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EXAMPLE #2 for MEEN 363 – SPRING 06  
Objectives: 
a) To derive EOMS of a 2DOF system 
b) To understand concept of static equilibrium 
c) To learn the correct usage of physical units (US system)  
d) To calculate natural frequencies and natural mode shapes – RIGID BODY MODE 
e) To predict the response of a system using modal coordinates. Case: constant amplitude load. Explain what a 
rigid body means. 
f) To learn how to combine mathematical statements with explanatory sentences. 
 

Car 1 must pull a heavy block stuck in a hollow and deep mining 
shaft.  The front end of car 1 is tied to a big tree with a cable.  A 
flexible cable of stiffness K2 is connected to an inextensible cable 
that in turn, with a pulley system, is connected to the  block.  The 
damping coefficient (C) represents the viscous drag between the 
block and shaft walls. In the figure, Y=X=Z=0 denote the static 
equilibrium position (SEP) of the system.   
 
SEP means no motion of car and block. Thus, at the SEP spring 
K2 is already deflected since it must support 50% of the block 
weight (W2) as easily seen from the cable & pulley constraint. The 
top cable connected to a fixed point also holds the system with a 
force = 50% of W2 plus a fraction of the car 1 weight, i.e. 
W1sin(20°).  This knowledge is BASIC, does not require of 
elaborate thinking or deriving lengthy equations. 
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At time t=0 sec, the cable BREAKS! and both the car and block start falling. (Notice change of direction of 
coordinates X,Y,Z from prior example). Furthermore, the engine in car is off ! Oopps, forgot to set the hand 
brake! 
 
a) Identify the kinematical constraint relating motions Y and X.  The cable does NOT slip on the 

pulley.   
b) Determine the static deflection (δs) of spring element  as well as top cable force before it breaks. 
c) For t>0, after top cable breaks, draw free body diagrams for the car and block, label all forces 

and show their constitutive relation in terms of the motion coordinates, if applicable.  
d) For t>0, Derive EOMs for the car and block motion in terms of coordinates Z & X. 
e) Find the system (undamped) natural frequencies and mode shapes, i.e. solve for the system 

eigenvalues and eigenvectors. DISCUSS Significance of rigid body modes. 
f) Find the (undamped) response of the system using modal analysis. Graph responses (modal and 

physical) versus time. 
g) Find the spring-2 force and graph it vs. time. What knowledge can be gained from this force? 
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FREE BODY diagrams and kinematic constraints 
 
Definitions: 
Fcable = force from elastic cable connected to fixed point (valid for t<0 only) 
Fs2 = force from elastic cable connecting car to cable on pulley = T = Tension on cable  
FD = viscous drag force  
 
δs2 static deflection for spring 2 
 
FREE BODY DIAGRAMS 
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Block of mass M2: From the FBD diagram, with X>0, and apply Newton's 2nd law to obtain:

M2 2t
Xd

d

2
⋅ W2 FDamper 2− T⋅−= (1) where FDamper C

t
Xd

d
⋅= (2) is the viscous drag force

T is the cable tension = Force from spring 2. 
(Y-Z)>0, and δs2 is the static deflection for spring 2T K2 Y Z−( )⋅ K2 δs2⋅+⎡⎣ ⎤⎦= Fs2= (3)

Car of mass M1: From the FBD diagram, with Y>Z, Y=2X, apply Newton's 2nd law to obtain:

M1 2t
Zd

d

2
⋅ W1 sin θ( )⋅ T+ Fcable−= (4) But Fcable 0 lb⋅:= since it broke! 

substitute T and Fdamper into (1) to obtain (1)

M2 2t
Xd

d

2
⋅ W2 C

t
Xd

d
⋅− 2 K2 Y Z−( )⋅ K2 δs2⋅+⎡⎣ ⎤⎦⋅−=

and since 2 K2⋅ δs2⋅ W2=

and Y 2 X⋅=M2 2t
Xd

d

2
⋅ W2 C−

t
Xd

d
⋅ 2 K2 Z 2 X⋅−( )⋅⎡⎣ ⎤⎦⋅+

2 W2⋅

2
−=

M2 2t
Xd

d

2
⋅ C

t
Xd

d
⋅+ 4 K2⋅ X⋅+ 2 K2⋅ Z⋅− 0=BLOCK of MASS M2: (5)

