MEEN FA11 – Exam 3 – Problem 3: Derive EOM for simple 1DOF system

In the figure, a towing truck (not shown) is about to pull a trailer. The trailer transports a cargo of mass M that is held in place with two elastomeric cables of stiffness \mathbf{K} , each initially stretched with force \mathbf{F}_{asy} . The cables also offer viscous damping (energy dissipation) as denoted by the damping coefficient \mathbf{C} . At t>0 s, the truck pulls the trailer with known displacement $\mathbf{Z}_{(t)} > 0$.

- a) Define a coordinate system for the motion of the cargo. Explain your choice [5]
- b) Assume a <u>state of motion</u> and draw a <u>complete</u> free body diagram for the system. [10]
- c) State an EOM for the cargo [5]. Using definitions for spring and dashpot forces in terms of selected motion coordinates, **derive** the equation governing the motion of the cargo for t>0 s. [10].
- d) The motion is better observed in terms of a motion coordinate relative to the trailer displacement \mathbb{Z}_{\cdot} , say $\mathbf{Y} = \mathbf{X}_{\text{cargo}} \mathbf{Z}_{\cdot}$. Express the equation of motion with $\mathbf{Y}(t)$ as the independent variable. [5]

Trailer: A large transport conveyance designed to be pulled by a truck or tractor

Assume: no friction between wheels and surfaces

Assumed: no friction between wheels and surfaces

DIAGRAM of forces at STATIC EQUILIBRIUM POSITION

SEP: X = Z = 0

Notes:

Towing truck not acting, Z(t)=0

Trailer motion starts at t>0

Weights and Normal forces omitted from Free Body Diagram

DEFINITIONS:

Forces:

W: weight

N: normal force

Fs: force from elastomeric cable

 F_{asy} : assembly force for springs

(extension or stretched)

Parameters:

M: mass

K: stiffness coefficient

C: viscous damping coefficient

Variables:

Z: coordinate for motion of trailer - known

X: coordinate for motion of cargo (Absolute frame of reference, with origin at state of rest of trailer and cargo)

P₁-Derive EOM – FA 11

FREE BODY DIAGRAM

forces for SYSTEM UNDERGOING MOTIONS

Assume a state of motion to draw FBD: $\mathbb{Z} > \mathbb{X} > 0$

Derive Equations of Motion:

STEP 1: State EOM for cargo

$$M \ddot{X} = F_{SR} - F_{SL}$$

(1)

DEFINITIONS:

Forces:

W: weight

N: normal force

Fs: cable reaction force (adds elastic + damping effects), L:

left, R: right side

 F_{asy} : assembly force for cables

(extension or stretched)

Parameters:

M: mass cargo

K: stiffness coefficient

C: viscous damping coefficient

Variables:

Z(t): base motion (known)

X: coordinate for motion of

cargo (Absolute frame of reference)

STEP 2: Substitute spring and dashpot forces defined in terms of motion

$$M \ddot{X} = F_{asy} + K(Z - X) + C(\dot{Z} - \dot{X}) - F_{asy} + K(Z - X) + C(\dot{Z} - \dot{X})$$
P1-Derive EOM - FA11
$$M \ddot{X} = 2K(Z - X) + 2C(\dot{Z} - \dot{X})$$
(2)

Derive Equation of Motion:

STEP 3: Cancel common terms in Eqs. (2)

and move to LHS terms that depend on motion

$$M \ddot{X} + 2K X + 2C \dot{X} = 2K Z + 2C \dot{Z}$$
 (3a)

$$M \ddot{X} + 2K X + 2C \dot{X} = 2KZ + 2C\dot{Z}$$
 (3b)

STEP 4: Since the motion of the cargo relative to the trailer is of interest, rewrite EOM (3) with a relative displacement coordinate Y(t).

Hence Eqn (2)

$$M \ddot{X} = 2K(Z - X) + 2C(\dot{Z} - \dot{X})$$

is recast as

Define a relative motion coordinate

$$Y = (X - Z)$$
, then $\ddot{Y} = (\ddot{X} - \ddot{Z})$

$$\ddot{X} = \left(\ddot{Z} + \ddot{Y}\right) \tag{5}$$

 $M\ddot{Y} + 2KY + 2C\dot{Y} = -M\ddot{Z}$

which is the desired EOM for the cargo system.

Note that using the relative motion coordinate **Y**, the EOM in the moving coordinate system shows the "appearance" of an "inertial-like" force –**M** d²**Z**dt².

Note: It is (perhaps) evident that deflection Y is easier to record (measure) than absolute X or Z

(4)

(6)

P1-Derive EOM – FA11