MEEN 617 Handout #12 The FEM in Vibrations
A brief introduction to the finite element method

for modeling of mechanical structures

The finite element method (FEM) is a piecewise application of a
variational method.

Here I provide you with a fundamental introduction to the FE method
congruent with prior analysis of mechanical systems and the assumed
modes method.

For a complete and most lucid introduction to the FEM please read
Reddy, J.N., “Introduction to the Finite Element Method,” John
Wiley Pubs.

The beauty of the FEM method lies on its simplicity since its
formulation is independent of the actual response of the system. That is,
little knowledge about an expected answer is required a-priori.

Let’s review the Assumed Modes Method.
In any mechanical system, the Hamiltonian

5 J‘tz(T—V+W )arr=0

ext

is the fundamental principle of mechanics from which the laws of
motion are derived, i.e., Newton’s Laws and/or Lagrangian Mechanics.

In general, the kinetic energy (T) and the strain energy (V) of a

mechanical system are functions of the displacement vector ( ) and its
time derivatives, 1.e.,
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T =T (¥,7, material properties )

(2)

=T
V =V (V,V, material properties )

where (- ) =d/dt andv= (vxf tv, j+ VZE) is the vector of displacements

of a material point in the domain of interest Q= €Q(x;)

A

X3 Domain
Q(Xi)

X1

Fig 1. Domain for analysis

In the assumed modes method an approximation to the
displacement function in a continuous system is expressed as

v ;Wf(xj)vim ©)

where each ;) describes a deflected shape over the entire domain. Eq.
(3) is a linear combination of the basis functions set {y;)}

As shown in past lectures, substitution of Eq. (3) into Eq. (1) leads to
an N-DOF mathematical model of the mechanical system, whose
equations of motion are:
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MV+Kv=0Q 4)

where M = M" and K = K" are the N x N matrices of mass and stiffness
coefficients, respectively, and Q is the vector of generalized forces.

The coefficients in M and K are determined from relations of the
shape functions and its derivatives. For example:

For an elastic bar subjected to axial motions:

L
M,=M, =JpAwiwjdx,
0

., u
. d | : U (53.)
K}:Kj:jEA@&—Z%h \p.A
/ / ) dx dx

while, for an elastic beam under transverse or lateral deformations,

L
_ _ \Y;
MU—Mﬁ—J—pAl//l.l//jdx, .
0

fl
Y

2 \ (5.b)
d Vi dx P:E;

2

L
2
K}:Kj:IEldgf
s ) dx” dx

Above, the set of shape functions {y,} A must satisfy the
following conditions:
* {y,} must be a linearly independent set,

* be an admissible set by satisfying the essential boundary conditions,

* be sufficiently differentiable as required by the strain energy function.
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However, there are a number of problems associated with these
requirements:
a) a complex system geometry requires of complex shape functions,
1.e., a difficult task for the inexperienced user;
b) {w,} are defined over the entire domain (2) and thus, they lead to

a highly coupled system of equations;
c) {wl.}are related to a particular problem; and consequently, not

general.

The FEM overcomes these difficulties and provides a sound basis for
the analysis of vibrations of mechanical systems.

The FEM can be envisioned in the present context as an application
of the assumed modes method wherein the shape functions
{l//l.}represent deflection over just a portion (finite element) of the

structure, with the elements being assembled to form the structural
system.
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A FE model for axial deformations of an elastic bar

Figure 2 shows an elastic bar (one fixed end) subjected to axial loads
(P, f)« that cause axial displacements or elastic deformations u ).