MEEN 363 EXAMPLE 2DOF- ANALYSIS:  block pulls car - RIGID BODY MOTION ORIGIN 1:=

K2 105 lb
in
⋅:= W2 5000 lb⋅:= C 1500 lb⋅

sec
in

⋅:=
M2

W2
g

:= M2 155.405
lb sec2

ft
= masses need be 

expressed in 
lb.sec^2/ft for 
consistency in EOM

W1 1000 lb⋅:= θ 20
π

180
⋅:=

M1
W1
g

:= M1 31.081
lb sec2

ft
=

(a) kinematic constraint - inextensible cable

The cable length is constant, thus lc lc 2 X⋅+ Y−= and the kinematic constraint follows as Y 2 X⋅=

(b) Find the top cable "holding force" and spring-2 static deflection. For statics, assume NO motion

For static equilibrium:
force from spring2 = tension T

W2
2

:= and T K2 δs2⋅= Fs2=
δs2

W2
2 K2⋅

:=

δs2 0.025 in=
Cable attached to fiex point holds fraction of car weight and also balances tension

and Fcable W1 sin θ( )⋅
W2
2

+:= Fcable 2.842 103
× lb=

(c) Derive EOMS: Cable breaks, for t>0 Assume a state of motion with Y-Z>0, X>0  block pulls car 
(engine off)



X a2 cos ω t⋅( )⋅= (9)

Substitution of (9) into (8) renders the homogeneous system of eqns

(10)K2 M1 ω
2

⋅−

2− K2⋅

2− K2

4 K2⋅ M2 ω
2

⋅−

⎛⎜
⎜
⎜⎝

⎞⎟
⎟
⎟⎠

a1

a2

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅
0

0
⎛
⎜
⎝
⎞
⎟
⎠

=

eqn (10) has a non-trivial solution if the determinant of the system of equations equals zero, i.e.:

Δ ω( ) K2 M1 ω
2

⋅−⎛
⎝

⎞
⎠ 4 K2⋅ M2 ω

2
⋅−⎛

⎝
⎞
⎠⋅ 4 K2

2
⋅−= 0= Let λ ω

2
=

and expanding the products in the eqn. above 0 λ
2

M1⋅ M2⋅ λ K2 M2⋅ 4 K2⋅ M1⋅+( )⋅− K2 4⋅ K2+ 4 K2
2

⋅−=

Let: 0 a λ
2

⋅ b λ⋅+ c+( )= with: a M1 M2⋅:=

b K2 M2⋅ 4 K2⋅ M1⋅+( )−:= c K2 4⋅ K2⋅ 4 K2
2

⋅−:= Note c=0 !!!

substitute and T into (4)

M1 2t
Zd

d

2
⋅ W1 sin θ( )⋅ K2 Y Z−( )⋅

W2
2

+
⎡
⎢
⎣

⎤
⎥
⎦

+= Sub Y=2X

M1 2t
Zd

d

2
⋅ W1 sin θ( )⋅ K2 2 X⋅ Z−( )⋅

W2
2

+
⎡
⎢
⎣

⎤
⎥
⎦

+=

CAR of MASS M1
M1 2t

Zd

d

2
⋅ K2 Z⋅+ 2 K2⋅ X⋅− W1 sin θ( )⋅

W2
2

+= (6)

Eqns. (5) and (6) are the desired equations of motion for the car and block. Please recall that motions are from the 
static equilibrium position

In matrix form, the EOMs are:

M1

0

0

M2

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2t

Z

X
⎛
⎜
⎝

⎞
⎟
⎠

d

d

2
⋅

K2

2− K2⋅

2− K2

4 K2⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

Z

X
⎛
⎜
⎝

⎞
⎟
⎠

⋅+
0

0

0

C
⎛
⎜
⎝

⎞
⎟
⎠ t

Z

X
⎛
⎜
⎝

⎞
⎟
⎠

d
d
⋅+

W1 sin θ( )⋅
W2
2

+

0

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

= (7)

Notes
* for t>0, weights of block and (fraction of ) car PULL the system downwards!
* mass & stiffness matrices are symmetric.The damping matrix is NOT
* Stiffness matrix is singular, i.e. its determinant equals zero, A RIGID BODY MODE EXPECTED

Δ K( ) 4 K2
2

⋅ 4 K2
2

⋅−⎛
⎝

⎞
⎠= 0=

(d) Find natural frequencies and natural mode shapes of UNDAMPED system.

