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MEEN 617 - Handout 4a 

ELEMENTS OF ANALYTICAL 
MECHANICS 

 
Newton's laws (Euler's fundamental principles of 

motion) are formulated for a single particle and easily 
extended to systems of particles and rigid bodies. In 
describing the motions, physical coordinates and forces are 
employed in terms of vectorial quantities (vectorial 
mechanics). The major drawback is that Newton's Laws 
consider the individual components of a system separately, 
thus requiring the calculation of interacting forces 
resulting from kinematical constraints. The calculation of 
these forces is many times of no consequence or interest in 
the final formulation of the equations of motion. 

 
A different approach known as ANALYTICAL 

MECHANICS considers the system as a whole and it is 
more general than the simple Newtonian formulation. The 
motion of a system is formulated in terms of two scalar 
quantities, WORK and KINETIC ENERGY. The 
mathematical formulation is independent of any special 
system of coordinates and relies on the principle of 
virtual displacements. 

 
When dealing with multi-degree of freedom systems 

(MDOF), it is often more expedient to derive the equations 
of motion by using the analytical mechanics approach. The 
method is also valid for continuous systems. In this case 
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not only the equations of motion are obtained but also the 
associated (natural) boundary conditions. 
 
 

WORK AND ENERGY FOR A SINGLE PARTICLE 
Consider a particle 

(point mass) moving along 
the curve C under the 

action of a force F


. The 
position of the particle at 
any time is given by the 
position vector r


.  

 
If the particle moves 

over an element of 
distance rd


, the work 

(dW) is the scalar product 
 

rdFdW


     (1) 
 
If the particle moves from position 1 to 2, along the path C, 
the work performed is 
 

2

12

1

r

W F dr

r

 
 

    (2) 
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r+dr

r

r2

r1

F
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For a particle of constant mass, Newton's second law 
establishes 
 

( )d mr drF m
dt dt

 
   

   (3) 

 

Since dtrrd 
 , with r

  as the velocity of the particle, then 
Eq. (2) is rewritten as 
 

 12

2 2
12 2 1 2 1

2 2 2

1 1 1

1

2

1 1

2 2

t t

t t

r
r rdrW F dr m r dt md dtdt dt

r

W m r m r T T

 
 
 

    

   

  
      

 
 (4) 

 

where T is the kinetic energy,  
21

2
T mr    (5) 

 
Eq. (4) shows that W12 is the work to change the kinetic 
energy of the system from T1 to T2. 
 

In many physical systems, the force field depends on the 
position alone and is independent on the path followed, i.e., 
the force field is a conservative field, and therefore, it 
can be derived from a potential function V. To this end, 
introduce the definition, 
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( )cdW F dr d V r V dr      
   

   (6) 
 

where 


 is the gradient vector operator. In the Cartesian 
coordinate system, 
 

i j k
x d y z

      
  

   (7) 

 
From (6), it is easily inferred that 
 

   12 2 1 2 1

2 2

1 1

c

r r

F dr V dr

r r

W V r V r V V            
    

 (8) 

 
i.e., the work performed by conservative forces is equal 
to the change in the potential energy function V. Note 
that Eq. (8) makes evident the conservative nature of the 
field, i.e., the change in potential depends only on the 
beginning and ending positions and not on the path 
followed.   
 

In general, there are both conservative and non-
conservative forces acting upon a particle. The non-
conservative forces are energy dissipating forces such as 
friction forces (drag type), or forces imparting (inputting) 
energy into the system, i.e., external forces. Non-
conservative forces usually do not depend just on 
position alone and can not be derived from a potential 
function. 
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Thus the work can be divided into conservative and non-
conservative parts, 
 

 12 12 12 2 1 12c nc ncW W W V V W         (9) 
 

And from Eq. (4), 12 2 1W T T  , then 
 

  
   
   

12 2 1 2 1

2 2 1 1

ncW T T V V

T V T V

   
     

 

or      12 2 1ncW E E     (10) 

 
where E=T+V is the mechanical energy of the particle,  
equal to the addition of its kinetic energy plus potential 
energy. Eq. (10) indicates that the work performed by non-
conservative forces is responsible for the change in the 
mechanical energy of the particle. 
 

For a purely conservative force field and in the 
absence of external forces, W12nc = 0. Then it follows 
that the mechanical energy is constant (invariant) for all 
times. 
 