\p’A__>U(x,t)

\

X —f | P=AE du/dx
L

Fig 2. Elastic bar under axial displacements

The first step in the FEM is to divide the domain Q into a series of

finite elements {Q°} and then constructing a finite element mesh, as
shown in Fig. 3.

element length
hi e hn
+—> +—>
/7 /7 )
=R e
1 0 2 el eQ e+l e+2 eN en+1
1 e O
N
node or joint

Fig 3. Discretization of bar into N finite elements

Derivation of EOM for one finite element
A typical element Q° = (x,, x) is isolated from the mesh.
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he=Xg-Xa

+—>
XA 0 Qe 3
> )_( X=X-XaA

A 4

Figure 4 depicts a free body diagram of the element, where u, and
uyare the (nodal) axial displacements at the tips of the element, and

Pfand P, are the (node) axial forces arising from the reactions with

the neighboring elements. Note f represents a distributed force/unit
length acting on the bar.

f Distributed force/length

ou
P'=—FA—| ;
A 0% |, 4
p=E42t
oXx

x=h,

Fig 4. Free body diagram for a finite element in
axial bar

The nodal axial forces P are

p——E4%"
0%

R =EA"

x=0 0x x=h,

The kinetic energy (7°) and potential (strain) energy (V°) for the finite
element Q° are:
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-t J

(6)
0
e = I Edl " df
2 6 X
0
and the virtual Work from the external forces over the element 1s
ext J‘fx 5” d_ + 5” 1)18 + 5u(ex3)PZe (7)

The Hamiltonian Pr1n01ple applies over the whole system; and hence, it
also holds over the element (©°); hence

ext

)
) j (re=ve+we)dry =0 ®
gt
In Q°= (x4, x3) , let the displacement u° be represented as
2
= ZZ::, Vi Mi o ©)

where ule =u(exA ) u§ =u(ex3 are the nodal displacements and Wle and

l//ze are shape functions admissible to the problem. Note that one

presumes to know (uf , u§ )
Substitution of Eq. (9) into Eq. (6) gives:
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ZZMeuu ZZKeuu (11)

i=1 i=1

where the coefficients of the element mass and element stiffness
matrices are:

M*=M* =.[peAel/ffl//?df,

y

(12)
dy*© dy”

K° K ¢ IE A ———Ldx
. . 2
The shape functions in Eq. (9) u(ef’t) :Zz//l.‘:x) ul.e o :quf 4+ 1//267,,2@ must
i=1

satisfy:
Atx=x,0rx =0,

e e _ . e e e e
Uoy = =Wt TV, U

=Y = 1, Vi = 0 (13a)
AtX=X,0rX =h,,

— e —
Uy =W =W, W TV, Uy

-y, =0y, =1 @13b)
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Note that from Eq. (12), the shape functions need to be at least once
differentiable over the element Q°, i.e., {l// e} c Cl(QE).

i=l,.n

Note n» > 2 in Eq. (9) is also a choice. However, higher order elements
are not discussed here for brevity.

Work now with the work from external forces. Substitution of Eq. (9)
into Eq. (7) leads to:

ow;

ext

he
| [ ax jous + suivi, P+ suws, P
0

> W, =F 6u; +ou P° +ou, P, (14)

ext

he
Since wle( )= 1= l//ze(he) . Above F}* = J‘ f(f)wf dx | is a vector of
0

distributed forces, and recall that p* =— F Aa”

oXx

. propaOt

A are
ox

x=0 x=h,

the nodal reaction axial forces.

Substitution of Egs. (11, 14) into the Hamiltonian Principle in Eq.
(8) leads to the system of equations for ONE element:

D Myt + > Kot =+ B (153)
j=1 j=1

or 1n matrix form
M®0® + K°u=F° +P° (15b)
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From Egs. (13) the shape functions{l//f} must satisfy the essential

i=1,2

boundary conditions

e _ e —_N.
View = L Vi = 0;

WZ@(H) =0, l/lle(f:ha =1
and {wf}i_l ,€C'[0,h,]

Select, (16)

v

=|

Fig 5. Shape functions for a finite element in axial bar

Note that
a) y; and y, are linear combinations of the linearly independent

complete set {1,X}. In addition, (t//f +y, ) =1, the shape functions are a

partition of unity (This means the shape functions {r,uf} jare able to

i=1
model rigid body displacements).
b) the set {Wf }

zero. This quality is called a local support and it is extremely important
to make the global M and K matrices banded, i.e., with a small number
of non-zero values.

2is different from zero only on Q° and elsewhere is

i=
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The derivation of the shape (or interpolation) functions{z//f}.=1 2does not

depend on the problem. The functions do depend on the type of element
(geometry, number of nodes or joints, and the number of primary
unknowns).

