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Handout # 6 (MEEN 617) 

Numerical Integration to Find Time 
Response of SDOF mechanical system  
 

State Space Method 
The EOM for a linear system is  

( )M X D X K X F t      (1) 
 
with initial conditions,    at 0 0 ; 0o o ot X X X X V       

 

Define the following variables,    1 2;Y X Y X     (2) 
 
and write EOM (1) as two first-order Eqs.  
 

2 2 1 1 2( ) &M Y DY K Y F t Y Y       (3) 
 
which can be written in matrix form as 
 

11
1 1 1

22

0 1 0YY

YM K M D M FY   

      
              


   (4) 

 

Or,     Y A Y b     (5) 
 

with 1

1 1 1
2

0 1 0
; ;

Y X

Y X M K M D M F  

     
             

Y A b  

This is known as the state-space formulation. Eq. (5) is to be 
integrated numerically with initial condition vector 

 To o oX VY  
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If the applied load is NOT a function of time, then an equilibrium 
state is defined after a very long time as 

 
10 o

  EY Y A b    (6) 
 
Computational software such as Mathcad®, Mapple®, 
Mathematica®, Matlab®, etc has built-in functions or 
commands to perform the numerical integration of 
equations set in the form 
 

  Y A Y b , even when system is nonlinear, i.e. A=A(Y).  
 
A few words about numerical integration methods 
Typical numerical integration methods include 

a) Euler (simple) method 
b) Fourth and Fifth-Order Runge-Kutta integrators,  
c) Rosenbrock Method see references on page 12,  
d) Adams Predictor Corrector Methods 
e) Average Acceleration and Wilson-θ (Implicit) Methods 

 
In most methods, the selection of an adequate time step is 

crucial for numerically stable and accurate results. (a)-(b) are 
favored by the young initiates into numerical computing and 
because of their ready availability in modern computational 
software. (c) –(d) are more modern (implicit) methods with 
automated intermediate resizing of the time step while performing 
the integration. Methods (e) have long been favored by structural 
mechanic analysts when integrating Multiple DOF (linear) systems  

 
All methods suffer from deficiencies when nonlinearities are 

apparent thus forcing extremely small time steps and the ensuing 
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cost with lots of numerical computing (time). (Memory) Storage 
appears not to be an issue anymore. 

 

State-space method for MDOF systems. 
Recall the EOMS for a linear system are 

( ) ( )t tM U + DU +K U =F     (7) 

where andU,U, U  are the vectors of generalized displacement, 

velocity and acceleration, respectively; and ( )tF  is the vector of 

generalized (external forces) acting on the system. 
M,D,K represent the matrices of inertia, viscous damping and 
stiffness coefficients, respectively1.  

Define the following variables,    ;1 2Y = U Y = U   (8) 
and write EOM (7) as a set of 2n-first-order Eqs.  

 

(t) &2 2 1 1 2M Y + DY +K Y =F Y = Y    (9) 

 
which can be written in matrix form as 
 

      
      

     
11

-1 -1 -1
22

Y0 I 0Y
= +

Y-M K -M D -M FY


   (10) 

 

Or,     Y A Y b     (11) 
 

with ; ;
     

       
     

-1 -1 -1

U 0 I 0
Y A b

U -M K -M D M F  (12) 

 

                                                 
1 The matrices are square with n-rows = n columns, while the vectors are n-
rows. 
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and initial conditions    ( 0)

T

t    o oY U U . 

 
A is a 2n x 2n matrix. I is the nxn identity matrix, and  0 is a nxn 
matrix full of zeroes. 
 
Conditions for a good numerical integrator 

In general a numerical integration scheme should 
a) reproduce EOM as time step 0t   
b) provide, as with physical model, bounded solutions for any 

size of time step, i.e. method should be stable 
c) reproduce the physical response with fidelity and accuracy. 