12 2 10 , ( ) 0nc

dW E E t T V
dt

        
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Degrees of freedom for systems with constraints  
Consider a simple 

pendulum consisting 
of a mass m suspended 
by a non-extensible 
string of length L and 
free to oscillate in the 
xy plane.  

 
The coordinates x 

and y define the 
position of the mass. 
Note that these 

coordinates are not independent since 
 

2 2 2x y L   
which denotes a constraint relationship. Thus only one 
coordinate is needed to express the position of m. It can be 
either x or y. However, it is more natural to use the angle 
, since 
 

cos ; sinx L y L    
 

The minimum number of independent coordinates 
needed to describe the motion of a system is called the 
degree of freedom of the system. Thus, the pendulum is a 
single degree of freedom (SDOF) system. 

 
 

y

x

L


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Three (3) coordinates describe the position of a particle 
free to move in three dimensions. If a system of N particles 
must satisfy c constraint equations, then the number of 
independent coordinates to describe the system is, 

 
cNn 3  

 
because each constraint equation reduces the degree of 
freedom of the system by one. The system is categorized as 
an n-degree of freedom system (nDOF). 
 

The constraint equation for the pendulum is reworded as 
 

cyxftyxf  ),(),,(  
 

A system in which the constraints are functions of the 
coordinates or coordinates and time (but not velocities) is 

called holonomic. 
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GENERALIZED COORDINATES 
The minimum number of coordinates necessary to 

fully describe a system is a set of generalized 
coordinates. These are independent and each 
coordinate represents one of the degrees of freedom 
of the system. 

 
Generalized coordinates, usually denoted as  
{q1, q2, . . . qn}, are not necessarily Cartesian 
coordinates.  
 
The selection of the set of generalized coordinates 
{qk}k=1,..,n is evident in some problems.  
 
In other cases where the coordinates are related by 
constraint equations, coordinate transformations are 
required to arrive to an independent set of generalized 
coordinates. 
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THE PRINCIPLE OF VIRTUAL WORK: STATICS CASE  
The principle of virtual work is essentially a 
statement of an equilibrium state of a 
mechanical system. Several definitions are 
needed at the outset: 
 
A displacement coordinate is a quantity used to specify 
the change of configuration in a system. 
 
A constraint is a kinematic (usually geometrical) 
restriction on the physically possible configuration the 
system may assume. 
 
A virtual displacement is an infinitesimally small 
and arbitrary change of configuration of a system 
CONSISTENT OR COMPATIBLE with its constraints. 
Virtual displacements are not actual displacements since 
there is no time change associated with them. 
 

If the actual coordinates for a system are related by the 
constraint equation, 

 1 1 1,..... , ,..... , ,..... ,n n nf x x y y z z t c   (11) 

then, the virtual displacement or variation  must be such 
that  
 1 1 1 1 1 1,....., ......., ,......., ,n nxf x y y z z z z t c         (12) 

 
Note that time is held constant in Eq. (12). 
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The operations concerning the variation  follow the 
rules of elementary calculus. Expanding Eq. (12) as a 
Taylor series and keeping first-order terms (neglecting 
higher order terms) in x1 . . . . . zn leads to 

 

  

 1 1 1,..... , ,..... , ,..... ,

1

n n n

i i i

i i i

f x x y y z z t

n f f f
x y z c

x y zi
  

 
 
 
 



    
  

 (13) 

 
However, from Eq. (11), f  =c, and thus 
 

 0
1

i i i

i i i

n f f f
x y z

x y zi
  

 
 
 
 

    
  

   (14) 

 
This is the relation the virtual displacements (xi, yi, 
zi)i=1,..n must satisfy to be compatible with the system 
constraint f=c 
 
For the simple pendulum, f = x2 + y2 = L2, or 

 
 x = L cos()     and    y = L sin();  
 

then a variation in configuration leads to 
 
y +  y = L sin( + ) = L ( sin  cos + sin  cos ) 
      = L sin + L cos    
 
since cos()  1 and  sin()    because  ~0 
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Thus, for small ,           y +y= y + x  
 
and       y = x    = L cos  
 
similarly,     x = -y   = -L sin  
 

 
Consider a particle (i) acted upon by some forces with 

resultant vector iR


. If the system is in STATIC 

EQUILIBRIUM, the resultant force is zero and therefore, 
the work performed over the virtual displacement ir

  must 
also be zero, i.e.,  

 