Substitution of the shape functions, Eq. (16), into the element mass
and stiffness matrices gives:

2 1 1 -1 1
Me = —peAehe ;Ke :—AeEe ; Fe :& (17)
6 1 2 h | -1 1 2 |1

e

for a bar with uniform cross sectional area (4.) and material properties
(p, E). within the element. Note that K® is a singular matrix.

The next step constructs (in the computer) the matrices (M°,
Ke)e=1,2,..zve for each element in the domain of interest. Next, one
performs the interconnection or assembly of the element EOMs.

For the sake of discussion, suppose the domain Q = (0, L) is divided into
3 elements of possibly unequal lengths, as shown below

P
>

lobal nodes

N

Define the global displacements U={U,, U,, U;, U,}
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LUt s J)_Q4

Global displacements

1 2 3 4

The (local) nodal displacements in each element (e) are:

.2 2 3 3
1 — -
u W =U u,=u u,

L>1|—>|—> =

QO Q @)

1 2 3 4  element displacements
Q1 - Qo Q3 P

The elements are connected at global nodes (2) and (3); since the
displacement U needs to be continuous (i.e., without cracks, fractures,
etc.). Then, the interelement continuity conditions are

1
U =u,
| 2
U,=u, =u,,
(18)
U, =u’=u’
3 = Uy, = U,
3

A BOOLEAN or CONNECTIVITY ARRAY (B) states the

correspondence between local nodes in an element and the global
nodes.

B,; = the global node number corresponding to the j-th node of element i
i=1,2....N,: number elements on mesh.
j=12....N,: number of nodes per element.
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o]
Presently, B=|23

Repetition of a number in B indicates that the coefficients of K® and M°®
associated with the node number will add.

In a computer implementation of the FE scheme, the connectivity
array is used extensively for the automatic assembly of the global
system of equations.

For the three elements in the example, the element Eqns. (17) are written
in global coordinates or nodes as:

2 1 0 o]0, 1 -1 0 o|(U,] [(F'] [P

e=1: pAhlleO<(22 @—1100U2:<F;+<PZl
6 {0 0 0 O0|U,| h 0 0 0||U, 0 0

0 0 0 0]|T, 0 0 0 0f|U, 0 0

(0 0 0 0][0, 0 0 0 OlfU) (0] (O

e=2:  pdh,|0 2 1 0||U, @01—10U2_Ez+32
6 [0 1 2 0||U,| h|0O -1 1 O||U,| |FE]| |B

0 0 0 0]|T, 0 0 0 0fU, 0 0

0 0 0 0](T, 0 0 0 0](y, 0 0

e=3: %000002>+£0000U2>:<0+<0>
6 |0 0 2 1||U,| h|O0 0 1 -1||U| |F]| |P

00 1 2|0, 0o o0 1 1]J\U,) |F) B
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The global EOMS for the whole system are obtained by superposition
(addition) of the equations above:

e

.o Fll pll
MU+KU:F+P_<F21+E2+le+pl2 (18)
| EE] B R
Fy P
where
M =U, (M°);K =U2¥, (K?) (19)
are the global matrices of mass and stiffness coefficients, and
F=U (f°);P=UY (P°) (20)

are the vectors of distributed forces and nodal forces, respectively.

Note above K is singular since the boundary condition (fixed end at
x=0, 1.e. U;=0) is yet to be applied.

Imposition of boundary conditions
In general, due to continuity (action=reaction), at the internal nodes

})21+})12:O,})22+})13:0

Or P +P'«Q,P+P <« Q, P «0, (21)

with O,, O; and Q, as specified nodal (axial) forces acting on the bar.

