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EXAMPLE PROBLEM for MEEN 363 – SPRING 06  
Objectives: 
a) To derive EOMS of a 2DOF system 
b) To understand concept of static equilibrium 
c) To learn the correct usage of physical units (US system)  
d) To calculate natural frequencies and natural mode shapes 
e) To predict the response of a system using modal coordinates, case: constant amplitude load 
f) To determine the final position of the system once transient effects have disappeared 
g) To learn how to combine mathematical statements with explanatory sentences. 
 
Car 1 must pull a heavy block stuck in a hollow and deep mining shaft.  The front end of car 1 is tied to a 
big tree with a cable of stiffness K1.  A flexible cable of stiffness K2 is connected to an inextensible cable 
that in turn, with a pulley system, is connected to the  block1.  The motorcar engine will drive the car 
upward with force F1(t) known. The damping 
coefficient (C) represents the viscous drag 
between the block and shaft walls. In the figure, 
Y=X=Z=0 denote the static equilibrium position 
(SEP) of the system.   
 
SEP means no motion of car and block, and 
engine turned off, F1=0. Thus, at the SEP springs 
K1 and K2 are already deflected. For example, 
spring   2 must support 50% of the block weight 
(W2) as easily seen from the cable & pulley 
constraint. Next, spring 1 must also develop a 
static force to hold 50% of W2 plus a fraction of 
the car 1 weight, i.e. W1 sin(20°).  This 
knowledge is BASIC, does not require of 
elaborate thinking or deriving lengthy equations. 
 
a) Identify the kinematical constraint relating 

motions Y and X.  The cable does NOT slip 
on the pulley.   

b) Draw free body diagrams for the car and 
block, label all forces and show their constitutive relation in terms of the motion coordinates, if 
applicable.  

c) Determine the static deflection (δs) of each spring element  
d) Derive EOMs for the car and block motion in terms of coordinates Z & X. 
 
For items  (c)  & (e-f-g) use  

K2 105 lb
in
⋅:= W2 5000 lb⋅:= C 1500 lb⋅

sec
in

⋅:=

K1 105 lb
in
⋅:= W1 1000 lb⋅:= θ 20

π

180
⋅:=

 
 
e) Find the system (undamped) natural frequencies and mode shapes, i.e. solve for the system 

eigenvalues and eigenvectors. 
f) For F1(t)=1000 lbf find the (undamped) response of the system using modal analysis 
g) Find the final or terminal position of the system, i.e. as t →∞,  what are Z and X? 
 

                                                           
1 In reality, stiffness K2 represents the stiffness of the cable wrapped on the pulley. Rarely elements are 
“rigid” 
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FREE BODY diagrams and kinematic constraints 
 
Definitions: 
Fs1 = force from elastic cable connected to tree 
Fs2 = force from elastic cable connecting car to cable on pulley = T = Tension on cable  
FD = viscous drag force  
F1 = engine force 
 
δs1 , δs2 are static deflections for spring 1 and 2, respectively 
 
 

Assumed state of motion to draw FBD
Z > Y, X>0

Kinematic constraint – inextensible cable
2 T δX = T δY, hence 

2 δX = δY
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T K2 Z Y−( )⋅ K2 δs2⋅+⎡⎣ ⎤⎦= Fs2= (3)

.

Car of mass M1: From the FBD diagram, with Z>Y=2X, apply Newton's 2nd law to obtain:

M1 2t
Zd

d

2
⋅ W1− sin θ( )⋅ F1 t( )+ Fs1+ T−= (4) where F1(t) is engine force

Fs1 K1 δs1 Z−( )⋅= (5) is the force from cable 1 connected to tree

(c) Before proceeding - find the springs' static deflection. For statics, assume NO motion, hence no engine force

and since Z=Y=X=0 means static equilibrium position:

and equations (1) and (4) reduce to T
W2
2

:= and T K2 δs2⋅= Fs2=

δs2
W2

2 K2⋅
:=

δs2 0.025 in=

Fs1 T W1 sin θ( )⋅+= and Fs1 W1 sin θ( )⋅
W2
2

+:= (6)
δs1

Fs1
K1

:=
δs1 0.028 in=

Note that the spring attached to the fixed point (a tree for example) must hold 50% of  block2 weight and a fraction of 
the car weight.

It should be easy for you to derive the results in Eq. (6) w/o the aid of the complete equations (1) and (4), i.e. by 
simple statics.

