Lecture 25. GOVERNING FORCE AND MOMENT EQUATIONS FOR PLANAR MOTION OF A RIGID BODY WITH APPLICATION EXAMPLES

Given: \(\Sigma f = m \ddot{r} \) for a particle.

Find: force and moment differential equations of motion for planar motion of a rigid body.

Force Equation

![Diagram of a rigid body acted on by external forces.](image)

Figure 5.5 Rigid body acted on by external forces. The \(x, y, z \) coordinate system is fixed in the rigid body; the \(X, Y, Z \) system is an inertial coordinate system.
X, Y, Z inertial coordinate system

x, y, z coordinate system fixed in the rigid body.

θ defines the orientation of the rigid body (and the x, y, z coordinate system) with respect to the X, Y, Z system.

$\omega = \mathbf{k} \dot{\theta}$ is the angular velocity of the rigid body and the x, y, z coordinate system, with respect to X, Y, Z coordinate system.

$\mathbf{R}_o = \mathbf{I} \mathbf{R}_{oX} + \mathbf{J} \mathbf{R}_{oY}$ locates the origin of the x, y, z system in the X, Y, Z system.

Point P in the rigid body is located in the X, Y, Z system by

$$r = \mathbf{I} r_X + \mathbf{J} r_Y + \mathbf{K} r_Z .$$

Point is located in the x, y, z system by the vector

$$\mathbf{p} = ix + jy + kz .$$

Hence,

$$r = \mathbf{R}_o + \mathbf{p} .$$
Force Equation. Applying Newton’s second law to the particle at P gives

$$
\mathbf{f}_P = \mathbf{d}m \ddot{\mathbf{r}} = \mathbf{d}m \frac{d^2 \mathbf{r}}{dt^2} \bigg|_{x,y,z},
$$

(5.8)

where:

- \mathbf{f}_P is the *resultant* force
- $\ddot{\mathbf{r}}$ is the acceleration of the particle with respect to the inertial X, Y, Z system.

$$
\mathbf{d}m = \gamma \mathbf{dx} \mathbf{dy} \mathbf{dz}
$$

where γ is the mass density of the rigid body.

The resultant force at P is

$$
\mathbf{f}_P = \sum \mathbf{f}_{\text{external}} + \sum \mathbf{f}_{\text{internal}}
$$

On the left hand side of Eq.(5.8), integrating over the mass of the body gives

$$
\int_m \mathbf{f}_P \, dm = \sum \int_m \mathbf{f}_{\text{external}} \, dm + \sum \int_m \mathbf{f}_{\text{internal}} \, dm = \sum f_i + 0 ;
$$

i.e., when integrated over the whole body, the internal forces cancel.
The integral expression of Eq.(5.8) is then
\[\sum f_i = \int_V \vec{r} \gamma \, dx \, dy \, dz = \int_m \ddot{r} \, dm , \quad (5.9) \]

For the two points \(o \) and \(P \) in the rigid body
\[a_P = a_o + \dot{\omega} \times r_{oP} + \omega \times (\omega \times r_{oP}) . \]

Since \(\vec{r} \) and \(R_o \) locate points \(P \) and \(o \), respectively, in the \(X, Y, Z \) system, and \(\rho \) is the vector from point \(o \) to \(P \),
\[\ddot{r} = \ddot{R}_o + \dot{\omega} \times \rho + \omega \times (\omega \times \rho) . \quad (5.10) \]

Since \(dm = \gamma \, dx \, dy \, dz \), integration extends over the volume of the rigid body.

Since \(\dddot{R}_o, \dot{\omega}, \) and \(\omega \) are constant with respect to the \(x, y, z \) integration variables they can be brought outside the integral sign yielding
\[\sum f_i = m \dddot{R}_o + \dot{\omega} \times \int_m \rho \, dm + \omega \times (\omega \times \int_m \rho \, dm) . \quad (5.11) \]

The mass center is located in the \(x, y, z \) system by \(b_{og} \), defined by
\[mb_{og} = \int_m \rho \, dm = m(b_{ogx} + j b_{ogy} + k b_{ogz}) . \quad (5.12) \]
Substituting from Eq. (5.12) into Eq. (5.11) gives

\[\sum f_i = m \left[\ddot{R}_o + \dot{\omega} \times b_{og} + \omega \times (\omega \times b_{og}) \right] . \] (5.13)

Figure 5.6 A rigid body with a mass center located in the body-fixed \(x, y, z \) coordinate system by the vector \(b_{og} \) and located in the inertial \(X, Y, Z \) system by \(R_g \).