Incidentally, U;=0 is specified, while the wall reaction force P11 =?is an
unknown.
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d
DOF (degrees of freedom) and Uy are the specified (time invariant)
DOF. Then, the global equations of motion are partitioned as

U
In general, let U = {Ua , where U, is a vector containing the active

M, M0 [K, K,](U,) (S

aa aa a a

LT =
I\/Ida I\/Idd Ud Kda Kdd Ud Sd 22

where M, =M ,,K,, =K_,. Sa =F+Q is a vector of (known) applied
forces (distributed and nodal) and Sy is a vector of unknown reaction
forces (to be calculated)

Since U, =0, expand Egs. (22) as
MaaUa + KaaUa + I<adUd - Sa
MdaUa + KdaUa + KddUd = Sd

Solve for U, from the first equation above,
MaaUa+ KaaUa :Sa_KadUd (23)
and next, find the internal forces Sq from the 2" Equation

S, «<M_ U, +K_ U, +K_ U, (24)

For the clastic bar, the system of eqns. (23) is tridiagonal and thus, its
solution can be obtained quickly without a matrix inversion.

Note that the essential BCs is a specified U; = 0 while the reaction force
P,' is unknown. Hence, the final EOMS are:
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Mz,z M2,3 M2,4 Uz Kz,z K2,3 K2,4 Uz
M2,3 M3,3 M3,4 U3 + K2,3 K3,3 K3,4 U3 =
M4,2 M3,4 M4,4 U4 K4,2 K3,4 K4,4 U4 Er)

0
0 (25)

and once the equation above is solved,

MU, +K,U,+M, U, +K U +M U, +K U, —> P (26)

In the example configuration, the satisfaction of the essential constant
U, = 0 removes the singularity of the stiffness matrix (i.e., removes the

rigid body mode).

For the example case, considering elements of equal length, 4, = L/3 ,
the equations of motion are:

p 4 1 0](U, ) 2 -1 01U, 0
pl—8Ll4IU3+3TE_12_1 Uy b=1 0 27
0 1 2||U, 0o -1 2|\U,] |B,
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Use MODAL ANALYSIS to solve
M U + K U — F (28)

+Initial Conditions

To this end, first solve the homogeneous EOMs

MU+KU=0_[K-o’M|'¢=0 (29)

1, 2 N
and make the modal matrix, D = |: ¢ ¢ ----- ¢ :| (30)

where N is the active degrees of freedom in the system.

Using the modal transformation U(t) =(I)77(t), the physical EOMS

become in modal coordinates:

Mm77+Km77:Qm 31
where M_=0'M®; K_=@®'K®,and Q_=®'F (32)

are the modal mass and stiffness matrices (diagonal) and the modal force
vector, respectively.

By now, you do know how to solve the uncoupled set of N ODES and
then return to physical coordinates.
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A FE model for bending of elastic beams

Figure 6 depicts an elastic cantilever beam with lateral forces (F) and
moments (M) acting on it that produce the beam lateral deflection or
bending v . F, and M, are a lateral force and moment applied at the
end of the beam (x=L), and f) is a distributed force/unit length. The
beam has material density (p) and elastic modulus (£) and geometric
properties of area (4) and area moment of inertia (/).

p,E,l
\ Vix,) f Fo
' A T
M
| S

Fig 6. Elastic beam under lateral (bending) displacements

For a finite element (QQ°) or piece of the beam with width 4, note the sign
convention:

f/

(] )

1 V,

he element length

Fig 7. Notation for shear forces (V) and
moments (M)

Let V and M denote the shear force and bending moment. For an Euler-
type beam
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v oM

M=El—; V=
X ox

(33)

In the FEM, discretize the beam () into a collection of finite elements
Q° (Q - uQe), as shown below in Fig. 8.

element length

he N
«— «—>
1{ ( .4:
I |
e-1 4 e+l e+2 eN eN+1
.: — Qe ON

node or joint

Fig 8. Discretization of beam into N finite elements

Let v and =0V O be the lateral displacement and beam rotation

(primary and secondary variables). Fig. 9 shows a free body diagram in
the element Q°, with x, , =x, + /A,
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e .
e f Distributed force/length
AN 4 :

e
91 f )96 Displacement V and rotation @
2

- p,E|l

e
Yo
e Lateral forces and moments
Q3 —

Xe Xe+1

Fig 9. Free body diagram for a finite element in a

elastic beam

The shear forces at the ends of the element
0 0%y
Qle :V(x ) = _[E[ :| 9

ox ox’
0 0%y
‘=y  =—|EI
Q3 (Xe11) ax( ax2j|

e+l

And the bending moments at the ends are

. o0y
Q3 :M(xe):(E[ 2}

ox

Xe

ox

0%y
Qf :M(xm) = _(E]—z}

Xe+l
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W=vi Vs =

(xe+l ’t)