MEEN 363 EXAMPLE 2DOF- ANALYSIS:  car pulling a block
ORIGIN 1:=

K2 105 lb
in
⋅:= W2 5000 lb⋅:= C 1500 lb⋅

sec
in

⋅:=
M2

W2
g

:= M2 155.405
lb sec2

ft
= masses need be 

expressed in 
lb.sec^2/ft for 
consistency in EOM

K1 105 lb
in
⋅:= W1 1000 lb⋅:= θ 20

π

180
⋅:=

M1
W1
g

:= M1 31.081
lb sec2

ft
=

(a) kinematic constraint - inextensible cable

The cable length is constant, thus lc lc 2 X⋅+ Y−= and the kinematic constraint follows as Y 2 X⋅=

(b) Derive EOMS: Assume a state of motion with Z-Y>0, X>0  motorcar pulls block

Block of mass M2: From the FBD diagram, with X>0, and apply Newton's 2nd law to obtain:

is the viscous drag force
M2 2t

Xd

d

2
⋅ W2− FDamper− 2 T⋅+= (1) where FDamper C

t
Xd

d
⋅= (2)

T is the cable tension = Force from spring 2. 
(Z-Y)>0, and δs2 is the static deflection for spring 2



Note that mass & stiffness matrices are symmetric.The damping matrix is NOT

(9)
M1

0

0

M2

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2t

Z

X
⎛
⎜
⎝

⎞
⎟
⎠

d

d

2
⋅

K1 K2+

2− K2⋅

2− K2

4 K2⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

Z

X
⎛
⎜
⎝

⎞
⎟
⎠

⋅+
0

0

0

C
⎛
⎜
⎝

⎞
⎟
⎠ t

Z

X
⎛
⎜
⎝

⎞
⎟
⎠

d
d
⋅+

F1 t( )

0

⎛
⎜
⎝

⎞
⎟
⎠

=

In matrix form, the EOMs are:

Eqns. (7) and (8) are the desired equations of motion for the cart and block. Please recall that motions are from the 
static equilibrium position

(8)M1 2t
Zd

d

2
⋅ K1 K2+( ) Z⋅+ 2 K2⋅ X⋅− F1 t( )=BLOCK of MASS M2

M1 2t
Zd

d

2
⋅ F1 t( ) K1 Z⋅− K2 Z 2 X⋅−( )⋅−=

cancelling terms, i.e. applying statics

K1 δs1⋅ W1 sin θ( )⋅
W2
2

+
⎛
⎜
⎝

⎞
⎟
⎠

= Fs1=
from statics:

M1 2t
Zd

d

2
⋅ W1− sin θ( )⋅ F1 t( )+ K1 δs1⋅+ K1 Z⋅− K2 Z 2 X⋅−( )⋅−

W2
2

−=

M1 2t
Zd

d

2
⋅ W1− sin θ( )⋅ F1 t( )+ K1 δs1 Z−( )⋅+ K2 Z 2 X⋅−( )⋅ K2 δs2⋅+⎡⎣ ⎤⎦−=

Sub Y=2X

M1 2t
Zd

d

2
⋅ W1− sin θ( )⋅ F1 t( )+ K1 δs1 Z−( )⋅+ K2 Z Y−( )⋅ K2 δs2⋅+⎡⎣ ⎤⎦−=

(5)M1 2t
Zd

d

2
⋅ W1− sin θ( )⋅ F1 t( )+ Fs1+ T−=

substitute Fs1 and T into (5)

(7)M2 2t
Xd

d

2
⋅ C

t
Xd

d
⋅+ 4 K2⋅ X⋅+ 2 K2⋅ Z⋅− 0=BLOCK of MASS M1:

M2 2t
Xd

d

2
⋅ C−

t
Xd

d
⋅ 2 K2 Z 2 X⋅−( )⋅⎡⎣ ⎤⎦⋅+=

2 K2⋅ δs2⋅ W2=and sinceM2 2t
Xd

d

2
⋅ W2− C

t
Xd

d
⋅− 2 K2 Z 2 X⋅−( ) K2 δs2⋅+⎡⎣ ⎤⎦⋅⎡⎣ ⎤⎦⋅+=

(1)M2 2t
Xd

d

2
⋅ W2− FDamper− 2 T⋅+=

substitute T and Fdamper into (1) to obtain

(d) Derive EOMs for the 2-DOF system: Back to DYNAMICS



NOTE That the coefficients a,b,c have consistent physical units. That is, since the physical unit for λ is (1/sec^2),
the physical units of the determinant are (lbf/ft)^2

c 5.76 1012
×

lb2

ft2
=b 5.222− 108

×
lb2 sec2

ft2
=a 4.83 103

×
lb2 sec4

ft2
=

c K1 K2+( ) 4⋅ K2⋅ 4 K2
2

⋅−:=

b K1 K2+( ) M2⋅ 4 K2⋅ M1⋅+⎡⎣ ⎤⎦−:=

IT IS MOST IMPORTANT HERE TO 
USE THE RIGHT PHYSICAL UNITS 
FOR MASS. 

a M1 M2⋅:=with:0 a λ
2

⋅ b λ⋅+ c+( )=Let:

0 λ
2

M1⋅ M2⋅ λ K1 K2+( ) M2⋅ 4 K2⋅ M1⋅+⎡⎣ ⎤⎦⋅− K1 K2+( ) 4⋅ K2+ 4 K2
2

⋅−=

and expanding the products in the eqn. aboveλ ω
2

=Let

Δ ω( ) K1 K2+ M1 ω
2

⋅−⎛
⎝

⎞
⎠ 4 K2⋅ M2 ω

2
⋅−⎛

⎝
⎞
⎠⋅ 4 K2

2
⋅−= 0=

has a non-trivial solution if the determinant of the system of equations equals zero, i.e. if

K1 K2+ M1 ω
2

⋅−

2− K2⋅

2− K2

4 K2⋅ M2 ω
2

⋅−

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

a1

a2

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅
0

0
⎛
⎜
⎝
⎞
⎟
⎠

=
(12)The homogeneous system of eqns,

K1 K2+ M1 ω
2

⋅−

2− K2⋅

2− K2

4 K2⋅ M2 ω
2

⋅−

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

a1

a2

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅ cos ω t⋅( )⋅
0

0
⎛
⎜
⎝
⎞
⎟
⎠

=
cancel cos(ωt) since <> 0
for all times

Substitution of (11) into (10) gives

(11)X a2 cos ω t⋅( )⋅=Z a1 cos ω t⋅( )⋅=Let 

(10)

M1

0

0

M2

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2t

Z

X
⎛
⎜
⎝

⎞
⎟
⎠

d

d

2
⋅

K1 K2+

2− K2⋅

2− K2

4 K2⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

Z

X
⎛
⎜
⎝

⎞
⎟
⎠

⋅+
0

0
⎛
⎜
⎝
⎞
⎟
⎠

=

Disregading damping, and letting the force F1=0, eq. (9) becomes

(d) Find natural frequencies and natural mode shapes of UNDAMPED system.



ω2 a2

K1 K2+ M1 ω2( )2⋅−⎡
⎣

⎤
⎦ a1⋅

2 K2⋅
:=

φ2 a:=
φ2

1

0.239−
⎛
⎜
⎝

⎞
⎟
⎠

= is the 2nd eigenvector (natural mode)

DOF1 (Z) and DOF2 (X) move OUT 
of phase, with |Z|>|X|

CHECK: computational software allows quick calculation of eigenvalues and eigenvectors

Define as the mass and stiffness matrices
M

M1

0

0

M2

⎛⎜
⎜⎝

⎞⎟
⎟⎠

:= K
K1 K2+

2− K2⋅

2− K2

4 K2⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

:=

Let
MinvK M 1− K⋅:=

λC eigenvals MinvK( )( ):= found from highest to lowest
λC

9.564 104
×

1.247 104
×

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

sec2
=

φC1
eigenvec MinvK λ1,( ):=

φC1

0.766

0.643
⎛
⎜
⎝

⎞
⎟
⎠

=

φC2
eigenvec MinvK λ2,( ):=

φC2

0.973

0.232−
⎛
⎜
⎝

⎞
⎟
⎠

=

The roots (eigenvalues) of the characteristic equation are

λ1
b− b2 4 a⋅ c⋅−( )0.5
−

2 a⋅
:= λ2

b− b2 4 a⋅ c⋅−( )0.5
+

2 a⋅
:=

λ
1.247 104

×

9.564 104
×

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

1

sec2
=

and the natural frequencies are:

ω1 λ1( )0.5
:= ω2 λ2( )0.5

:=
ω

111.666

309.25
⎛
⎜
⎝

⎞
⎟
⎠

rad
sec

=

Now, find the eigenvectors

The two equations in (12) are linearly dependent. Thus, one cannot solve for a1 and a2. Set a1 1:=

arbitrarily; and from the first equation

for ω1 a2

K1 K2+ M1 ω1( )2⋅−⎡
⎣

⎤
⎦ a1⋅

2 K2⋅
:=

φ1 a:=
φ1

1

0.839
⎛
⎜
⎝

⎞
⎟
⎠

= is the first eigenvector (natural mode)

DOF1 (Z) and DOF2 (X) move in 
phase, with Z>X

for 



f.3 define modal masses and stiffnesses:

Mm1
MM1 1,

:= Mm2
MM2 2,

:=

Km1
KM1 1,

:= Km2
KM2 2,

:=

check Km1

Mm1

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

0.5

111.666
rad
sec

=
Km2

Mm2

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

0.5

309.25
rad
sec

= OK

f.3 define initial conditions: displacements and velocities in modal coordinates

At time t=0s, the system is at its static equilibrium position, hence the initial conditions are
null displacements and null velocities. Of course, the same applies to modal space, i.e. null initial 
displacements and velocities

