Handout 8

Modal Analysis of MDOF Systems with
Proportional Damping

The governing equations of motion for a n-DOF linear
mechanical system with viscous damping are:

MU+DU+KU, =F, (1)

where U, U, and U are the vectors of generalized displacement,
velocity and acceleration, respectively; and F(;) is the vector of

generalized  (external forces) acting on the system.
M, D, K represent the matrices of inertia, viscous damping and

stiffness coefficients, respectively'.

The solution of Eq. (1) is uniquely determined once initial
conditions are specified. That is,

att=0 —»U,, =U,, U, =0, 2)

Consider the case in which the damping matrix D is of the form

D=aM+ (K 3)

where o, B are constants®, usually empirical. This type of damping
is known as PROPORTIONAL, i.e., proportional to either the
mass M of the system, or the stiffness K of the system, or both.

' The matrices are square with n-rows = n columns, while the vectors are n-
TOWS.
> These constants have physical units, a is given in [1/s] and B in [s]
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Proportional damping is rather unique, since only one or two

parameters (at most), 0. and f3, appear to fully describe the
complexity of damping, irrespective of the system number of
DOFs, n. This is clearly not realistic. Hence, proportional
damping is not a rule but rather the exception.

Nonetheless the approximation of proportional damping is
useful since, most times, damping is quite an elusive phenomenon,
i.e., difficult to model (predict) and hard to measure but for a few
DOFs.

Next, consider one already has found the natural frequencies
and natural modes (eigenvectors) for the UNDAMPED case, i.e.

given MU+KU=0,

{w"’(p(")}isz...n satisfying [—M wiz +K] 0 =0, RPN €Y

with properties @ M®=[M |; ®'K®=K] (5)

As in the undamped modal analysis, consider the modal
transformation U(;) = O q(t) (6)
Andwith U ,,= ® q,; U, = ® q,, then EOM (1) becomes:

M®q+D®Pq+ K®q=F, (7)

which offers no advantage in the analysis. However, premultiply

the equation above by @ to obtain

(®'M®)j+(®'D®)q+(P'KD)q=D'F,, )

And using the modal properties, Eq. (5), and
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O'DP=0" (aM+ SK)P=0 P MPD+LD' KD
®'D®=o [M]+p[K]|->|D] )

1.e., [D] 1s a diagonal matrix known as proportional modal
damping. Then Eq. (7) becomes

[M]éj+[D]q+[K]q=Q:(I)TFm (10)

Thus, the equations of motion are uncoupled in modal space,
since [M], [D], and [K] are diagonal matrices. Eq. (10) is just a set
of n-uncoupled ODEs. That is,

M, G +D g +K,q,=0

M,q,+D,q,+K,q,=0, (1)

Or qu]'+qu.j+quj:Qj > j=1,2..n (12)

Where w, = K%lj and D;=aM ;+ K, . Modal damping

ratios are also easily defined as

ro_ D _aM K,
j: =
2 /KM, 2JKM,

For damping proportional to mass only, =0, and

=12,...n (13)
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é/ aM j o

j = =
2JyKM; 2 @,

i.e., the j-modal damping ratio decreases as the natural frequency

increases.

(13a)

For damping proportional to stiffness only, & =0,

(structural damping) and —{damping ratio is

é/ ,BK]. IB a)nj dimensiz;l;;;
NS
J J
1.e., the j-modal damping ratio increases as the natural frequency

increases. In other words, higher modes are increasingly more
damped than lower modes.

The response for each modal coordinate satisfying the modal Eqn.

M,G.+D;q;,+K . q,=0;, ., [is obtained in the same way

as for a single DOF system (See Handout 2).

