate x and , obtaining

This result concludes Task a.  The natural frequency is
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This result concludes Task b.  The cylinder inertia has caused a
substantial reduction in the natural frequency as compared to a
simple spring-mass system that would yield .

Deriving The Equation of Motion From Conservation of
Energy

Conservation of energy implies,

Substituting the rolling-without-slipping kinematic conditions,
 gives

where from Appendix C,  .  Differentiating with
respect to θ gives the equation of motion

where . 
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A Cylinder Rolling Inside a Cylindrical Surface

Figure 5.27 Cylinder rolling inside a cylinder. (a) Eqilibrium,
(b) Coordinates, (c) Free-body diagram

O denotes the origin of the stationary X,Y coordinate system. 
The x, y coordinate system is fixed to the cylinder and its origin o
coincides with the cylinder’s mass center g.  The angle θ defines
the rotation of the line O-g, while φ defines the cylinder rotation
with respect to ground.  
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(5.119a)

(5.119b)

(5.120)

The following engineering-analysis tasks apply:

a.  Draw a free-body diagram and derive the equation of
motion, and 

b.  For small motion about the bottom equilibrium position,
determine the natural frequency.

c.  Assuming that the cylinder is released from rest at
, find  as a function of  θ.  Also define the normal

reaction force as a function of θ

In applying , we will use the polar coordinate unit
vectors.  Starting in the direction,

will be needed to define the normal reaction force  N,
and gives

Stating the moment equation about the mass center g gives

The moment due to the friction force is negative because it is
acting in the - φ direction.  We now have two equations in the
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(5.122)

(5.121)

three unknowns .  From Eq.(4.14a), the required
kinematic constraint equation between  and  is 

Substituting for ff from Eq.(5.119a) into Eq.(5.120) gives

Now substituting for  from Eq.(5.121) gives

For small θ, , the linearized equation of motion is

and the natural frequency is .

The solution for as a function of  θ can be developed from
Eq.(5.122) via the energy-integral substitution  as
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(5.124)

(5.123)

Integration from the initial condition  yields

and

provides the requested solution.  Substituting for  into
Eq.(5.119b) defines N as

and (formally) meets the requirements of Task c.

However, note from Eq.(5.124) that  at ; hence,
from our initial condition, the wheel will slip initially until N 
becomes large enough for the Coulomb friction force  to
prevent slipping.  



1  Note that the friction force would have a
different sign if the cylinder were released from
rest at 
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(5.125)

With slipping, the appropriate model as provided from
Eqs.(5.119a-120) and  is:

Eliminating   gives the two coupled nonlinear equations of
motion:

These equations apply during slipping, provided that the
direction of the friction force  in figure does not change1.  With
slipping, the cylinder has two degrees of freedom, θ and φ.  Note
from Eqs.(5.125) that initially, at , and .  As the
cylinder rolls down the surface, and  increase in magnitude
but are negative.  The friction force  acts to slow down the
magnitude increase in  and accelerate the magnitude increase in 
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.  When the kinematic condition  is met, slipping
stops, Eqs.(5.125) become invalid,  and Eq.(5.122) applies.

Deriving the Equation of Motion From Conservation of
Energy

With O, the origin of the X, Y system as the gravity potential
energy datum,   implies

Substituting  and  gives

or 

Differentiating w.r.t. θ gives
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where .

Pulley-Assembly Example

Figure 5.28 Pulley assembly consisting of a pulley of mass m1

and an attached mass of mass m2 . (a) Equilibrium, (b)
Coordinates,  (c) Free-body diagrams.

The assembly is supported by an inextensible cord in series with
a linear spring with stiffness coefficient k.  On the right, the
cord’s end  is rigidly attached to 
a horizontal surface.  On the left, the cord is attached to the
spring which is attached to the same surface.  The pulley has
mass and a moment of inertia about its mass center of 
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(5.126)

(5.127a)

.  The cord does not slip on the pulley.  

