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SWINGING GONDOLA - FUN RIDE! MEEN 363 - SP09 (LSA)

 The figure shows a SWINGING GONDOLA (SG) at an amusement park. The gondola’s mass and centroidal 
radius of gyration equal M and rk.. The total mass of the passengers does not affect significantly the magnitudes 
given above or CG location of SG. Two bars of length L and mass Mb, Ib=(1/12) MbL2 , attach the SG CG to a shaft 
connected to a drive motor. The shaft is supported on frictionless bearings. The motor applies torque Tm turning the 
bars and lifting the gondola to a release angle θo. At this time, the motor is disengaged and the gondola starts to 
swing, giving a good thrill to its riders. Determine: 
a) System EOM after the motor is disengaged. Express the angular acceleration θ in terms of the system 

parameters & θ.  [10] 
b)  Given the (large) initial angle θo , derive an analytical expression (symbolic) for the SG angular velocity θ  in 

terms of the system parameters, and angles θ and θo. [10] 
c) Given, M=4000 kg, rk =4 m, L=10 m, Mb =0.05 M, and θo = 125°, calculate, when gondola crosses θ=0°, its 

angular speed [Hz], and SG CG tangential speed and radial acceleration What is the type of “thrill” or 
sensation the riders feel when the SG passes through θ=0°? [2.5 x 4] 
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Data:

θo_ 125:= degree release angle

M 4000 kg⋅:= L 10 m⋅:= rk 4 m⋅:=

Mb 0.05 M⋅:=

From Tables: (mass moment of inertia)
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bar Gondola inertia about its cg
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Thus, the linearized solution is

ω
2

ωn
2

θo
2

θ
2

−=
and add both equations to give

a ωn t⋅=
θ

2

θo
2

cos a( )2=from these 2 equations, square both sides 
ω

2

θo
2
ωn

2
⋅

sin a( )2=

ω t( ) θo− ωn⋅ sin ωn t⋅( )⋅:=andθ t( ) θo cos ωn t⋅( )⋅=

starting from rest. Thenωo 0=since 

natural frequency, for small amplitude motions: Disregard bar masses
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Not much difference if bars are omitted from analysis

SOLUTION for SMALL ANGLES θ - LINEARIZED EOM:
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Then, the gondola angular speed dθ/dt=ω:
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From Conservation of Energy,  T+V = Vo; since gondola is released from initial angle θo with null 
speed 

Find angular speed of gondola for large release angles



Graphs: variation of gondola angular speed and radial acceleration for entire ride:
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