First, find initial values in modal space {qol g, } These follow
from either
-1 I ey
qOZ(I) Uo > qo =0 Uo (14)

or

q,=[M] @MU, |

T 7 : (15a)
q,=[M] @MU,
| , 1 .
9o, :ﬁkq’{k) (MU,). 4, :qu’{k’ (MU) (15b)
k=1,....n
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Free response in modal coordinates
Without modal forces, QZO, the modal EOM is

quHj+quHj+quHj:0:Qj (16)

with solution, for an_elastic underdamped mode | £ ;<1

qy =e‘é”jwd,-f(cj cos(a)djt)+Sj sin(a)djt)) if @, #0 (17a)

J

where W, =0, NI @, = \ %4j and
QOJ- +é’ja)njqoj
@y

/—(cheat sheet too! |

See Handout (2a) for formulas for responses corresponding to
overdamped and critically damped SDOF systems.

C,=q,; S,= (17b)

Forced response in modal coordinates

For step-loads, Qs i the modal equations are

M,G,+D;q,+K,q,=0Qs;, (19

with solution, for an elastic underdamped mode ¢ ;<1

q :e_g"wdft(Cj cos(a)djt)+Sj sin(a)djt)) tqs, o, #0 (19a)

J
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_ 2 e
where a)dj—a)njﬂ/l— i @ =,/ %@ and

a5~ C,=(a, 45 ); S,= - (19)
cheat sheet too! |

See Handout (2a) for formulas for physical responses
corresponding to overdamped and critically damped SDOF
systems.

For periodic-loads,
Consider the case of force excitation with frequency €2 # @, and

acting for very long times. The EOMs in physical space are
MU+DU+KU=F, cos(Q¢)

The modal equations are
quj+qu'j+quj=Qchos(Qt) (20)

with solutions
for an elastic mode, @, #0
J

qi = qtranvient + qw(ﬂ =

e M (Cj cos(a)djt)+Sj sin(a)djt))+ 21)

C, cos(Qt)+C, sin(Qx)

The steady state or periodic response is of importance, since the
transient response will disappear because of the dissipative effects
of damping. Hence, the j-mode response is:
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qPS:(?{P’JAjcos(Qt—wj) (22)

j .
J

Let r - Qpea Jjsm-mode excitation frequency ratio. Then, define
J
w

&

1

20, f
A4, = - = and tan(y; )= 2% (23)
Ty ey )

Recall that ; is a phase angle and 4; is an amplitude ratio for

the jy,-mode.

Note that depending on the magnitude of the excitation
frequency €, the frequency ratio for a particular mode, say &,
determines the regime of operation, i.c., below, above or around
the natural frequency.

Using the mode displacement method, the response in physical

coordinates 1s

U~ o,
j=1

Op
KP] Ajcos(Qt—wj) (24)

J

and recall that Kj za)jj M]. = (p(Tj)K 9 and ij = (p(Tj)FP.

A mode acceleration method can also be easily developed to

g1VEC |(* read addendum) |

526, 5P,
U zUSPcos(Qt)—Z L, Gps. —Z—é_qpsj (25)
j=1 @; j=1 ©;
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where Ug, = K_le . Note that the mode acceleration method

cannot be applied if there are any rigid body modes (K is singular)

Frequency response functions for damped
MDOF systems.

The steady state or periodic modal response for the j-mode is:

O
Gps, = ( Kj 4, cos(Qt—gyj) (22)
J
Or, taking the real part of the following complex number
expression
QP - iQt
QPSJZ(K. H e (26)
J
h H 1 (27)
where ;= :
L (=7)ri(26,0)
with i =+/—11is the imaginary unit, and where f= Q is the Jin-
)

&

mode excitation frequency ratio. Then, recall from Eqs. (23)

Aj:\Hj\[B : = :
J=77) +(2¢, 1)

Using the modal transformation, the periodic response Up in
physical coordinates is

and i/ ; = arg(Hj) (28)
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J

n QP
UIE .
P < (P]K

or take the real part of the equation below

" N1 U
UP:(I)q:Z((ijJ):Z P, K He
j=1 j=1 j
(29)
N Hj iQ1
- ;FP ‘

Now, the product @, (pf =matrix (7 x n). That is, define the

elements of the complex — frequency response matrix H as

g |29, 1
P K \(1-7)+i(26, 1)

p.q =1,2.... n. The response in physical coordinates thus becomes:

(30)

U, =HF, e (31)

or in component form, i
IS matrix I1s a

function of the

L . frequency ratio fj
_ iQtr
UP] _(ZH]',F FP, je > j=1,2.n / (32)
r=1

The components of the frequency response matrix H are
determined numerically or experimentally. In any case, the
components of H depend on the excitation frequency (€2).
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Determining the elements of H seems laborious and (perhaps) its
physical meaning remains elusive.