Disregading damping, and letting the force RHS=0, eq. (7) becomes

M1

0

0

M2

⎛⎜
⎜⎝

⎞⎟
⎟⎠

2t

Z

X
⎛
⎜
⎝

⎞
⎟
⎠

d

d

2
⋅

K2

2− K2⋅

2− K2

4 K2⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

Z

X
⎛
⎜
⎝

⎞
⎟
⎠

⋅+
0

0
⎛
⎜
⎝
⎞
⎟
⎠

= (8)

Let Z a1 cos ω t⋅( )⋅=



for ω2
a2

K2 M1 ω2( )2⋅−⎡
⎣

⎤
⎦ a1⋅

2 K2⋅
:=

φ2 a:=

φ2
1

0.4−
⎛
⎜
⎝

⎞
⎟
⎠

= is the 2nd eigenvector (natural mode) (13)

DOF1 (Z) and DOF2 (X) move 180 
deg OUT of phase, with |Z|>|X|

(e) Response in MODAL coordinates:
Use the MODAL transformation x A q⋅=

Build the physical matrices:

M
M1

0

0

M2

⎛⎜
⎜⎝

⎞⎟
⎟⎠

:= K
K2

2− K2⋅

2− K2

4 K2⋅

⎛⎜
⎜⎝

⎞⎟
⎟⎠

:= Disregard DAMPING

Make modal matrix using eigenvectors A augment φ1 φ2,( ):=
A

1

0.5

1

0.4−
⎛
⎜
⎝

⎞
⎟
⎠

= (14)

check orthogonality property of natural modes

MM AT M⋅ A⋅:= KM AT K⋅ A⋅:=

non-diagonal elements are 
very small= non zero b/c of 
roundoff with computer

MM
69.932

3.553− 10 15−
×

5.279− 10 15−
×

55.946

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

lb sec2

ft
= KM

0

0

0

3.888 106
×

⎛
⎜
⎝

⎞
⎟
⎠

lb
ft

=

a 4.83 103
×

lb2 sec4

ft2
= b 3.357− 108

×
lb2 sec2

ft2
= c 0

lb2

ft2
=

NOTE That the coefficients a,b,c have consistent physical units. That is, since the physical unit for λ is (1/sec^2),
the physical units of the determinant are (lbf/ft)^2

The roots (eigenvalues) of the characteristic equation are

λ1
b− b2 4 a⋅ c⋅−( )0.5
−

2 a⋅
:= λ2

b− b2 4 a⋅ c⋅−( )0.5
+

2 a⋅
:=

λ
0

6.95 104
×

⎛
⎜
⎝

⎞
⎟
⎠

1

sec2
=

and the natural frequencies are:

ω1 λ1( )0.5
:= ω2 λ2( )0.5

:=
ω

0

263.621
⎛
⎜
⎝

⎞
⎟
⎠

rad
sec

= (11)

Now, find the eigenvectors

The two equations in (10) are linearly dependent. Thus, one cannot solve for a1 and a2. Set a1 1:=

arbitrarily; and from the first equation

for ω1

a2

K2 M1 ω1( )2⋅−⎡
⎣

⎤
⎦ a1⋅

2 K2⋅
:=

φ1 a:=
φ1

1

0.5
⎛
⎜
⎝

⎞
⎟
⎠

= is the first eigenvector (natural mode) (12)

DOF1 (Z) and DOF2 (X) move in phase, with 
Z=Y, X=0.5 Y
(recall kinematic constraint)
RIGID BODY MOTION



Define modal force
F

W1 sin θ( )⋅
W2
2

+

0

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

:= Physical force vector 
F 2.842 103

×

0

⎛
⎜
⎝

⎞
⎟
⎠

lb=

Q AT F⋅:=

Both natural modes will be excited
Q

2.842 103
×

2.842 103
×

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

lb=
(16)