 
The numerical integration relies in representing time derivatives of 
a function with an algebraic approximation, for example  
 

   
0

1

lim

~

t

i i i i

d x x
x

d t t

x t t x t x x
x

t t

 




  



   
 



 
   (13) 

Eq. above is exact only if 0t   
 
Numerical integration methods are usually divided into two 

categories, implicit and explicit.  

Consider the ODE     ,x tx f    (14) 

 
In an explicit numerical scheme, the ODE is represented in terms 
of known values at a prior time step, i.e. 

 

 1 ,i ii i x tx x t f   ,    (15) 
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while in an implicit numerical scheme 

 11 ,i ii i x tx x t f
      (16) 

 
Explicit numerical schemes are conditionally stable. That is, 

they provide bounded numerical solutions for (very) small time 
steps. For example, 

n
crit

T
t 


        (17) 

where 
2

and K
Mn n

n

T
 


  are the natural period and natural 

frequency of the system, respectively. The restriction on the time 

step is too severe when analyzing stiff systems, i.e. those with 
large natural frequencies.  
 

Implicit numerical schemes are unconditionally stable, i.e. 
do not impose a restriction on the size of the time step t . 
(However, accuracy may be compromised if too large time steps 
are used). 
 
ANALOGY between numerical schemes and a filter 
 A few words of wisdom released in class 
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The average acceleration method2  
for numerical integration of SDOF equation: 
 

( )M X D X K X F t      (1) 
 
Consider a change of “thinking frame” by defining 
 
  Arithmetic ~ Continuum (function) 

   
   1 1 1 1

, ,

,

i i i i

i i i i

X X t F F t

X X t F F t   

 
 

    (17) 

 
Write Eq. (1) at two times,  
 

at i i i i it t M X D X K X F         (18a) 
 

1 1 1 1 1at i i i i it t M X D X K X F             (18b) 
 
Subtract (b) from (a) to obtain: 

i i i iM X D X K X F        (19) 
where  

1 1

1

,

,
i i i i i i

i i i

X X X F F F

X X X etc
 



     

        (20) 

 

Note that known quantities at t=ti are , ,i i iX X X  .  

 

                                                 
2 This numerical method is extremely popular among the structural dynamics 
community. Its extension to MDOF systems will be shown later. The other 
favorite method, the Wilson-θ scheme, will also be given in later lectures 
(MDOF systems). 
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Now, assume the acceleration is constant within the time interval 

1i i it t t    
 

  for 0i iX a t        (21) 

 

set as an average value  1
2 1i i ia X X   . 

The velocity and displacement follow from integration of Eq. 
(6) within the time interval, i.e. 
 

  i iX X a         (22a) 

 

  21
2i i iX X X a        (22b) 

 

t

Acceleration

ti ti+1



  iX a 
iX

1iX 


t

velocity

ti ti+1



iX

1iX 


  i iX X a   

t

displacement

ti ti+1



iX

1iX    21
2i i iX X X a    
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At the end of the time interval, the velocity and displacement equal 
 

 1i i i i iX X t X a t           (23a) 

 

   2
1

21i i i i i i iX X t X X t a t         (23b) 

 
And the differences in velocity and displacement re 

 

   
 
 

1
21 1

1
2 1

1
2

2

2

i i i i i i i i

i i i i

i i i

X X X a t X X t

X X X t

X X t

 



       

    

   

    

  

 

  (24a) 

 

   
 
 

2
1

21

21
4 1

21
4 2

i i i i i i i

i i i i i i i

i i i i i

X X X X t a t

X t t X X X X

X t t X X





      

      

     



    

  

 (25b) 

 

from (25b),   2

4
2i i i i i

i

X X X X t
t

     


     (26a) 

and into (24a) 
 

 

 

1
2

1
2 2

2

4
2 2

i i i i

i i i i i i
i

X X X t

X X X X t t
t

    

 
        

  

  
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2
2i i i

i

X X X
t

   


     (26b) 

 

Note that in Eqs (26),  ,i iX X   , depend on the known values 

obtained at the prior time step, i.e.  ,i iX X   and the unknown 

iX . Thus, replace  ,i iX X   into the difference equation (19),  

i i i iM X D X K X F           
 

 2

4 2
2 2i i i i i i i i

i i

M X X X t D X X K X F
t t

   
                 
