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Figure 5.16 Compound pendulum: (a) At rest in
equilibrium, (b) General position with coordinate θ, © Free-
body diagram

Lecture 27.  THE  COMPOUND PENDULUM

The term “compound” is used to distinguish the present rigid-
body pendulum from the “simple” pendulum  of Section 3.4b,
which consisted of a particle at the end of a massless string.

Derive the general differential equation of motion for the
pendulum of figure 5.16a and determine its undamped natural
frequency for small motion about the static  equilibrium 
position.  
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(5.33)

(5.34)

(5.35)

From the free-body diagram the moment equation is

The minus sign on the right-hand side term applies because the
moment is acting in the -θ direction.  For a uniform bar,

; hence, the governing differential equation of motion
is

or 

For small motion, sin θ –  θ, and the nonlinear differential
equation reduces to

This differential equation is the rotation analog of the single-
degree-of-freedom, displacement, vibration problem of

.  The compound pendulum’s natural frequency is
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(5.36)

(5.37)

Assuming that the pendulum is released from rest at
,define the reaction force components

 as a function of  θ (only).  

From figure 5.16c applying  in polar coordinates for
the mass center of the rod gives: 

In the acceleration terms, , because  is a
constant.  Eqs.(5.36) define the reaction force components  
, but not as a function of  θ alone.  Direct substitution from
Eq.(5.34) into the second of Eqs.(5.36) defines  as

Finding a comparable relationship for  is more complicated,
because the first of Eqs.(5.36) involves .  We will need to
integrate the differential equation of motion via the energy-
integral substitution to obtain  as a function of  θ , proceeding
from
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(5.38)

(5.39)

Multiplying through by dθ and integrating both sides of this
equation gives

Substituting this result into the first of Eq.(5.36) gives

This result shows that the dynamic reaction force will be 2.5
times greater than the static weight w when the rod reached its
lowest position (θ = 0).  

Alternative Moment Equation with Moments about g
Suppose that we had chosen to take moments about g, the

mass center of the rod in figure 5.16c, obtaining
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(5.40)

The moment has a negative sign because it is acting in the -θ
direction.  In this equation, the required moment of inertia about
g is  Substituting for oθ  from  Eq.(5.37) gives

or

Writing the moment equation about g involves more work but
gets the same equation.  Note in the intermediate step of
Eq.(5.40) that we are accomplishing the parallel-axis formula in
moving from  to , via

where bgo is the vector from the
mass center g to the pivot point o.

Deriving The Equation of Motion From The Energy Equation
There are no external time varying forces or moments and no

energy dissipation; hence, mechanical energy is conserved; i.e.,
.  Using a horizontal plane through the pendulum’s

pivot point as a datum for gravity potential energy gives
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For rotation about the fixed point o, the kinetic energy of the
pendulum is defined by

Hence,

Differentiating w.r.t. θ gives
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(5.41)

Static stability about equilibrium points.

From

Equilibrium for small Motion about the equilibrium
position .
 
Small motion about the equilibrium position  gives the
linearized differential equation of motion

For the initial conditions, , the solution to the
linearized Eq.(5.35) can be stated

consisting of a stable oscillation at the natural frequency. Hence,
is said to be a stable equilibrium point for the body.
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(5.34)

(5.42)

(5.43)

Equilibrium for small Motion about the equilibrium position

Motion is governed by the nonlinear equation of motion,

Expanding  in a Taylor’s series about  gives

Retaining only the linear term in Eq.(5.42) and substituting back
into Eq.(5.34) gives

Observe the negative sign in the coefficient for .   If this were
a harmonic oscillator consisting of a spring supporting a mass, a
comparable negative sign would imply a negative stiffness,
yielding a differential equation of the form
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Substituting the assumed solution  into Eq.(5.43) gives

Hence the solution to Eq.(5.43) for small motion about  is

The first term in this solution grows exponentially with time. 
Hence, any small disturbance of the pendulum from the
equilibrium position will grow exponentially with time, and

is a statically unstable equilibrium point for the pendulum.
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A Swinging-Plate Problem

Figure XP5.2 (a) Rectangular plate supported at o by a
frictionless pivot and at B by a ledge,  (b) Free-body diagram that
applies after the support at B has been removed.

The plate has mass m , length 2a, and width a , and is supported
by a frictionless pivot at o and a ledge at B.  The engineering
tasks associated with this problem follow.  Assuming that the
support at B is suddenly removed, carry out the following steps.:

a. Derive the governing differential equation of motion.

b. Develop relationships that define the components of the
reaction force as a function of the rotation angle only.
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(5.56)

c. Derive the governing differential equation of motion for
small motion about the plate’s equilibrium position . 
Determine the natural frequency of the plate for small
motion about this position.

Kinematics: θ in the free-body diagram defines the plate’s
orientation with respect to the horizontal.  The angle α lies
between the top surface of the plate and a line running from the
pivot point o through the plate’s mass center at g, and is defined
by

Θ = ( θ + α ) is the rotation angle (from the horizontal) of a line
running from o through g .

Moment equation with moments taken about o:

The distance from o to g is , and the weight develops the
external moment acting through the moment arm  

.  The moment is positive because it is acting in
the +θ direction.  

Applying the parallel-axis formula  gives
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(5.57)

(5.58)

(5.59)

Substitution gives the governing differential equation of motion

and we have completed Task a.  

To define the reaction forces, we need to state .  The
polar-coordinate version of this equation works best for the
current problem, and the free-body diagram has been drawn
using polar coordinates with or aligned with the radial
acceleration component of point g , and   is aligned with the
circumferential component. 

Force equation components:

, because  is a constant, and   
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Eliminate  by substitution

This result states that  starts at  for θ = 0, and is
zero when the mass center is directly beneath the pivot point o, at

 .  

To obtain as a function of θ,  use the energy-integral
substitution to integrate Eq.(5.58).  Starting with 

multiplying through by dθ , and integrating both sides of the
equation gives

Substituting this result back into the first of Eq.(5.59) gives
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and Task b is now completed .
The equilibrium condition for the pendulum is obtained by

setting the right-hand side of Eq.(5.47) equal to zero, obtaining

To get the governing equation of motion for small motion about
the equilibrium condition, start by substituting  into
Eq.(5.58), obtaining

Expanding the last term on the right in a Taylor’s series gives
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(5.60)

Retaining only the linear term in this expansion gives the
linearized differential equation of motion

hence, the natural frequency is defined by 
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Alternative Development for motion about equilibrium

Taking moments about O in figure XP5.2d gives

Task c is now completed.

Figure XP5.2 (c)  Plate in its
equilibrium position, (d) Free-body
diagram for motion away from
equilibrium
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Deriving the Equation of Motion from the Energy Equation
Energy is conserved; hence, .  Using a horizontal
plane through the pivot point as the datum for gravity potential
energy gives

Substituting  and differentiating w.r.t. θ gives