Z
Xfor generality, define: Xo

0

0
⎛
⎜
⎝
⎞
⎟
⎠

ft⋅:= Vo
0

0
⎛
⎜
⎝
⎞
⎟
⎠

ft
sec
⋅:=

Calculate inverse of A matrix
Ainv A 1−

:= A
1

0.839

1

0.239−
⎛
⎜
⎝

⎞
⎟
⎠

=

These eigenvectors are identical to the ones found analytically, since 

That is, the ratio of the second 
element to first element is fixed. The 
actual values are not important

φC1
⎛
⎝

⎞
⎠2

φC1
⎛
⎝

⎞
⎠1

0.839= and

φC2
⎛
⎝

⎞
⎠2

φC2
⎛
⎝

⎞
⎠1

0.239−=

(f) Response in MODAL coordinates: Use the transformation q A x⋅=

f.1 Make modal matrix using eigenvectors A augment φ1 φ2,( ):=
A

1

0.839

1

0.239−
⎛
⎜
⎝

⎞
⎟
⎠

=

f.2 check orthogonality property of natural modes

MM AT M⋅ A⋅:= KM AT K⋅ A⋅:=

MM
140.348

4.041− 10 14−
×

3.944− 10 14−
×

39.922

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

lb sec2

ft
= KM

1.75 106
×

5.107− 10 10−
×

5.239− 10 10−
×

3.818 106
×

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

lb
ft

=

non-diagonal elements are very small= non zero b/c of roundoff with computer



Note that there is no damping or attenuation of motions.
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q1 t( )

q2 t( )

t

arbitrary scale for plotω
111.666

309.25
⎛
⎜
⎝

⎞
⎟
⎠

rad
sec

=
Tlarge

2 π⋅

ω1
6⋅:=

and q2 t( )
Q2

Km2

1 cos ω2 t⋅( )−( )⋅:=q1 t( )
Q1

Km1

1 cos ω1 t⋅( )−( )⋅:=

and since the initial conditions are null

i 1= 2,Mmi 2t
qi

d

d

2⎛⎜
⎜⎝

⎞⎟
⎟⎠

Kmi
qi⋅+ Qi=Using knowledge to solve

f.5 modal response

Q
1 103
×

1 103
×

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

lb=
Both natural modes will be excited

Q AT F⋅:=

Physical force vector F
Fo

0 lb⋅

⎛
⎜
⎝

⎞
⎟
⎠

:=
Fo 1000 lb⋅:=f.4 Define modal force

qo_dot
0

0
⎛
⎜
⎝
⎞
⎟
⎠

ft
sec

=qo
0

0
⎛
⎜
⎝
⎞
⎟
⎠

ft=

qo
0

0
⎛
⎜
⎝
⎞
⎟
⎠

ft=
qo_dot Ainv Vo⋅:=qo Ainv Xo⋅:=

and in modal coordinates



Note that the graph of undamped periodic motions Z(t) and X(t) shows oscillatory motions abut these terminal or 
end values.

Zend
Xend

2=
Xmean 4.168 10 4−

× ft=

Zmean 8.333 10 4−
× ft=

Xend 4.167 10 4−
× ft=Zend 8.333 10 4−

× ft=

Zend
Fo 4⋅ K2⋅

Δ
:=

Xend
2 K2⋅ Fo⋅

Δ
:=

Δ K1 K2+( ) 4⋅ K2⋅⎡⎣ ⎤⎦ 4 K2
2

⋅−:=

And solving this system of equations using Cramer's rule

K1 K2+

2− K2⋅

2− K2

4 K2⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

Zend

Xend

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅
Fo

0

⎛
⎜
⎝

⎞
⎟
⎠

=

2t

Z

X
⎛
⎜
⎝

⎞
⎟
⎠

d

d

2 0

0
⎛
⎜
⎝
⎞
⎟
⎠

=
In the limit as t approaches very, very large values

(f) FINAL - terminal condition:
With the MATh tools you have, We can NOT solve the problem fully since the damping matrix is NOT proportional. 
However, damping does exist and aventually the system will achieve a new steady state condition. Since the applied 
force is a constant,

Complicated response with two natural frequencies being excited. However, roughly Z ~ 2 X (as kinematics requires)

will be used below

XmeanZmean

Xmean 0.839
Q1

Km1

0.239
Q2

Km2

−:=

Zmean
Q1

Km1

Q2

Km2

+:=

The mean value of Z and X 
are:
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time (sec)
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sp

la
ce

m
en

ts
 (f

t)

Z t( )

X t( )

t

X t( ) 0.839 q1 t( )⋅ 0.239 q2 t( )⋅−:=

Z t( ) q1 t( ) q2 t( )+:=

A
1

0.839

1

0.239−
⎛
⎜
⎝

⎞
⎟
⎠

=
The response in physical coordinates, z and x, equals (from transformation x=Aq)