Since \(g \) and \(o \) are fixed in the rigid body, their accelerations are related by

\[a_g = a_o + \dot{\omega} \times r_{og} + \omega \times (\omega \times r_{og}) \]

But \(r_{og} = b_{og} \), and \(a_o = \ddot{R}_o \); hence,

\[\dddot{R}_g = \dddot{R}_o + \dot{\omega} \times b_{og} + \omega \times (\omega \times b_{og}) , \]
and the force equation can be written (finally) as

\[\sum f_i = m \ddot{R}_g. \]

(5.14)

In words, Eq.(5.14) states that a rigid body can be treated like a particle, in that the summation of external forces acting on the rigid body equals the mass of the body times the acceleration of the mass center with respect to an inertial coordinate system.

Cartesian component of Force equations:

\[\sum f_{iX} = m \ddot{R}_{gX}, \quad \sum f_{iY} = m \ddot{R}_{gY}. \]

(5.15a)

Polar version

\[\sum f_{ir} = m (\ddot{r}_g - r_g \dot{\theta}^2), \quad \sum f_{i\theta} = m (r_g \ddot{\theta} + 2 r_g \dot{\theta}). \]

(5.15b)
A rigid body acted on by several external forces f_i acting on the body at points located by the position vectors a_i and moments M_i.

In figure 5.5, the position vector ρ extends from o to a particle at point P. For moments about o, ρ is the moment arm, and the particle moment equation is

$$\rho \times f_P = \rho \times dm \ddot{r} \quad . \quad (5.16)$$

Integrating Eq.(5.16) over the mass of the rigid body yields

$$\sum (a_i \times f_i) + \sum M_i = M_o = \int_V \rho \times \ddot{r} \gamma \, dx \, dy \, dz = \int_m \rho \times \ddot{r} \, dm \quad (5.17)$$

The vector M_o on the left is the *resultant* external moment acting on the rigid body about point o, the origin of the x, y, z coordinate system.
Kinematics: Substituting from Eq.(5.10) gives
\[\rho \times \ddot{r} = (\rho \times \ddot{R}_o) + \rho \times (\dot{\omega} \times \rho) + \rho \times [\omega \times (\omega \times \rho)] \ . \]

The vector identity,
\[A \times [B \times (B \times A)] = B \times [A \times (B \times A)] \ , \]
gives
\[\rho \times \ddot{r} = (\rho \times \ddot{R}_o) + \rho \times (\dot{\omega} \times \rho) + \omega \times [\rho \times (\omega \times \rho)] \ . \] (5.18)

Since \(\ddot{R}_o, \dot{\omega}, \) and \(\omega \) are not functions of the variables of integration, substitution from Eq.(5.18) into Eq.(5.17) gives
\[M_0 = m(b_{og} \times \ddot{R}_o) + \int \rho \times (\dot{\omega} \times \rho) \, dm \]
\[+ \omega \times \int [\rho \times (\omega \times \rho)] \, dm \ . \] (5.19)

with \(b_{og} \) defined by Eq.(5.12).

To find component equations from Eq.(5.19)
In carrying out the cross product, note that \(\dot{\mathbf{R}}_o \) is stated in terms of its components in the \(x, y, z \) coordinate system, versus the customary \(X, Y, Z \) system.