The engineering analysis tasks are:

a.  Draw free-body diagrams and derive the equation of
motion.

b.  Determine the natural frequency

The statement that the “cord does not slip on the pulley”
introduces the rolling-without-slipping condition.  The pulley
can be visualized as rolling without slipping on the vertical
surface defined by the right-hand-side cord line.  The  y
coordinate locates the change in position of the pulley, and θ
defines the pulley’s rotation angle.  The spring is assumed to be
undeflected when .  The y and θ coordinates are related via
the rolling-without-slipping kinematic condition,

Figure 5.30B provides the appropriate free-body diagrams with
the pulley and the lower assembly separated. The reaction force
N acts between the two masses at the pivot connection point. 
The moment equation about the pulley’s mass center is
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(5.127b)

(5.128)

Note that  and  are different. They must be different to
induce the pulley’s angular acceleration.   The pulley’s mass
center and the lower assembly have the same acceleration; hence
their equations of motion are:

Adding these last equations eliminates N netting

Eqs.(5.126), (5.127), and (5.128) provide three equations for the
four unknowns .  

We need another kinematic constraint equation.  Pulling the
pulley down a distance y will pull the cord end attached to the
spring down a distance 2y.  Hence, the cord tension  is
defined by .   Substituting this result and
substituting  and  gives

Eliminating by multiplying the second of these equations by
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r and adding the result to the first gives

and the equation of motion is 

The natural frequency is defined by

This example is “tricky” in that the rolling-without-slipping
constraint and the second pulley constraint to define the spring
deflection, , are not immediately obvious.
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Deriving the Equation of Motion From Conservation of
Energy

Setting as the zero potential energy for gravity means
 implies

where is the spring deflection. Substituting: (i) ,
(ii) the rolling without slipping condition ,and (iii) the
pulley condition  gives

Differentiating w.r.t. θ gives

where .
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Lecture 31.  EXAMPLES: EQUATIONS OF MOTION USING
NEWTON AND ENERGY APPROACHES

Figure 5.29 (a) Uniform beam moving in frictionless slots and
attached to ground via springs at A and  B. The vertical force f
acts the bar’s center, (b) Coordinate choice, (c) Free-body
diagram.  The springs are undeflected at .  



125

(5.130)

(5.131)

Task: Derive the EOM 

Solution from free-body diagrams

Stating the moment equation about the mass center gives

Stating    for the mass center gives the component
equations:

We now have three equations in the five unknowns
.  The additional kinematic equations are

obtained from the geometric relations
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(5.132)

(5.133)

Differentiating these equations twice with respect to time gives:

Substitution into Eqs.(5.132) defines  as:

Finally, substitution for  into the moment Eq.(5.130)
gives

Gathering terms and simplifying gives the final equation of
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(5.134)

motion

Developments from Work Energy
The absence of energy-dissipation forces makes this example an
ideal application for the work-energy equation

.  

The following engineering analysis tasks apply :

a.  If the bar starts from rest at , and , determine
its angular velocity when .

b.    Derive the equation of motion.

First find  Figure 5.29c illustrates the force vector  
 , located in the fixed X, Y system by the vector

.  The differential work done by the force
acting through a differential change in position is
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where  is the generalized force associated with θ.   The mass
center of the body is also located by r1 ; hence,

 , and the kinetic energy is

Establishing the gravity potential-energy datum in the center of
the lower guide slot yields  .  The spring potential
energy function is defined by

Plugging all of these results into the work-energy equation gives 
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(5.227)

(5.228)

where the initial potential and kinetic energy are zero. Evaluating
Eq.(5.227) for  and   gives

and concludes Task a.   
The equation of motion is obtained by differentiating

Eq.(5.227) with respect to θ, obtaining, 

where . This step concludes Task b.   
Note the generalized force term  on the right-hand side

of Eq.(5.228).  Changing the external-force definition modifies
only this term, leaving the left hand side of the equation
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unchanged.   

Task: Derive the EOM for the force f2 .

The external force  is located by the vector
.  Hence, the differential work due to f2 acting at r2 is

Substituting  for  in Eq.(5.228) provides the correct
equation.
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Energy Dissipatiom

Figure 5.29 (a) The uniform bar of figure 5.31 with guides now
replacing the end rollers,  (b) Free-body diagram for viscous
damping now replacing the end rollers within the slots.  

Applying   to the free-body diagram of figure 5.29b
provides:

The acceleration components  continue to be defined by

Eqs.(5.132).   The velocity magnitudes  are obtained by
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(5.136)

(5.135)

differentiating the geometric relations to

obtain .  Substituting into the
moment and force equations gives:

Substitution for  into the moment equation and
simplifying terms gives the final differential equation of motion
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The damping term on the left is the only addition to the prior
moment Eq.(5.134).

