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Problem 3 (30 points)       
A car has been traveling for a while with speed Vo=100 km/hour. At time t=0 s, the car accelerates with ao (m/s2). The figure depicts a 
schematic view (not to scale) of an ACME air refresher (AF) hanging from the rear view mirror. The AF has mass properties equal to m 
and Ig=m rk

2, where rk is the radius of gyration; and Lg is the distance from its center of mass to the support in the rear-view mirror.  In the 
figure, θ denotes the angular displacement of the AF with respect to the vertical plane. Note that at time t=0 s, the AF is at rest, i.e. 

0, 0θ θ= = . Tasks 

a) Derive the equation of motion for the AF. Express this equation in the form ( , , , , , )g k of L r m g aθ θ=  [16] 

b) Find an expression for the angular speed ω θ=  [8] 
c) Find the maximum angular displacement θmax if the car decelerates at 20 (km/hour)/s. [6] 

Note: Energy is not conserved. Do not use PCME to derive the EOM 
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Thus, the EOM becomes where
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(b) Find angular velocity
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= where ; and write eq. [6] asUse the integral substitution

The initial conditions are: motion starts 
from rest, i.e. at θ=0, ω=0θ
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g− sin θ( )⋅ ao cos θ( )⋅−( )⋅= [7]

Integrate Eq. [7] to obtain: 
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cos θ( ) 1− z sin θ( )⋅−( )⋅= [8]

P3 - Motion with support (dec)acceleration
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⋅= ao : acceleration of pivot

If ao <0 (deceleration)
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(a) Find equation of motion
Use Moment equation for pivot (support) moving with known acceleration 
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The only moment about pivot O is due to the weight action, i.e. Mo m− g⋅ Lg⋅ sin θ( )⋅= [3]

Substitution of eqs. [2,3] into [1] gives the EOM:

Eq. [4] is identical to simple pendulum 
eqn if ao=0 (pivot not moving with 
acceleration)



For the problem data given, car initial speed vel 100 kmh⋅:=
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s
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NOT for exam: Graph the max-angle for a number of acceleration ratios (respect to g)
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when z=1, g 9.807 m s-2
=

g 35.304
kph

s
= acceleration rate( )

θmax .999( ) 89.943−= 90 degree

(c) Find maximum angular displacement

for maximum angular displacement    β=θmax, set ω=0 in eq. [8] to obtain: cos β( ) 1−( ) z sin β( )⋅− 0=

cos β( ) z sin β( )⋅− 1= [9] solve this equation with a calculator or:

square both sides of equation to obtain
cos β( )2 2 z⋅ cos β( )⋅ sin β( )⋅− z2 sin β( )2⋅+ 1=

Using the identity cos β( )2 1 sin β( )2−= above, reduces Eq. above to z2 1−( ) sin β( )2⋅ 2 z⋅ cos β( )⋅ sin β( )⋅− 0=

or sin β( ) z2 1−( ) sin β( )⋅ 2 z⋅ cos β( )⋅−⎡⎣ ⎤⎦⋅ 0= [10]

This equation has two roots, sin(β)=0,  i.e. β=0 which is a trivial solution; and z2 1−( ) sin β( )⋅ 2 z⋅ cos β( )⋅− 0=
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