Appendix A: Conservation of Mechanical Energy = Conservation of Linear Momentum

Consider the motion of a 2nd order mechanical system comprised of the fundamental mechanical elements: inertia or mass \(M \), stiffness \(K \), and viscous damping coefficient, \(D \). The Principle of Conservation of Linear Momentum (Newton’s 2nd Law of Motion) leads to the following 2nd order differential equation:

\[
M \ddot{X} + D \dot{X} + K X = F(t)
\]

(1)

where the coordinate \(X(t) \) describes the system motion. \(X \) has its origin at the system static equilibrium position (SEP).

In the free body diagram above, \(F_{(t)} = F_{ext} \) is the external force acting on the system,

\[
F_k = -KY = -K(X - \delta_s)
\]

is the reaction force from the spring. \(\delta_s = W/K \) represents the static deflection. \(Y = (X - \delta_s) \) is the total deflection of the spring from its unstretched position.

\[
F_D = -D\dot{X}
\]

is the reaction force from the dashpot element.
(1) is recast as

\[M \ddot{X} + D \dot{X} + K (X - \delta_s) = F(t) - W \]

(1)

Now, integrate this Eq. (1) between two arbitrary displacements \(X_1 = X(t_1), X_2 = X(t_2) \) occurring at times \(t_1 \) and \(t_2 \), respectively. At these times the system velocities are \(\dot{X}_1 = \dot{X}(t_1), \dot{X}_2 = \dot{X}(t_2) \), respectively.

The process gives:

\[
\begin{align*}
\int_{X_1}^{X_2} M \ddot{X} \, dX + \int_{X_1}^{X_2} D \dot{X} \, dX + \int_{X_1}^{X_2} K (X - \delta_s) \, dX &= \int_{X_1}^{X_2} (F(t) - W) \, dX \\
\end{align*}
\]

(2a)

Since \(Y = (X - \delta_s) \) then \(dY = dX \), then write Eq. (2a) as

\[
\begin{align*}
\int_{X_1}^{X_2} M \ddot{X} \, dX + \int_{X_1}^{X_2} D \dot{X} \, dX + \int_{Y_1}^{Y_2} K Y \, dY &= \int_{X_1}^{X_2} (F(t) - W) \, dX \\
\end{align*}
\]

(2b)

The acceleration and velocity are \(\ddot{X} = \frac{d \dot{X}}{dt}, \dot{X} = \frac{d X}{d t} \), respectively. Using these definitions, write Eq. (2b) as:

\[
\begin{align*}
\int_{t_1}^{t_2} M \frac{d \dot{X}}{dt} \frac{dX}{dt} \, dt + \int_{t_1}^{t_2} D \frac{\dot{X}}{dt} \frac{dX}{dt} \, dt + \int_{Y_1}^{Y_2} K d \left(\frac{1}{2} Y^2 \right) = \int_{X_1}^{X_2} F(t) \, dX - \int_{X_1}^{X_2} W \, dX \\
\end{align*}
\]

or,

\[
\begin{align*}
\int_{t_1}^{t_2} M \frac{d \dot{X}}{dt} \dot{X} \, dt + \int_{t_1}^{t_2} D \dot{X} \dot{X} \, dt + \int_{Y_1}^{Y_2} K d \left(\frac{1}{2} Y^2 \right) + \int_{X_1}^{X_2} W \, dX = \int_{X_1}^{X_2} F(t) \, dX \\
\end{align*}
\]
\[
\int_{X_1}^{X_2} M \, d\left(\frac{1}{2} \dot{X}^2\right) + \int_{t_1}^{t_2} D \ddot{X} \, dt + K \left(\frac{1}{2} Y^2\right)_{\gamma_2}^{\gamma_1} + W \left(X_2 - X_1\right) = \int_{X_1}^{X_2} F(t) \, dX
\]
(3)

and since \((M, K, D)\) are constant parameters, express Eq. (3) as:

\[
\frac{1}{2} M \left(\dot{X}_2^2 - \dot{X}_1^2\right) + \int_{t_1}^{t_2} D \ddot{X} \, dt + \frac{1}{2} K \left(Y_2^2 - Y_1^2\right) + W \left(X_2 - X_1\right) = \int_{X_1}^{X_2} F(t) \, dX
\]
(4)

Let’s recognize several of the terms in the equation above. These are known as:

Change in kinetic energy,

\[
T_2 - T_1 = \frac{1}{2} M ^2 - \frac{1}{2} M \dot{X}_1^2
\]
(5.a)

Change in potential energy (elastic strain and gravitational)

\[
V_2 - V_1 = \frac{1}{2} K Y_2^2 - \frac{1}{2} K Y_1^2 + W X_2 - W X_1
\]
(5.b)

Total work from external force input into the system,

\[
W_{1-2} = \int_{X_1}^{X_2} F(t) \, dX
\]
(5.c)