Defining the vectors in Eq. (5.19) in terms of their components gives

\[
\mathbf{b}_{og} \times m \dot{\mathbf{R}}_o = m \begin{vmatrix} i & j & k \\ b_{ogx} & b_{ogy} & b_{ogz} \\ \ddot{R}_{ox} & \ddot{R}_{oy} & 0 \end{vmatrix}
\]

\[
= -i m b_{ogz} \ddot{R}_{oy} + j m b_{ogx} \ddot{R}_{ox} + k m (b_{ogx} \ddot{R}_{oy} - b_{ogy} \ddot{R}_{ox})
\]

\[(5.20)\]

\[
\rho = i x + j y + k z , \quad \omega = k \dot{\theta} , \quad \dot{\omega} = k \ddot{\theta} .
\]

Hence,

\[
\omega \times \rho = k \dot{\theta} \times (i x + j y + k z) = \dot{\theta} (j x - i y)
\]

\[\dot{\omega} \times \rho = \ddot{\theta} (j x - i y) ,\]

and
Similarly,

\[\mathbf{\rho} \times (\mathbf{\omega} \times \mathbf{\rho}) = k \dot{\theta} (x^2 + y^2) \]

(5.22)

Substituting from Eqs. (5.20)-(5.22) into Eq. (5.19) gives the \(z \) component equation

\[k M_{oz} = k m (b \times \ddot{R}_o)_z + k \ddot{\theta} \int_m (x^2 + y^2) \, dm + k \dot{\theta} \times k \dot{\theta} \int_m (x^2 + y^2) \, dm . \]

(5.23)

The last expression in this equation is zero because \(k \times k = 0 \).

Since

\[I_o = \int_m (x^2 + y^2) \, dm , \]

the moment Eq. (5.23) can be stated (finally) as

\[\sum M_{oz} = I_o \ddot{\theta} + m (b_{og} \times \ddot{R}_o)_z . \]

(5.24)
Summary of governing equations of motion for planar motion of a rigid body

Force-Equation Cartesian Components

\[\sum f_{iX} = m \ddot{R}_{gX} \, , \, \sum f_{iY} = m \ddot{R}_{gY} . \]
(5.15)

Moment Equation

\[\sum M_{oz} = I_o \ddot{\theta} + m (b_{og} \times \ddot{R}_o)_{z} . \]
(5.24)

Reduced Forms for the Moment Equation

Moments taken about the mass center. If the point \(o \) about which moments are taken coincides with the mass center \(g \), \(b_{og} = 0 \), and Eq.(5.24) reduces to

\[M_{gz} = I_g \ddot{\theta} . \]
(5.25)

This equation is *only* correct for moments taken about the mass center of the rigid body.
Moments taken about a fixed point in inertial space. When point o is fixed in the (inertial) X, Y, Z coordinate system, $\ddot{R}_o = 0$, and the moment equation is

$$M_{oz} = I_o \dot{\theta} \quad . \quad (5.26)$$

Fixed-Axis-Rotation Applications of the Force and Moment equations for Planar Motion of a Rigid Body

Rotor in Bearings

Figure 5.8 A disk mounted on a massless shaft, supported by two frictionless bearings, and acted on by the applied torque $M(t)$.
Derive the differential equation of motion for the rotor. The governing equation of motion for the present system is

\[M_{oz} = I_0 \ddot{\theta} \Rightarrow \left(\frac{mr^2}{2} \right) \ddot{\theta} = M(t). \]

The moment \(M(t) \) is positive because it is acting in the same direction as \(+\theta \). This is basically the same second-order differential equation obtained for a particle of mass \(m \) acted on by the force \(f(t) \), namely, \(m\ddot{x} = f(t) \), where \(x \) locates the particle in an inertial coordinate system.

Figure 5.9 Free-body diagram for the rotor of figure 5.8 with a drag torque \(C_d \dot{\theta} \) acting at each bearing.
The shaft is rotating in the $+\dot\theta$ direction; hence, the drag moment terms have negative signs because they are acting in $-\theta$ direction. The differential equation of motion to be obtained from the moment equation is

$$M_{oz} = I_o \ddot\theta \Rightarrow \frac{mr^2}{2} \ddot\theta = M_{oz}(t) - 2C_d \dot\theta, \text{ or}$$

$$\frac{mr^2}{2} \ddot\theta + 2C_d \dot\theta = M_{oz}(t)$$

This equation has the same form as a particle of mass m acted on by the force $f(t)$ and a linear dashpot with a damping coefficient c; namely, $m\dddot{x} + c\dot{x} = f(t)$.
Twisting the rod about its axis through an angle θ will create a reaction moment, related to θ by

$$M_\theta = -k_\theta \theta = -\frac{GJ}{l} \theta = -\frac{G}{l} \frac{\pi r^4}{2} \theta.$$

$k_\theta = GJ/l$, where G is the shear modulus of the rod, and $J = \pi r^4/2$ is the rod’s area polar moment of inertia. Recall that
the SI units for \(G \) is \(N/m^2 \); hence, \(k_\theta \) has the units: \(N\cdot m/\text{radian}, \)
i.e., moment per unit torsional rotation of the rod.