Find modal responses

first mode: Rigid Body Mode Mm1 2t
q1

d

d

2⎛⎜
⎜⎝

⎞⎟
⎟⎠

Q1= since Km1
0

lb
ft

= (17a)

second mode: vibratory mode
Mm2 2t

q2
d

d

2⎛⎜
⎜⎝

⎞⎟
⎟⎠

Km2
q2⋅+ Q2= (17b)

and since the initial conditions are null - using cheat sheet:

q1 t( )
Q1

Mm1

t2

2
⋅:= q2 t( )

Q2

Km2

1 cos ω2 t⋅( )−( )⋅:= 18)and

GRAPH modal responses Tlarge
2 π⋅

ω2
3⋅:= arbitrary scale for plot

define modal masses and stiffnesses:
Mm1

MM1 1,
:= Mm2

MM2 2,
:=

Km1
KM1 1,

:= Km2
KM2 2,

:=
ω

0

263.621
⎛
⎜
⎝

⎞
⎟
⎠

rad
sec

=

check Km1

Mm1

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

0.5

0
rad
sec

=
Km2

Mm2

⎛
⎜
⎜
⎝

⎞
⎟
⎟
⎠

0.5

263.621
rad
sec

= OK

define initial conditions: displacements and velocities in modal coordinates

At time t=0s, the system is at its static equilibrium position, hence the initial conditions are null displacements and 
null velocities. Of course, the same applies to modal space, i.e. null initial displacements and velocities

Z
Xfor generality, define: Xo

0

0
⎛
⎜
⎝
⎞
⎟
⎠

ft⋅:= Vo
0

0
⎛
⎜
⎝
⎞
⎟
⎠

ft
sec
⋅:=

Calculate inverse of A matrix
Ainv A 1−

:= A
1

0.5

1

0.4−
⎛
⎜
⎝

⎞
⎟
⎠

=

and in modal coordinates
qo Ainv Xo⋅:= qo_dot Ainv Vo⋅:=

qo
0

0
⎛
⎜
⎝
⎞
⎟
⎠

ft= qo_dot
0

0
⎛
⎜
⎝
⎞
⎟
⎠

ft
sec

= (15) as expected - Do not perform this step unless Initial conditions 
are different from null



which clearly shows the oscillatory 
response
of the second mode.

T2 0.024 sec=

0 0.024 0.048 0.072
0

0.001

0.002

0.003

Z- relative
time (sec)

di
sp

la
ce

m
en

ts
 (f

t)

Zrel t( )

t

Zrel t( ) Z t( ) 2 X t( )⋅−:=Let's graph the relative motion Z-Y

T2
2 π⋅( )
ω2

:=One question remains: Where is the second mode? i.e oscillatory behavior with period equal to

Motion shows car (Z) and block (X) 
falling by the pull of gravity, i.e. 
their weights

Note that for t>>0, Z=Y= 2X

X Tlarge( ) 0.052 ft=

Z Tlarge( ) 0.104 ft=

0 0.024 0.048 0.072
0

0.075

0.15

Z- car1
X-block

time (sec)

di
sp

la
ce

m
en

ts
 (f

t)

Z t( )

X t( )

t

X t( ) 0.5 q1 t( )⋅ 0.4 q2 t( )⋅−:=
(19)

Z t( ) q1 t( ) q2 t( )+:=
A

1

0.5

1

0.4−
⎛
⎜
⎝

⎞
⎟
⎠

=

The response in physical coordinates, Z and X,  equals (from transformation x=Aq)

Modal response 2 is too small to be seen
(will discuss later)

Modal response 1 shows quadratic 
increase in time - RIGID BODY MODE

Tlarge 0.072 sec=
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0
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m
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em

en
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 (f
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So why is this important? Recall that the connecting spring force is, eqn. (3)

Fs2 t( ) K2 2 X t( )⋅ Z t( )−( )⋅
W2
2

+
⎡
⎢
⎣

⎤
⎥
⎦

:= t>0

0 0.024 0.048 0.072
1000

0

1000

2000

3000

Spring 2 force
time (sec)

Fo
rc

e 
(lb

)

Fs2 t( )

t

W2
2

2.5 103
× lb=

thus, although the dynamic 
deflections in spring2 maybe small, 
the spring force is rather large!!!

Spring2 force varies from Fs2 0 sec⋅( ) 2.5 103
× lb= to Fs2

T2
2

⎛
⎜
⎝

⎞
⎟
⎠

657.8− lb=




