Problem 3 (30 points)

A car has been traveling for a while with speed $V_o=100$ km/hour. At time t=0 s, the car accelerates with $\mathbf{a_o}$ (m/s²). The figure depicts a schematic view (not to scale) of an ACME air refresher (AF) hanging from the rear view mirror. The AF has mass properties equal to m and $I_g=m\ r_k^2$, where r_k is the radius of gyration; and L_g is the distance from its center of mass to the support in the rear-view mirror. In the figure, θ denotes the angular displacement of the AF with respect to the vertical plane. Note that at time t=0 s, the AF is at rest, i.e.

$$\theta = 0, \dot{\theta} = 0$$
. Tasks

- a) Derive the equation of motion for the **AF**. Express this equation in the form $\ddot{\theta} = f(L_{\sigma}, r_{k}, m, g, a_{\sigma}, \theta)$ [16]
- b) Find an expression for the angular speed $\omega = \dot{\theta}$ [8]
- c) Find the maximum angular displacement θ_{max} if the car <u>decelerates</u> at 20 (km/hour)/s. [6]

Note: Energy is not conserved. Do not use PCME to derive the EOM

Rear-view mirror pendulum (not to

P3 - Motion with support (dec)acceleration

$$I_g$$
 = $m \cdot r_k^2$ mass moment of inertia about cg r_k = radius_of_gyration

$$L_g = distance_from_cg_to_pivot_O$$

$$\overrightarrow{a_0} = \overrightarrow{a_0} \cdot \overrightarrow{k}$$
 $\overrightarrow{a_0}$: acceleration of pivot If $\overrightarrow{a_0} < 0$ (deceleration)

$$\overrightarrow{b_{\text{og}}} = L_g \cdot \left(\sin(\theta) \cdot \overrightarrow{I} - \cos(\theta) \cdot \overrightarrow{J} \right)$$

vector from pivot to cg

$$I_o$$
 = $I_g + m_{L,g}^2$ by parallel axis theorem

(a) Find equation of motion

Use Moment equation for pivot (support) moving with known acceleration

$$\sum_{\mathbf{m}} \mathbf{M}_{0} = \mathbf{I}_{0} \cdot \frac{d^{2}}{dt^{2}} \theta + \mathbf{m} \cdot \left(\overrightarrow{\text{bog}} \times \overrightarrow{\mathbf{a}_{0}} \right)$$
 [1]
$$\overrightarrow{\text{bog}} \times \overrightarrow{\mathbf{a}_{0}} = \mathbf{a}_{0} \cdot \mathbf{L}_{g} \cdot \cos(\theta) \cdot \overrightarrow{\mathbf{K}}$$
 [2]
$$\overrightarrow{\mathbf{J}} \cdot \mathbf{I} = -\mathbf{K}$$

The only moment about pivot O is due to the weight action, i.e. $M_0 = -m \cdot g \cdot L_g \cdot \sin(\theta)$ [3]

Substitution of eqs. [2,3] into [1] gives the EOM:

$$I_{0} \cdot \frac{d^{2}}{dt^{2}}\theta + m \cdot a_{0} \cdot L_{g} \cdot \cos(\theta) + m \cdot g \cdot L_{g} \cdot \sin(\theta) = 0$$
[4] Eq. [4] is identical to simple pendulum eqn if $a_{0}=0$ (pivot not moving with acceleration)

define:

$$L_o^2 = L_g^2 + r_k^2$$
 [5]

where Lo is the "radius of gyration" about O

Thus, the EOM becomes

$$\frac{d^2}{dt^2}\theta = \frac{L_g}{L_o^2} \cdot \left(-g \cdot \sin(\theta) - a_o \cdot \cos(\theta)\right) \qquad [6]$$
 where
$$L_o^2 = L_g^2 + r_k^2$$

where
$$L_0^2 = L_0^2 + r_0^2$$

(b) Find angular velocity
Use the integral substitution
$$\frac{d^2}{dt^2}\theta = \frac{d}{d\theta}\left(\frac{\omega^2}{2}\right) \text{ where } \omega = \frac{d}{dt}\theta \text{ ; and write eq. [6] as}$$

$$\frac{d}{d\theta} \left(\frac{\omega^2}{2} \right) = \frac{L_g}{L_o^2} \cdot \left(-g \cdot \sin(\theta) - a_o \cdot \cos(\theta) \right)$$
 [7]

The initial conditions are: motion starts from rest, i.e. at θ =0, ω =0

Integrate Eq. [7] to obtain:

$$\frac{\omega^2}{2} = \frac{L_g}{L_o^2} \cdot \left[g \cdot (\cos(\theta) - 1) - a_o \cdot \sin(\theta) \right]$$

Let

$$\frac{\omega^2}{2} = \frac{L_g \cdot g}{L_o^2} \cdot (\cos(\theta) - 1 - z \cdot \sin(\theta))$$
 [8]

(c) Find maximum angular displacement

for maximum angular displacement $\beta = \theta_{max}$, set $\omega = 0$ in eq. [8] to obtain: $(\cos(\beta) - 1) - z \cdot \sin(\beta) = 0$

$$\cos(\beta) - z \cdot \sin(\beta) = 1$$
 [9] solve this equation with a calculator or:

square both sides of equation to obtain $\cos(\beta)^2 - 2 \cdot z \cdot \cos(\beta) \cdot \sin(\beta) + z^2 \cdot \sin(\beta)^2 = 1$

 $\cos(\beta)^2 = 1 - \sin(\beta)^2$ above, reduces Eq. above to $(z^2 - 1) \cdot \sin(\beta)^2 - 2 \cdot z \cdot \cos(\beta) \cdot \sin(\beta) = 0$ Using the identity

or
$$\sin(\beta) \cdot \left[\left(z^2 - 1 \right) \cdot \sin(\beta) - 2 \cdot z \cdot \cos(\beta) \right] = 0$$
 [10]

This equation has two roots, $\sin(\beta)=0$, i.e. $\beta=0$ which is a trivial solution; and $(z^2-1)\cdot\sin(\beta)=2\cdot z\cdot\cos(\beta)=0$

$$\tan(\beta) = \left(\frac{2 \cdot z}{z^2 - 1}\right)$$

where
$$z = \frac{a_0}{g}$$

For the problem data given,

car initial speed

$$vel := 100 \cdot kmh$$

deceleration

$$a_0 := -20 \cdot \frac{kmh}{s}$$
 $a_0 = -5.556 \, \text{m s}^{-2}$

$$a_0 = -5.556 \,\mathrm{m\,s}^{-2}$$

$$z := \frac{a_0}{g}$$
 $z = -0.567$

$$z = -0.56$$

$$\beta := \operatorname{atan} \left(\frac{2 \cdot z}{z^2 - 1} \right) \cdot \frac{180}{\pi}$$
 Maximum angle θ max
$$\beta = 59.064$$
 degrees

 $kmh := \frac{1000 \cdot m}{3600 \cdot s}$

NOT for exam: Graph the max-angle for a number of acceleration ratios (respect to g)

$$\theta_{\text{max}}(z) := \text{atan}\left(\frac{2 \cdot z}{z^2 - 1}\right) \cdot \frac{180}{\pi}$$

when z=1,
$$g = 9.807 \text{ m s}^{-2}$$

$$g = 35.304 \frac{\text{kph}}{\text{s}} \qquad \text{(acceleration rate)}$$

$$\theta_{\text{max}}(.999) = -89.943$$
 90 degree