Derive the differential equation of motion for the disk. Applying
Eq.(5.26) yields the moment equation

\[
M_{oz} = I_\theta \ddot{\theta} \Rightarrow \frac{mR^2}{2} \ddot{\theta} = M(t) + M_\theta = M(t) - \frac{G}{l} \frac{\pi r^4}{2} \theta ,
\]

The signs of the moments on the right hand side of this moment
equation are positive or negative, depending on whether they are,
respectively, in the +\(\theta \) or -\(\theta \) direction.

The differential equation of motion to be obtained from the
moment equation is

\[
\frac{mR^2}{2} \ddot{\theta} + \frac{\pi Gr^4}{2l} \theta = M(t) .
\]

This result is analogous to the differential equation of motion for
a particle of mass \(m \), acted on by an external force \(f(t) \), and
supported by a linear spring with stiffness coefficient \(k \); viz.,
\(m\ddot{x} + kx = f(t) \). For comparison, look at Eq.(3.13). This equation
can be rewritten as

\[
\ddot{\theta} + \omega_n^2 \theta = \frac{2M(t)}{mR^2} ,
\]
where the undamped natural frequency ω_n is defined by

$$\omega_n = \sqrt{\frac{\pi Gr^4}{lmR^2}}.$$

Torsional Vibration Example with Viscous Damping

![Figure 5.11](image.png)

Figure 5.11 (a) The disk of figure 5.10 is now immersed in a viscous fluid, (b) Free-body diagram

Rotation of the disk at a finite rotational velocity $\dot{\theta}$ within the fluid causes the drag moment, $-C_d \dot{\theta}$, on the disk. The negative
sign for the drag term is chosen because it acts in the -θ direction. The complete moment equation is

$$\frac{mR^2}{2} \ddot{\theta} = \Sigma M_z = M(t) - \frac{G \pi r^4}{l} \frac{\pi r^4}{2} \theta - C_d \dot{\theta},$$

with the governing differential equation

$$\frac{mR^2}{2} \ddot{\theta} + C_d \dot{\theta} + \frac{\pi Gr^4}{2l} \theta = M(t). \tag{5.27}$$

This differential equation has the same form as a particle of mass m supported by a parallel arrangement of a spring with stiffness coefficient k and a linear damper with damping coefficient c; namely, $m\ddot{x} + c\dot{x} + kx = f(t)$.

Eq.(5.27) can be restated as

$$\ddot{\theta} + 2\zeta \omega_n \dot{\theta} + \omega_n^2 \theta = \frac{2M(t)}{mR^2},$$

where ζ is the damping factor, defined by

$$2\zeta \omega_n = \frac{2C_d}{mR^2}, \quad \omega_n = \sqrt{\frac{\pi Gr^4}{lmR^2}}.$$

The models developed from figures 5.10 and 5.11 show the same
damped and undamped vibration possibilities for rotational motion of a disk that we reviewed earlier for linear motion of a particle. The same possibilities exist to define damped and undamped natural frequencies, damping factors, etc.

An example involving kinematics between a disk and a particle

![Diagram of a disk and a particle](image)

Figure 5.12 (a) Disk of mass M and radius r supported in frictionless bearings and connected to a particle of mass m by a light and inextensible cord, (b) Coordinates, (c) Free-body diagram.

Derive the differential equation of motion for the system.