Let (36)
Vi =0

(xe

) =OVi=, =0

(xe+1 ’t) 2

X=X—X

e

Assume that the beam lateral displacement and rotation (angle) in Q°
are given by the approximation

4
e e yre
Ve _Zl//i(x) Vi
i=1
4 dut

He _ l//i(f) Ve
(x,t) — i
dx

i=l1

(37)

From a prior discussion on the assumed modes method, the elements
of the mass and stiffness matrices for Q° are

y

he
M% :M; :JpeAerWjdf,
" (38)

e

h

e d2 ed
KfzKizj'Eele V.2V i

0

; 2 2
g dx” dx
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Note that {we}

o€ C’ (Qe ) The shape functions satisfy the essential

boundary conditions,
_17€ e _ 1. e __ e __ e _
Vi) =V Y L Voo = Vs, = Vay, = 0

e e e e e (39a)
v(xe-H 1) :V3 _)l//%e) =1; Wl(/@ - l//3<he) - w“(he) =0

(39b)

» dx — dx —
v( ) :Ve dl//4(h / — 1 d'/’l(h / dl//2(h / dl/IS(h )
xe+1’t 3

The lowest order polynomial that satisfies the conditions above is third
order (and is twice differentiable) , i.e.,

X X ’ X :
V(f,t):CO+Cl h_ +C'2 h_ —|-C3 h_

) (40)
H(W) =+, (hle] +2c, (hi_fj + 3¢, (Z—j
Leading to the following conditions,
—0: Ve=c, Vi=6 = (ZIJ
X=h:V =c,+c +c,+c,, (41)

1/4@:92: ﬁ + & + ﬁ
he he he

Solving the set of four Egs. (41) gives
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) X
y; =1-3 h_e
X
C=x|1-—
v, he
2
e _3| X
Vs h
c_X[X
W, n\h

Figure 10 depicts the shape functions.

+2| &
he
N3
e

0.8

0.6
V(%)

0.2

0
0

02 04 06

X

0.8

1

0.2
0.16

0.12
V(%)
0.08

0.04

0
0

02 04 0.6

X

0.8

1

—0.12

(42)

0 02 04 06 08 1

Note that (Wf +y, +y, +l//j):1

0.8

0.6
v 3(%)

0.2

0
0 02 04 06 08 1

X

—0.04

~0.08
\V4(X)

—0.16

0.2
0 02 04 06 08 1

X

Fig 10. Shape functions y for structural element under bending.
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Substitution of Eq. (42) into Eq. (38), renders the following element
mass and stiffness matrices.

156
22h
Me — pAhe e
420 54
_—13he
12
e e 6h
Ke:E?,] e
h | —12
_6h€

22h,

4h’
134

e

2K

6h
4h’
—6h

e

e

2h

54
13h,
156

_22h,
~12
—6h,

12
—6h,

and the vector of generalized forces {F;°} is:

he
E‘e = jo ]F(f,t)wi(f,t)df

Assuming a constant distributed force f, ;) over the element, obtain:

e T
Fe={ifih, &fH Lfh LfH}

~13h, ]
2/182 o\ T
o =(M) (43)
4h? |
6h, |
2h? o\ T
_62 =(K) (44)
4h? |
(45)
(45b)

and the constraint nodal forces are obtained from the virtual work

performed:

W =00V +050Vy =, 0V, — 0,0V

Hence,

={o -0 o -0}

(46)

(46b)

Then, the system of equations for the element Q° are:
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4 4
D MY K =Fg @)
j=1 j=1

or M®V® + KV = F° + Q° (47)

where ve=tve v e vEy

Assembly of the element matrices to produce the global system of
equations is easily done as exemplified before. Be careful to keep
continuity of the displacements at the nodes (joints) and also the
continuity of constraint forces at the nodes.

