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Appendix B. LINEARIZATION 
 

Linearization is a tool that allows us to use linear models to approximate the 
performance of nonlinear systems.  Linear models are desirable because 
there are many powerful tools to analyze and design linear systems, whereas 
there are very few general tools available for analysis and design of 
nonlinear systems. 
 
The linearization technique will be explained using an example.  The 
example is the speed control/analysis of a car (could be a boat, airplane, 
rocket, cycle, etc.).  The main forces acting on the car are aerodynamic drag, 
Fd, and the driving force Fe, produced by the engine and drive train and 
exerted at the rear wheels.  The free body diagram (FBD) is: 
 

 
 
 

The equation of motion is 

  vMFFF eqdeX    (1) 

 
 

where 
 Fe  =  k θ, driving force from engine. 
 k =  gain (a constant), 
 θ =  throttle angle (controlled by driver), 
 Fd =  ½ ρ Cd A v2, drag force 
 ρ =  air density, 
 Cd =  drag coefficient, 
 A =  projected frontal area of car, 
 v =  car speed,  
 Meq =  equivalent mass of car. 

Fe 
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Thus, the equation of motion (EOM) becomes 
 

     21
2 -   d eqk C A v M        (2)  

 

This is a 1st order nonlinear ODE for the velocity (v).  We wish to linearize 
the EOM about some constant “operating point” denoted by v*.  The throttle 
angle corresponding to a steady state speed v* is θ*, i.e. 
 

21
2* *  0dk C Av          (3)    

 

at θ*and v*, i.e. the thrust force balances the drag force, so  v  =  0 
 
 

Define  v and  θ  as small changes in velocity and throttle angle, 
 
   v = v*  + v         v = v - v*    (4) 
   θ = θ* +  θ       θ = θ - θ* 
   
For example, if   v* = 60 mph = constant, and at time t1, v(t1) = 72 mph, then 
v(t1) = 12 mph.  This is simply a change in independent variable from v(t) 
to v(t).   
 
Expand Fe and Fd in Taylor series about θ* and v* and drop nonlinear terms 
since these are second order, that is small,  
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Substitution of the forces into the EOM (1) gives 

   vMFFF eqdeX   
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and rearranging 
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Since  v*, θ* define the steady state operating point, the first term in curly 
brackets { } is zero (see Eq. 3).  The resulting linearized equation of motion 
is: 

   k C Avd    -    =  Meq*     (7) 

 
where  k  is the slope of the curve of   Fe vs  θ at the operating point θ*, and  
(ρ Cd A v*) is the slope of the curve of   Fd   vs  v  at the operating point  v*, 
i.e.,   
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  (8) 

 
Hence, Eq. (7) becomes  
 

eq dM v k v k       (9) 

 
Note that if using some other curve fit other than a Taylor series about a 
steady state operating point, the term in curly brackets would not be zero (it 
would be a constant).  By using a Taylor series about a steady state operating 
point, the method eliminates this constant forcing term in the linearized 
ODE. 
 

Use engineering judgement to select the appropriate 
operating point for each problem (situation) 