  

 
Rearranging terms leads to 
 

* *
i i iK X F     (27) 

where 

*
2

2 4
i

i i

K K D M
t t

 
     

  (28a) 

 

* 4
2 2i i i i

i

F F M X D M X
t

 
       

     (28b) 

 
are known as pseudo dynamic stiffness and dynamic force, 
respectively 
 
The recipe for the numerical integration to find the system time 
response is 
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At time ti, known variables are  ,i iX X  (current state) 

(1) find from EOM:        1
i i i iX M F D X K X     

(2) form pseudo stiffness and forcing functions,  *,i iK F  from 

Eqs. (28), 
(3) Calculate  

  1*
i i iX K F


   ,  and  

 
2

2i i i
i

X X X
t

   


  ; 

 
(4) 1 1,i i i i i iX X X X X X             at ti+1 
 
(5) Increase time to ti+2 and return to step (1) 
 

The average acceleration method is an implicit method, i.e. 
numerically stable and consistent. The disadvantage is that it 

requires memory3  to store , , , ,i i i i iX X X X F     . 
 

                                                 
3 A non-issue in the 21st century  
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Average acceleration methods for numerical 
integration of a nonlinear system 
 
Consider the system with EOM 

 , ( )M X g X X F t     (30) 

where  ,g X X  is a nonlinear function, for example 

  3
3, ( )o og X X g k X k X F sign X      

 
As with the linear system, evaluate Eq. (30) at two times (closely 
spaced): 
 

 at ,i i i i it t M X g X X F        (31a) 

 

      1 1 1 1 1at ,i i i i it t M X g X X F           (31b) 

 
Subtract (b) from (a) to obtain: 

 

1i i i iM X g g F       (32) 
where  

   
1 1

1 1 1

,

, , ,

i i i i i i

i i i i i i

X X X F F F

g g X X g g X X

 

  

     

 

  
    (33) 

 
A Taylor series expansion of the nonlinear function at ti gives 
 

 2 2
1

, 0

,
i i

i i i i i i

X X X

g g
g g X X O X X

X X


 
       

  

 
  (34) 

 
define local linearized stiffness and damping coefficients as 
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, ,

;
i i i i

i i

X X X X

g g
K D

X X

 
 
  

    (35) 

Hence, 

1i i i i i ig g K X D X        
 
and the difference Eq. (32) becomes linear  
 

i i i i i iM X D X K X F          (36) 
 
Eq. (35) is formally identical to the one devised for a linear system. 
Thus, the numerical treatment is similar, except that at each time 
step, linearized stiffness and damping coefficients need be 
calculated.  
 

The recipe is thus identical; however with the apparent 
nonlinearity, the method does not guarantee stability for (too) large 
time steps.  

 
The recipe for the numerical integration to find the system time 
response is 
 

At time ti, known variables are  ,i iX X  (current state) 

(1)   find from EOM:        1 ,i i i iX M F g X X    
   

(2a) find local (linearized) stiffness and damping coefficients, (Ki , 
Di ) from eq. (35) 

(2b) form pseudo stiffness and forcing functions,  *,i iK F  from  
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*
2

2 4
i i i

i i

K K D M
t t

 
     

;  

* 4
2 2i i i i i i

i

F F M X D M X
t

 
       

   

(3) Calculate  

  1*
i i iX K F


   ,  and  

 
2

2i i i
i

X X X
t

   


  ; 

(4) Set    1 1,i i i i i iX X X X X X             at ti+1 
 
(5) Increase time to ti+2 and return to step (1) 

 

Often regarded as an art, numerical computing is 
in actuality a well established branch of 
mathematics. 
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Appendix A4 

Numerical Integration Using Modified Euler’s 
Method 
 

It is often difficult to solve (exactly) a nonlinear differential 
equation. Numerical integration is then employed to obtain results 
(predictions of motion). The Modified Euler Method is one type 
of numerical integration  scheme. 
 