  0i i iW R r   
 

     (15) 
 
If there are constraints in the system, then 
 

  i i iR F f 
 

     (16) 
 

where iF


 is the resultant vector of external forces applied 
on the particle and if


 is the resultant of the constraint 

forces. Hence equation (15) becomes  
 

 0i i i i i i iW R r F r f r         
   

    (17) 
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However, constraint forces do not perform work since 
(by definition) the displacements do not have any 
components in the direction of the constraint forces 
( 0i if r 
  ). As an example, consider a particle moving on a 

smooth surface. The constraint force is normal to the 
surface and the displacements are parallel to the surface. 
Another example is rolling without sleeping.  

 
Hence, it follows that, 

  

 0i i i i i iiii
zyW F r F x F y F zx         

 
  (18) 

 
In general, for a system of N particles, the sum of the 

virtual works over all particles must be zero, or 
 

   1,2....0i i i i N
i i

WW F r      
 

 (19) 

 
This expression also includes the cancellation of the 

virtual work done by internal forces on rigid bodies (action 
and reaction principle). 

 
Equation (19) is the expression of the PRINCIPLE OF 

VIRTUAL WORK, and stated as: 
 

If a system of forces is in equilibrium, the 
work done by the externally applied forces 
through virtual displacements compatible 
with the constraints of the system is zero. 
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D'ALEMBERT'S PRINCIPLE: DYNAMICS CASE 
The principle of virtual work can also be extended to the 

state of dynamics (motion), i.e. dynamic equilibrium.  
If there are some unbalanced forces acting upon a 

particle mi, then according to Newton's 2nd law, the force 
resultant vector must be equal to the rate of change of the 
linear momentum, i.e, 

   i i i im r
d

F f p
dt

   
 

     (20) 

 
Think of an “inertia force” (reversed acceleration) as a 

force whose magnitude equals the time rate of change of 
the momentum vector p


, is collinear with it, but acts in the 

opposite direction. If such a force is applied to the particle, 
then one can express the dynamic equilibrium condition as 

 

  0i i iF f p  
 

     (21) 
 

D'Alembert's principle states that the resultant force is 
in equilibrium with the inertia force. Following prior 
reasoning, the virtual work of the external and inertia 
forces must also be nil, i.e. 
 

    0i i iF p r  
        (22) 

 
and for a system of N particles,  
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 
1

0
N

i i
i

F r Wp  


   
   

      0i i i i i i i i iii i
i i i

F m x x F m y y F m z zzx y           

(23) 
 
Thus, the principle of virtual work for any system of 
particles is expressed as  
 

external forces inertia forces 0W W W       (24) 
 
 

HAMILTON'S PRINCIPLE 
Hamilton's principle is (perhaps) the most 

advanced variational principle of mechanics. The 
principle considers the motion of a whole system 
between two instants of time, t1 and t2, and is 
therefore an integral principle. One remarkable 
advantage of this formulation is that it is invariant to 
the coordinate system used (Principle of material 
frame indifference)1. 
 

Consider a system of N particles of constant mass. The 
system may be subject to kinematical (constraint) 
conditions.  

The virtual work expression in conjunction with 
D'Alembert's principle establishes 

                                                           
1 The stuff from which great theories are made of. 
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   
1

0
N

total i i i i
i

W m r F r 


    
 

  (25) 

 

Let   
1

N

i i
i

W F r 


 
 

     (26) 

 
be the virtual work done by the external forces on the 
system. 
 
The operations d/dt and   are interchangeable (linear 
operators). Then 
 

 

 

   1

2

i i

i i i i i i

i i i i i i i i i

d d d

d t d t d t

r r r r
r r r r r r

r r r r r r r r

   

   

 
 

 

  


   

 

          

           
   

 

Hence,            
   1

2

i i

i i i i

d

d t

r r
r r r r


  




         (27) 

 

Multiply Eq. (27) by mi and sum over the whole set of 
particles to obtain 
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      

 

 

1 1 1

1

1

1

2

1

2

N N Ni i

i i i i i i i
i i i

N Ni i

i i i i
i i

N i i

i
i

d

d t

d

d t

d

d t

r r
m r r m m r r

r r
m m r r

r r
m T


 







  





 
  
 
 

           
 
  
 
 


 





  

 



     

    

 

   (28) 

 
where T is the kinetic energy of the system (whole set of 
particles), i.e. 