Developing the equations of motion from work energy starts
from

where

Hence,

Plugging this result into Eq.(5.128) gives the  equation of
motion.  Accounting for energy dissipation due to viscous
damping is easy since the damping force can be stated directly. 
Things are less pleasant with Coulomb damping.
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(i)

Coulomb Damping

The free-body above reflects Coulomb damping at both supports
with Coulomb damping coefficient μ. The force equations are:

.The moment equation is
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(ii)

Before preceding, note that , . Since, 
0 # θ # π/2, 

We need to solve Eqs.(i) for  and substitute the results
into Eq.(i).  The equations for  can be stated

where
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(iii)

Solving for  gives

Substituting these result into Eq.(i) gives the equations of
motion.

Trying to do this with work-energy starts reasonably.  The
differential work is
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However, applying this equation requires that you start with the
force free-body diagrams and equations of motion to obtain the
solutions for  provided by Eq.(iii).

Two Bars with an Applied Force and a Connecting Spring.
 

Figure 5 .35 (a)  Two bars of mass m and length l , connected to
each other by a linear spring and acted on by a vertical force, (b)
Free-body diagram for the two bodies.
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(5.232)

(5.231)

A linear spring, with spring coefficient k,  connects points O and
B .  The spring is undeflected at .  The vertical external
force  acts at point B.  The following engineering-analysis
tasks apply:

a.  Develop a general work-energy equation.

b.  If the bodies start from rest at  and 

, determine the angular velocity of the
bodies when .

c.  Derive the differential equation of motion.

Because of the external force, energy is not conserved, and the
general work-energy equation applies. The
kinetic energy of the two bars is

The velocity of the upper bar’s mass center is defined from
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Substituting these results plus ( ) into
Eq.(5.231) gives

For the gravity potential-energy datum through O, the
mechanical potential energy is

The differential work due to the external force is 

Substituting into the work-energy equation gives
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(5.233)

and concludes Task a. 
Task b is accomplished by substituting  and 

into Eq.(5.233) to obtain

and the requested answer is

The differential equation of motion is obtained by differentiating
Eq.(5.233) with respect to β, obtaining
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This result concludes Task c.

Figure 5.36 A modification to the example of figure 5.65, with
the upper bar now having mass 2m and length 2l.

The modification above complicates considerably our present
approach.  The complications are handled nicely by Lagrange’s
equations with Lagrange multipliers in Chapter 6.
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Figure 5.38 (a) Parallel, double-bar arrangement for retracting
a cylinder, ( b) Side view, (c) Load-angle geometry.

A Parallel, Double-Bar Arrangement for Retracting a
Cylinder

Figure 5.68A illustrates a bar assembly for retracting a
cylinder.  Each of the four bars in the assembly has mass m and
length l.  The cylinder has radius r , length L and mass M.  A
time-varying force with magnitude f(t) is acting through a cable
that extends over a pulley and is attached at the center of the
assembly’s connecting bar.  The cylinder rolls without slipping
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(5.242)

on a horizontal plane, and its rotation angle is β. The following
engineering-analysis tasks apply:

a.  Develop a general work-energy equation.

b.  Develop the equation of motion.

Because of the external force , energy is not conserved, 
and  the general work-energy equation 
applies. The kinetic energy is

The first, second, and third terms define the kinetic energy  of
the left-hand bars, the right-hand bars, and the cylinder ,
respectively.  From figure 5.38b,
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(5.243)

The rolling-without-slipping condition is 

Substituting the kinematic results from Eqs.(5.242 and 5.243)
plus the moment of inertia results ( , ,
and ) from Appendix C into T gives

Defining the datum for gravity potential energy by a plane
through O and B yields the potential-energy function

Working out the differential-work function due to the force
acting at A is a little complicated for this example.  The
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(5.244)

force acts at the angle γ from the horizontal.  Figure 5.38c
shows the right triangle defining γ and provides:

Hence, the force vector is .  The force
acts at the position , and the differential
nonconservative work is 

Substituting for T , V , and into the work-energy
equation gives

and concludes Task a.  
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Differentiating Eq.(5.244) with respect to θ gives the
differential equation of motion

where , and concludes Task c.  
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