The global system of equations becomes

MV+KV=F+Q )

where the global vector of displacements is
T
V={VV,=6.V.V, =0,,... ViV =6y} (49)
with N as the global number of nodes);
M =U2, (M°);K =U2¥, (K°) (50)
are the global matrices of mass and stiffness coefficients, and
F=U, (f*);Q=U), (Q°) (51)

are the vectors of distributed forces and nodal forces, respectively.

Note above K is singular since the boundary conditions are yet to be
applied.

The global FEM vector of forces Q will in general have zero
components at the internal nodes. The elements of this vector are of the

form, see Fig. 11:
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0, =0+0""; 0,,=0,+05" (52)

Here k denotes the global node number.

e — e+l
AR

)026 — ele—irl

0]

Qe )Q4 Qe+1

e+l e+l
: 2
X

e+l

Fig 11. Balance of forces at a node

The eqgns. above constitute a statement of equilibrium of forces at the
nodal interface (boundary) of an element. Recall from Eqns. (34, 35)
that

0 0%y 0 0%y
‘+ O =——"| E +—| EI =0
Q3 Ql (9x( 8x2}1 (9x( 8x2}

0y 0%y
e+ e+1_ :O
a3 5]

e+l e+l

e+l

If no external forces or moments are applied at the node, then
+1
Q=0 +0 " =

e+l (53)
Qk+1 = Q4 + Q =
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However, if an external nodal shear force or moment is applied at the
joint, then the components of the force vector Q will not be zero.

MEEN 617 HD 12 Introduction to FEM in Vibrations © 2013 Dr. L. San Andrés 27



Consider, for example, the case of a support spring with stiffness ks
connecting the beam to ground, i.e.,

1 .
Qf + Qe+ + P;prmg O’

Q Q3 + Qe+l F;pring = _ksl/le+1 (54)
I/Be = I/le+1
Ve+1
Deze: 016+1 |
©] o
Qe Oer1 Qe Qe+1
Q3 e+l e+l
> 1 2
Ks Xe +1
e+l
ksl/l - F;pring

Fig 12. Balance of forces at a node with a spring
connection

Note that this spring restoring force depends on the element lateral
deflection, and therefore, it is unknown. Hence, one needs to modify the

global stiffness matrix and add the contribution of the support stiffness
k.
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Corodinate transformation of element matrices:

A plane elastic frame element combines the elastic properties of a
bar and a beam; and hence, it has three displacement coordinates at each
end (two orthogonal displacements and one rotation). As shown in
Figure 13, this element has a local coordinate system (x,)) where the x-
coordinate aligns with the major axis (length) of the bar-beam.

v

X

Fig 13. Arbitrary frame element and displacements
The x-axis is tilted angle f relative to a global (inertial) coordinate
system (X, Y) to which all elements in the structure will be related. In

the (X,Y) coordinate system, the displacements are defined as shown in
Fig. 14.
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v

X

Fig 14. Arbitrary frame element and displacements
in (X,Y) axes

The transformation between the local displacements {176} .y in the
i=1,2...

1

(X, Y) to the displacements{Vie} in the local coordinate system

i=1,2...6

(x,y) is given by the (coordinate transformation) equation

VeE=TV® (55)
[ cosp sinp 0 0 0 0]
where —sinf8 cosf 0 0 0 0 (5 6)
T 0 0 1 0 0 0
) 0 0 0 cosfp sinfB 0
0 0 0 —sinf cosf O
0 0 0 o 0 1]

The element EOMs in the (x,)) coordinate system are
M®V® + K*V¢ =F° +Q° (57)
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Substitution of (Eq. 55) into (57) and pre-multiplying by T.' gives the
following:

TM TV +TTK T,V =T'F* + T/ Q° (58)
Lett M*=T/MT,, K =T)K’T,,F =T'F°,Q°=TQ° (59
and write the EOM as: M®V® + KV = E° + Qe (60)

Note that the resulting mass and stiffness matrices are still symmetric.

