APPENDIX C. DERIVATION OF EQUATIONS OF
MOTION FOR MULTIPLE DEGREE OF FREEDOM
SYSTEM

Consider a linear mechanical system with n-independent degrees of

T
freedom. Let X={x1m, Xg 1%, 1 x,,m} be the independent coordinates
describing the motion of the system about the equilibrium position, and

-
with F= {Flm 15,015, F()} as the set of external forces applied at
each degree of freedom.

The kinetic (7) and potential energy (») of the system are written as,

_ 1T . _ 1T
I'=sXMX, V=X KX 1)
where x={ i,%.....5,} is the vector of velocities. M={m, }, _,,and

K={k, ;}; -1, are the (n x n) matrices of generalized inertia (mass) and

stiffness coefficients, respectively. The elements of these matrices are
constant coefficients.

Note that energies are scalar functions, i.e. 7=T" and V’=V" . Eq. (1)

above is correct only if the stiffness and mass matrices are symmetric.
That is, from

V= ix'Kx

— V' Z%(XTKX)T Z%(KX)T(XT)TZXTKTX (22)

Above (A" B)'=B'A, where A and B are general matrices.
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V—VT=O:%XTKX—XTKTx=%xT(K—KT)x

S>K=K'
similarly, M=M"

Thus (2b)

The viscous power dissipation and viscous dissipated energy are of
the form

P,=X'DX — E,=[Pdt
) 3)

where D={D, .}, ., is a matrix of constant damping coefficients. Above,

F5 = DX is a vector of viscous damping (reaction) forces

The work performed by external forces is,

=[x’ F, @)

Note that dx'F =dx,F;, +dx,F, +.....dx F, = dW is the differential of work
exerted by the external forces on the system.

The principle of conservation of mechanical energy (PCME)
establishes that for any instant of time,

I'+V+E =W+ 1,+V,

()

—1vw TM > — 1y T _ :
where Tp =3 Xo M Xy, Vy=3X, KXy | with {Xo’xo}asthe
Initial state of the system.

Now, take the time derivative of Eg. (5) — the PCME- to obtain
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d(T+V+E -W)=0

dt (6)

Using the definitions in Eq. (1)

AT _d (\ r
o = M)

=IXMK +EXTM K =1K"MX +1(XMX)'
:lXTMx+;(Mx)T(XT)T:

="M X +1X "M% (7)
1% (M+MT)X «~M=MT;

dT
MX
—r =X (M%)
where X = { X, Xy Xy aenenes x}T Is a vector of accelerations; and
dV d (1 TKX)
dt dt
. . . . T
=iX"KX +ix"Kx=i%x"Kx +%(XTKX)
. AT T
=1x'Kx +1(KXx) (XT) =
=1X"Kx +i%x"K"x
(8)
=1x"(K+KT)%  «K=KT;
d—V:XTKx
dt
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dE, d | :
inaddition, ~g; =g ) £t = £, =X (DX) (©)

dx’

dw _d | ot
o (10)

and dt

p F=

Substitution of Egs. (8-10) into Eqg. (7) gives
X" (M%) +X" (Kx ) +X" (DX )-X" (F ) =0
Or

' (Mx+Kx+Dx-F )=0

And since for most times X#0 . then

MX+Kx+Dx—F=0

The difficulty in using this approach is to devise a simple method to
establish ALL the elements in the system parameter matrices M, K, D.
The use of the Lagrangian Method is particularly useful in this case.

(11)
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Derivation of equations of motion using Lagrange’s
approach’

Consider a mechanical system with n-independent degrees of freedom,
and Where{xi,xi }i=1 , are the generalized coordinates and velocities for

.....

each degree of freedom in the system. The work performed on the
system by external generalized forces is

WZ,[(F1 dx, +F,dx,+ F;dx,+...F, dx, )ZJAiF, dx; (12)
i=1

Here the term generalized denotes that the product of a generalized
displacement, say x; , and the generalized effort, F;, produces units of
work [N.m]. For example if x,=6 denotes an angular coordinate, then
the effort ', must correspond to a moment or torque.

Let the total kinetic energy and potential energy of the n-dof
mechanical system be given by the generic expressions

(13)

The kinetic energy above is a function of the generalized displacements,
velocities and time, while the potential energy in a conservative
system is only a function of the generalized displacements and time.

The viscous dissipated power is a general function of the velocities,
.e.,

! Sources Meirovitch, L., Analytical Methods in Vibrations, pp. 30-50, and San Andrés, L., Vibrations Class Notes, 1996.
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Pv :Pv{xlx2x3

....... X, } (14)

The n-equations of motion for the system are derived using the
Lagrangian approach?, i.e.,

o(oT or ov (0P
—l = |- t ot
dt\ 0x, ox, Ox, °O0x,

= E i=1,2,...n (15)

Once you have performed the derivatives above for each coordinate,
i=1,...n, the resulting equations are of the form:

m]] x1+....+m1n xn +d11x1 +..... +d1nxn+k11 X] +....+k1n anF]

my X, +..+m,, X, +d,; X, +....+d, X, +k, x,+...4k,, x,=F,

(16)
m, X;+..+m, x, +d, x; +...+d,, x, +k,,x,+..+k, x, =F,
or written in matrix form as
MX+ KX+ Dx=F s

2 A later lecture will demonstrate the derivation of the Lagrangian Equations
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