   1

2

N N

i i i i
i i

TT m r r     
 

 
Inserting Eqs. (26) and (28) into Eq. (25) renders, 
 

   
1

N

i i i
i

d
T W m r r

d t
  



 
 
 

    
 (29) 
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The instantaneous configuration of a system is given by 
the values of n generalized coordinates. These values 
correspond to a point in n-dimensional space known as the 
configuration space.  

 
The system changes 

with time tracing a path 
known as "true" in the 
configuration space. A 
slightly different path, 
known as the varied path, 
is obtained if at any given 
instant a small variation in 

position ir
  is allowed 

without an associated 
change in time, i.e. t =0.  

 
The stipulation is made, however, that at two instants t1 

and t2 the true and varied paths coincide2. That is,  
 

  1 2and at0 atir t t t t    
 

  
Multiply Eq. (29) by dt and integrate it between t1 and t2 to 
obtain 
 

                                                           
2 This means that varied path must still satisfy the spatial constraints 

Varied
path

True
path

r

t

t

t2

t1
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   

 

 
   

2 2

1 1

2

1

2

1

1

1

1

1 20

0

since

Nt t

i i it t
i

N t

i i it
i

t
N

i i i
i t

i i

dt dt

dt

t t

d
T W m r r

d t

d
m r r

d t

d
m r r

d t

r r

  





 







 
 
 

  
   

  

 
  

 

 

  



 

 

 



 

 

 

 

  

Thus, 
 

   2

1

0
t

t
dtT W       (31) 

 
If the applied forces are divided into conservative and non-
conservative, then a potential energy function exists such 
that, 
 

 c nc ncW W W V W            (32) 
 

Introduce the Lagrangian function,   L=T-V (33) 
 
Then equation (31) for a conservative system  
(Wnc = 0) shows 
 

    2

1

0
t

t
dtL      (34) 
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while for both conservative and non-conservative forces we 
have 
 

  
 2

1

0
t

nct
dtL W     (35) 

 
 
If the system has only holonomic constraints, i.e., 
geometrical or depending only on the coordinates but not 
their time derivatives, then one can interchange the  
(variation) and integral in Eq. (34). Thus, for a conservative 
system, 
 

    2

1

0
t

t
L dt       (36) 

 
This is the mathematical statement of HAMILTON'S 

PRINCIPLE.  
 
In words it can be explained as follows: 

Only the true path renders the value of the 
integral stationary (a minimum) with respect 
to all possible neighboring paths that the 
system may be imagined to take between 
two instants of time.  
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Note that Eq. (35) corresponds to a principle of least 
action. HAMILTON'S PRINCIPLE IS A 
FORMULATION AND NOT A SOLUTION OF 
A DYNAMICS PROBLEM. 
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LAGRANGE'S EQUATIONS OF MOTION FOR 

HOLONOMIC SYSTEMS 
In a system of N particles with c holonomic constraints, 

the dependent variables ir


 in terms of n=(3)N-c 

generalized coordinates (qk) and time (t) are expressed as, 
  

 1 2 1,. . . , 3, ,. . . , ;i i n i N n N cr r q q q t    
     (36) 

 
where n is the number of independent degrees of 
freedom (DOF) of the system. Velocities are obtained by 
differentiation of Eq (36) as 
 

1
11

. . .
n

i i i i
i n k

kn k

r rd r r r ri ir q q q
dt q q t q t

 
 
 

         
    

         (37) 

 
and the system kinetic energy T is  

1
2

1

1
2

1 1 1

1
2

1 1 1 1

2

N

i i i
i

N n n
i i i i

i r s
i r sr s

N n n n
i i i i i i

i r s s
i r s sr s s

m

m
t t

m
t t t

T r r

r r r r
q q

q q

r r r r r r
T q q q

q q q



  

   



     
             

  
       

 

    
   

     
     



  

  

  

   
 

     
  

 (38) 

Note that  1 2 1 2, , . . . ., , , , . . . ., ,n nT T q q q q q q t      (39) 
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i.e., the system kinetic energy depends on the generalized 
displacements and velocities as well as in time.  
 