The assembly of the element matrices proceeds in the usual way to
obtain the global system of equations.

Constraints and reduction of degrees of freedom:
Thus far, the analysis takes all generalized displacements as independent
of each other. The assumption lead to the global system of equations:

MV+KV=F+Q 1)

Frequently, there arises a need to specify relationships amongst system
displacement coordinates. This 1s equivalent to specifying

N displacements which are linearly independent and the
rest N +1, N+2,....Ndepend on the N displacements.

The discussion presently relates to a constraint equation of the form:
£V VaszrVa )= 8:(VisVar- V) =0 oo (62)

The equation above can be written in matrix form as:

V
RV =[Rg, Rdd]{va}zo (63)

d
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where Vy is the vector of N, dependent coordinates or displacements,
and V, 1s the vector of N=N_ = N, independent or ACTIVE

coordinates or displacements. Note N+ N,=N,+ N,=N.

From eq. (63) RV, + R4V, =0 find

da "a

> V=TV, =(-Ry'Ry,)V, (64)

da "a

where Ty, 1s the (N; x N,) matrix transformation between active to
dependent degrees of freedom.

Now, the total global displacement vector can be written as:

e =%
V= = V. =TV, (65)
Vd Tda

where 4, 1s a (N, x N,) unit matrix.

Substitution of (64) into the EOM (61) and pre-multiplying by T'
gives:

T'M(TV,)+T'K(TV,)=T'F+T'Q

Mava+Ka Va:Fa+Qa (66)

where the mass and stiffness matrices are reduced to (N, x N,) active
DOF. Note that,

M.=T'MT, K. =T'KT,F=T'F,Q,=T'Q (67)

The system of equations (66) accounts only for the active degrees of
freedom N,,.
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EXAMPLE: Using ONE finite element determine the first natural frequency for the beam LSA
configurations (pin-pin ends, fixed end-free end, fixed end-fixed end) and compare the results with ME617
avialable closed form formulae. Show the percentage error. The beam has length L, cross sectional

area A, inertia Ip and elastic modulus E.

The generalized mass and stiffness matrices for beam bending are:

156 22.L 54 -13L 12 6L -12 6L Vi

yL | 22L 4L’ 13L -3L° oo ET|6L 4l 6L 2L° k)
= —" e:i.

420 54  13L 156 -22.L 3|-12 6L 12 -6L Vs

_13L -3L% 2L 4L 6L 212 —6L 412 v,

Pin-Pin Ends: No displacement and moment at each end

displacement &
slope (left end)

displacement &
slope (right end)

set boundary conditions:

V= 0 Yqi= 0 Momentl =0 Moment2 =0
156 22L 54 -13L)[ Y1 12 6L -12 6L)[VY1 Force,
z(y.L) 2L 4% 13L 32| Y2 Elp | 6L 4Ll? _L 212 || Vo | | Moment
420)| 54 13L 156 -22L||v,| 3 |-12 6L 12 6L ||y, Force,
2 2 2 2
-13L 3L 2L 4L ) v, oL 2L° —6L 4L°) | v, Moment,
156 22L 54 -13L)( 0 12 6L -12 6L)[ 0 Force,
z(y.L) 2L 4? 13L 32| Y2 Elp | 6L al® —eL 202 || Y2 0
420)| 54 13L 156 -22L|| O 3 ]-12 6L 12 -6L[| 0 Force,
—13L -31? —oL 4?2 )\Va 6L 212 —6L 412)\Va 0
which reduces to a 2 by 2 system of equations for free vibration
z(y.L)[Mz 32 [ V2 E-p [44_2 212 (VY2 [oj
ol TE) . 4 =P . =
420 3
312 412 )\Va)  L° 212 42 \vy) \O
the natural frequencies can be determined by the eigenvalue analysis
—oll+M k=0
1320 1200
2 .2 2 .2 g WP El
_1 420\ 1 [4L° 3L%||Eap|4L” 2L L™y L™y
M 'K=l T N 4 N - 73‘ H
L () a2 a2)| 8 a2 a2 —1i°0<5|p —1?;20-E-Ip A, [1320 1200
Ly Ly ~ (1200 1320
A := sort(eigenvals(A)) 1.9
o m.::ﬁ 10.954
i i o= 10.954 [E-Ip
50.2 0=
L ¥
1222 [Ep
1772 Ty 2
L _
error := w -100