Set \(P_v = D \dot{X}^2\) as the viscous power dissipation, Then, **the dissipated viscous energy (removed from system)** is,

\[
E_{v_{1-2}} = \int_{t_1}^{t_2} D \ddot{X} \, dt = \int_{t_1}^{t_2} P_v \, dt
\]
(5.d)

With these definitions, write Eq. (4) as

\[
(T_2 - T_1) + (V_2 - V_1) + E_{v_{1-2}} = W_{1-2}
\]
(6)
That is, the \textbf{change in (kinetic energy + potential energy)} + \textbf{the viscous dissipated energy} = \text{External work}. This is also known as the \textbf{Principle of Conservation of Mechanical Energy (PCME)}.

Note that Eq. (1) and Eq. (6) are \textbf{NOT} independent. They actually represent the same physical law. Note also that Eq. (6) is not to be mistaken with the first-law of thermodynamics since it does not account for heat flows and/or changes in temperature.

One can particularize Eqn. (6) for the initial time t_0 with initial displacement and velocities given as (X_0, \dot{X}_0), and at an arbitrary time (t) with displacements and velocities equal to $(X_{(t)}, \dot{X}_{(t)})$, respectively, i.e., Thus, the PCME states

$$
(T_{(t)} + V_{(t)}) = W_{(0\rightarrow t)} - E_v(0\rightarrow t) + (T_0 + V_0)
$$

where $(T_0 + V_0)$ is the initial state of energy for the system at time $t=0$ s. Eqn. (7a) is also written as

$$
\frac{1}{2}M \dot{X}_{(t)}^2 + \frac{1}{2}KY_{(t)}^2 + W X = \int_{X_0}^{X_{(t)}} F_{(t)} dX - \int_{t_0}^{t} D \dot{X}^2 dt + \frac{1}{2}M \dot{X}_0^2 + \frac{1}{2}KY_0^2 + W X_0
$$

Taking the time derivative of Eq. (7) gives

$$
\frac{d}{dt} \left(T_{(t)} + V_{(t)} \right) = \frac{dW}{dt} - \frac{dE_v}{dt} = \phi_{ext} - \phi_v
$$
where \mathcal{P}_{ext}, \mathcal{P}_{v} are the mechanical power from external forces acting on the system and the power dissipated by a viscous-type forces, respectively.

Work with Eq. (8) to obtain

$$\frac{d}{dt} \left[\frac{1}{2} M \dddot{x}(t) + \frac{1}{2} K \dot{y}(t) + W X = \int_{x_0}^{x(t)} F(t) \, dX - \int_{t_0}^{t} D \dot{X}^2 \, dt + \frac{1}{2} M \dot{X}_0^2 + \frac{1}{2} K \dot{y}_0^2 + W X_0 \right]$$

$$\frac{1}{2} M \dddot{x}(t) \frac{d\dddot{x}(t)}{dt} + \frac{1}{2} K \dot{y}(t) \frac{d\dot{y}(t)}{dt} + W \frac{dX(t)}{dt} = F(t) \frac{d\dot{X}(t)}{dt} - D \dot{X}^2 \quad (10)$$

Recall that the derivative of an integral function is just the integrand.

To obtain

$$M \dddot{x}(t) + K \dot{y}(t) \dot{y}(t) + W \dddot{x}(t) = F(t) \dddot{x} - D \dot{X}^2 \quad (11a)$$

Since $Y = (X - \delta_s)$ and $\dot{Y} = \dot{X}$, Eq. (11) becomes

$$\dddot{x}(t) \left(M \dddot{x}(t) + K \left[X(t) - \delta_s \right] + W \right) = F(t) \dddot{x} - D \dot{X}^2$$

Canceling the static load balance terms, $W = K \delta_s$, and factoring out the velocity, obtain

$$\left[M \dddot{x}(t) + K X(t) + D \dot{X} \right] \dddot{x}(t) = F(t) \dddot{x} \quad (11)$$

Since for most times the system velocity is different from zero, i.e., $\dot{X}(t) \neq 0$; that is, the system is moving; then

$$M \dddot{x} + D \dot{X} + K X = F(t) \quad (1)$$

i.e., the original equation derived from Newton’s Law (conservation of linear momentum).
Suggestion/recommended work:
Rework the problem for a rotational (torsional) mechanical system and show the equivalence of conservation of mechanical energy to the principle of angular momentum, i.e. start with the following Eqn.

\[I \ddot{\theta} + D_{\theta} \dot{\theta} + K_{\theta} \theta = T(t) \]

where \((I, D_{\theta}, K_{\theta}) \) are the equivalent mass moment of inertia, rotational viscous damping and stiffness coefficients, \(T(t)=T_{\text{ext}} \) is an applied external moment or torque, and \(\theta(t) \) is the angular displacement of the rotational system.