Kinematics:
\[\delta x = r \delta \theta \Rightarrow x = r \dot{\theta}, \; \ddot{x} = r \ddot{\theta}. \] (5.28)

From the free-body diagram, the equation of motion for the disk is obtained by writing a moment equation about its axis of rotation. The equation of motion for mass \(m \) follows from \(\Sigma f = m \ddot{\mathbf{r}} \) for a particle. The governing equations are:

\[
\frac{M r^2}{2} \ddot{\theta} = \Sigma M_{oz} = T_c r, \quad m \ddot{x} = \Sigma f = w - T_c, \tag{5.29}
\]

where \(T_c \) is the tension in the cord. (The mass of the cord has been neglected in stating these equations.) In the first of Eq.(5.29), the moment term \(T_c r \) is positive because it acts in the \(+\theta \) direction. The sign of \(w \) is positive in the force equation because it acts in the \(+x \) direction; \(T_c \) has a negative sign because it is directed in the \(-x\) direction.

Eqs.(5.29) provides two equations for the three unknowns: \(\ddot{x}, \ddot{\theta}, \) and \(T_c \). Eliminating the tension \(T_c \) from Eqs.(5.29) gives

\[
\frac{M r^2}{2} \ddot{\theta} + r m \ddot{x} = w r. \tag{5.30}
\]

Substituting from the last of Eq.(5.28) for \(\ddot{x} = r \ddot{\theta} \) gives the final differential equation

\[
\left(\frac{M}{2} + m \right) r^2 \dddot{\theta} = w r.
\]
Figure 5.13 (a). Two disks connected by a belt. (b). Free-body diagram.

Figure 5.13A illustrates two pulleys that are connected to each other by a light and inextensible belt. The pulley at the left has mass m_1, radius of gyration k_{1g} about the pulley’s axis of rotation, and is acted on by the counterclockwise moment M_o. The pulley at the right has mass m_2 and a radius of gyration k_{2g} about its axis of rotation. (The radius of gyration k_g defines the moment of inertia about the axis of rotation by $I = mk_g^2$.) The belt runs in a groove in pulley 1 with inner radius r_1. The inner radius of the belt groove for pulley 2 is r_2. The angle of rotation for pulleys 1 and 2 are, respectively, θ and φ.

Derive the governing differential equation of motion in terms of θ and its derivatives.
From the free-body diagram the fixed-axis rotation moment Eq.(5.26) gives:

\[I_1 \ddot{\theta} = \sum M_{1oz} = M_o(t) + r_1 (T_{c2} - T_{c1}) \]
\[I_2 \ddot{\phi} = \sum M_{2oz} = r_2 (T_{c1} - T_{c2}) \]

where \(T_{c1} \) and \(T_{c2} \) are the tension components in the upper and lower belt segments. \(M_o(t) \) has a positive sign because it is acting in the \(+\theta\) direction; \(r_1 (T_{c1} - T_{c2}) \) has a negative sign because it acts in the \(-\theta\) direction. Similarly, \(r_2 (T_{c1} - T_{c2}) \) has a positive sign in the second of Eq.(5.31) because it is acting in the \(+\phi\) direction.

The moments of inertia in Eq.(5.31) are defined in terms of their masses and radii of gyrations by

\[I_1 = m_1 k_1^2 \quad ; \quad I_2 = m_2 k_2^2 \]

Returning to Eq.(5.31), we can eliminate the tension terms in the two equations, obtaining

\[I_1 \ddot{\theta} = M_o - \frac{r_1}{r_2} I_2 \ddot{\phi} \quad \Rightarrow \quad I_1 \ddot{\theta} + \frac{r_1}{r_2} I_2 \ddot{\phi} = M_o(t) \quad . \]

We now have one equation for the two unknowns \(\ddot{\theta} \) and \(\ddot{\phi} \), and need an additional kinematic equation relating these two angular acceleration terms. Given that the belt connecting the pulleys is
inextensible (can not stretch) the velocity v of the belt leaving both pulleys must be equal; hence,

$$v = r_1 \dot{\theta} = r_2 \dot{\phi} \Rightarrow r_1 \ddot{\theta} = r_2 \ddot{\phi}.$$

Substituting this result back into Eq.(5.32) gives the desired final result

$$\left[I_1 + \left(\frac{r_1}{r_2} \right)^2 I_2 \right] \ddot{\theta} = I_{\text{eff}} \ddot{\theta} = M_o(t).$$

Note that coupling the two pulleys’ motion by the belt acts to increase the effective inertia I_{eff} in resisting the applied moment.