Solve for q(t) governed by 
 

( , , )M q C q K q Q q q t        (A.1) 
 

with initial conditions 0 0and at 0q q t  . In Eqn. (A.1), 

( , , )Q q q t may contain terms that are nonlinear in  
 

Let     
d q

V
d t

      (A.2) 

and write Eq. (A.1) as a system of TWO first order differential 
equations, i.e. 
 

( , , )
,

C K Q q V t
V V q

M M M
q V

  






    (A.3) 

 

Define   and
2

n

K C

M K M
       (A.4) 

                                                 
4 This Appendix is included because most young engineering students have learned only about Euler’s 
method. Hence, the appendix complements their education.. However, I encourage you to abandon the 
usage of this poor method. 
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as the natural frequency and viscous damping ratio, respectively. 
With the noted definitions Eqs. (A.3) become 
 

2 2
1

2

( , , )
( , , ) 2

( , , )

n n

d V Q q V t
V F q V t V q

d t M

d q
q F q V t V

d t

       

  




 (A.5) 

 
Note that F1 and F2 are the slopes of the (V vs t) and (q vs t) 
curves, respectively. 

 
 
Let the numerical approximations (arithmetic values) be 
 

   ,andi i i iV V t q q t         (A.6) 

 
where 0,1,....;i it i t   and t  is a suitably small 

time step for numerical integration. 
 
In Euler’s numerical scheme, approximate the 
time derivatives (or slopes) 
as: 
  

 
 

1 1 1 1

1 2 2 2

, , , ,

, , ,
i i

i i

i i i i i

i i i i i

V V t f f F q V t

q q t f f F q V t





 

 




   for i=1,2 …..    (A.7) 

t t 

q(t) V(t) 

ti        ti+1 ti        ti+1 

V

qi 

qi+1 

Vi+1 

F1 

V

Vi+1 
qi 

qi+1 

F2 

t 
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with initial conditions 0 0 0and at 0q q t      
Eq. (7) offer a recursive relation to calculate the numerical 
(arithmetic) values of the variables Vi and qi at successive times t). 
The regular Euler method is first order with a truncation error of 
order (t2).  
 
A modified Euler method (second order accurate) with error order 
(t3) follows: 
 

(a)   Compute preliminary estimates of  1 1,i iV q   as 

 
 

1 1

1 2

, , ,

, ,

i i i i i

i i i i i

V V t F q V t

q q t F q V t












  (A8.a) 

 
(b) Use these preliminary estimates to obtain improved slopes as 
 

 
 

1

1

1 1 1 1 1

2 2 1 1 1

, , ,

, , ,

i

i

i i i

i i i

f F q V t

f F q V t





  

  




    (A8.b) 

 
(c) Define average slopes as per 
 

 

 
1

1

1 1 1

2 2 2

1

2
1

2

i i i

i i i

f f f

f f f





 

 
           (A8.c) 

 
(c) and obtain new estimations using the averaged slopes, i.e. 
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1 1

1 2

,
i

i

i i

i i

V V t f

q q t f












           (A8.d) 

 
(d) Repeat steps (a) through (d) at each time step, 

0,1,....;i it i t   , and starting with the initial conditions 

0 0 0and at 0q q t   
 

The size of the time step t is very important to obtain accurate 
and numerically stable results.  
 

If t is too large, then numerical predictions will be in error and 
very likely show unstable (oscillating) results.  
 
If t is too small, then the numerical method will be slow and 
costly since the number of operations increases accordingly.  
 

In practice, a time step of the order t =Tn/60, where Tn is the 
natural period of motion given as (2/ωn). 
 
Euler’s method is most times NOT a good choice to perform 
the numerical integration of linear or nonlinear ODES. Alas, it 
is widely used by rookie engineers and engineering students 
because it is easy to implement. Often enough, however, 
predictions can be wrong and misleading.  
 
I call Euler’s method a BRUTE FORCE approach, 
 
 