2
n

exact first natural frequency
error = 10.987 %

ORIGIN =1



Fixed end-Free end: zero displacement and slope at the fixed end, and zero shear and moment at the free end.

set boundary conditions:

vy = 0 v, = 0 Force2 =0 Moment2 =0
156 22L 54 -13L)| VY1 2 6L -12 &L)["1 Force,
2(y~L) 2L 4% 13L 32| Y2 Elp | 6L al? _eL 212 || V2| |Momenty
420)| 54 13L 156 -22L||v,| (3 [-12 -6L 12 6L ||y, Force,
2 2 2 2
“13L 3L 2L 4L |y, 6L 2L° 6L 4L") |y, | |Moment,
156 22L 54 -13L)( 0 12 6L -12 6L\( 0 Force,
z(y.L) 2L 4% 131 32| 0 Elp | 6L al® oL 22| © Moment,
420)| 54 131 156 -22L||Y3| 3 |-12 6L 12 -6L|[¥3 0
“13L —3L% 22 4% )\Va 6L 212 —6L 41%) Y4 0

which reduces to a 2 by 2 system of equations for free vibration

mz(ﬂ)[lse —22.L\ (Vg . E.Ip[lZ 6L\ (Vs -(Oj
420\ o 412 ) v,) 3 oL 4L?)(v,) \0

Now the natural frequencies can be determined by the eigenvalue analysis

—ol 1+ M Lk=0
-252 192
. 4-E- —3-E-|
M TK=a 40| 1 [4~L2 22-LJ El { 12 ‘G'Lj N 7L
= | =i ) A
1| (14002 \22L 156 || 13 (oL 4L 2016 | 1476
5 4 —252 192
Loy y-L A=
—-2016 1476
i=1.2
A := sort(eigenvals(A))
=[x
@ ﬁ 3533
o= 3533 [E-p
34.807 o ===
L Y
exact first natural frequency
_ 18751042 E-Ip
2 “17 2 Ay
1.875104° = 3.516 L
2
3.533 — 1.875104
error := 72 -100 error = 0.483 %

1.875104



Fixed End - Fixed End: Reduce beam into two parts, each of length L/2. The boundaty

conditions become zero displacement and slope at the fixed end, and zero slope at the other . -
end of the 1/2 beam P P P L, where Lo is the original
S L= length of the beam
set boundary conditions:
wl::O \4/2::0 \4/4::0 Force2::0
156 22L 54 -13L)[ Y1 12 6L -12 6L)|VY1 Force,
z(y.L) 2L 4® 13L 32| Y2 Elp | 6L aL? _L 212 || Vo | Moment
420)| 54 13L 156 -22L ||y, 3|12 6L 12 6L ||y, Force,
2 2 2 2
-13L 3L 2L 4% ) |y, 6L 2L° 6L 4L |y, Moment,
156 22.L 54 -13L)/ g 12 6L -12 6L)/g Force,
z(y.L) 2L 412 131 —3L?|| 0 Elp | 6L a2 sL 212|] 0 Moment,
420) | 54 13.L 156 -22.L || Vg 3 |-12 6L 12 -6L||V3 0
“13L -31% —2L 4?2 )\ 0 6L 212 —6L 412\ 0 Moment,,

which reduces to just one equation for free vibration of the deflection at midspan

2(vyL E-lp
—0°| -=|-156y, + —-12.y_, =0
(420) Vg .3 Y3

4
Now the natural frequency is ¢ = |- 22%1%2° g,
4
et s
22736 [E-lp
TR
(0]
(%)
2
_ 4.730041° [Elp
@17 L2 y  exact first natural frequency
(%)
22736 — 4.7300412
error = ———— 100

_ 0,
4.730041° error = 1621 %