In addition, for conservative force fields, the potential 
energy function V depends only on position and time, i.e. 
 

    1 2, , . . . ., ,nV V q q q t   (40) 
 

The virtual work performed by non-conservative 
forces (both dissipative and external) is the product of 
"generalized forces" Qk acting over n generalized 

displacements, qk. The directions of the generalized 
forces coincide with the directions of the generalized 
displacements, thus 
  

  1 1 2 2
1

. . . .
n

nc n n i i
i

W Q q Q q Q q Q q    


     (41) 

 
Note that the generalized force Qk may NOT need to 

actually represent a force or a moment. However, the 

product Qk qk MUST have physical units of 
work (= energy).  
 

Substitute Eqs. (39), (40) and (41) into the generalized 
Hamilton's principle, Eq. (35)=  2

1

0
t

nct
dtL W   , to obtain  

   2

1

0
t

nct
dtT V W      (35) 
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Since, 

 
1 1

;
n n

k k k
k kk k k

V T T
q q q

q q q
V T   

 

     
        

   
   

 
And recall that t = 0, i.e. time does not vary while 
obtaining the virtual changes in energy. Then Eq. (35), 

 2

1

0
t

nct
dtT V W     , becomes 

 

1

2

1

0
n

k k k k k
k k k k

t

t

T T V
q q q Q q dt

q q q
   



               
 

  (42) 

 
The terms involving kq   are integrated by parts, and using 

( )
d

d t
q q  , to obtain 

 
2 2

1 1

2
2

11

]
k k

k
k k k

k k

tt t t

t t tt

d

d t

qT T dT Tq dt dt q q dtq q q qdt


   
 
 

             

(43) 
 
The first term on the RHS vanishes since (using Hamilton's 
Principle) the initial and final configuration of the system 
(at t1 and t2, respectively) are known, i.e., 

      1 20, 0k kq t q t    
 
Thus, Eq. (42) is rewritten as, 
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1

2

1

0
k

n

k k k k k
k k k

t

t

T V
q q q Q q dt

q q
Td
qdt

   


                 


   

or 

1

2

1

0
k

n

k k
k k k

t

t

T V
q Q dt

q q
Td
qdt




                 


   

(44) 
 
The variations {qk}k=1, . . .n, are independent (corresponding 
to the n degrees of freedom in the system).  
 
Hence, Eq. (44) is true (satisfied at all times) only when 
the bracketed expression vanishes for each degree of 
freedom, i.e., 
  

  0
k

k
k k

T V
Q

q q
Td
qdt

            


   

  

 1,2...
k

k k n
k k

T V
Q

q q
Td
qdt 

         

      (45) 

 
Eqs. (45) are known as LAGRANGE'S EQUATIONS OF 

MOTION. The solution of these equations is equivalent 
to the statement that Hamilton's Principle is also 
satisfied. 
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If V = V(qk) only, define the Lagrangian function,  

L=T-V, and since 0
k

V
q
    , then Eq. (45) becomes 

 

 1,2...
k

k k n
k

L
Q

q
Ld
qdt 

      

     (46) 

 
 
MODIFIED LAGRANGE'S EQUATION FOR SYSTEMS 

WITH VISCOUS DAMPING  
If some of the external non-conservative forces are of 

viscous type, i.e. proportional to the velocity, then the 
viscous dissipated power ( v ) is a general function of the 
velocities, i.e.  
 

 1 2, , . . . .,v v nq q q          (47) 

 
 

The n-equations of motion using the Lagrangian approach 
are, 
 

1,2...

1

2k k

v
k k n

k k

T V
Q

q q
Td
q qdt 

          


      

(48) 
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A THOUGHT: 
"Those who have meditated on the beauty and utility 
of the general method of Lagrange - who have felt 
the power and dignity of that central dynamic 
problem which he deduced from a combination of the 
principle of virtual velocities with the principle of 
D'Alembert - and who have appreciated the 
simplicity and harmony which he introduced by the 
idea of the variation of parameters, must feel the 
unfolding of a central idea. 
 
Lagrange has perhaps done more than any other 
analyst to give extent and harmony to such deductive 
researches, by showing the most varied consequences 
may be derived from one radical formula; the beauty 
of the method so suiting the dignity of the results, as 
to make of his great work a kind of scientific poem."  
 
W.R. Hamilton 
     