Direct Method to Find Frequency Responses in
MDOF Systems

Nowadays, with fast computing power at our fingertips, the
young engineer prefers to pursue a more direct approach, one
known as brute force or direct approach| Recall that the
equation of motion 1s

MU+DU +K U=F, cos(Q)

or MU+DU+KU=Re(F, ¢)

(33)

— 1 (Ut
Assume a periodic solution of the form U= VP e’ (34)
where V,, is a vector in the complex domain. Substitution of Eq.
(34) into Eq. (33) gives

K+iQD-Q*M |V, =F, (35)

Define at each excitation frequency the complex impedance
(dynamic stiffness) matrix as:

K, =| K+iQD-Q°M | (36)

And find the vector of physical responses (amplitude and phase) as

Vi =[KD(Q) T k, (37)
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Since Vp, =V,

real

+iV, , the physical response for each DOF

imaginary
follows as:

Ur :Vpr COS(Qf =7, )a r=1,2..n
. 3
VP, - \/VPf—real T VP? —imaginary . tan(]f i ) - (Vpr_lmagmmy/VPr—real )

The direct method requires calculating the inverse of the
dynamic stiffness matrix at each excitation frequency. The
computational effort to perform this task could be excessive but for
systems with a few DOFs (n small).
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FORCED RESPONSE of MDOEF Linear system with
proportional damping

Original by Dr. Luis San Andres for MEEN 617 class /SP 2012, FA2001

The equations of motion are:

M d2Xdt2 + C dX/dt+ K X = F(t)

where M,K,C are nxn matrices of inertia, stiffness, and damping force coefficients,

and X, V=dX/dt, d2X/dt2,and are the nx1 vectors of displacements, velocity and
accelerations, respectively.

F(t) is a vector of nodal forces. At t=0, Xo0,Vo=dX/dt are known.

For proportional damping, C =a M + b K, so the undamped mode shapes are still
valid. a & b are physical constants usually determined from measurements.

1. Define elements of inertia, damping & stiffness matrices:

n:=3 #of DOF

100 2 1 0 example a-=0
M:=10%|0 2 0 K=10"-1 2 -1 b := .001
001 0 -1 1 C=aM+bK

2. Calculate the undamped naural frequencies and natural mode
shapes from the fundamental relationship:

(—oaz-l\/l + K)-¢ =0 @ Lett. A= ©)

If M is invertable, then define A =M l-K 4)

and write Eq. (2) as:

rd=Ad
L := sort(eigenvals(A)) <---- find eigenvalues
j==1.n
. X The undamped T
®n, '_\/TJ natural frequencies o = (120.57 374.57 495.14)
On. are. rad/s

foo=

n. - T

I 2 f, = (19.19 59.61 78.8) Hz

and undamped natural modes: ¢j = eigenvec(A,%j)

W =y,



3. Plot the natural mode shapes:

This is the
matrix of undamped
modal vectors

[*] Modal matrices
4. Modal transformation of physical eguations to (natural) modal coordinates

Using the transformation X = ®-q , the equations of motion (1) become uncoupled
in the modal space (principal coordinates):

(6)
h . Cp— T
where:  Mp = ® -M-® Modal matrices
T
Km =0 ‘K-O (7)
T
Cmi=® -C-® Cm = aMm +b-Km

and modal forces: Q = cI)T-F (8)

and with the initial conditions:

0o = Mm 1.((pT.|\/|.x0) — =Mpn 1.(<1)T.|\/|.V0) ©)



Define the damping ratios and damped natural fregs. in modal space: k:=1..

ka K T
- kK (10a) ¢ =(0.06 0.19 0.25)
2'Mmk k'(})nk

Ck :

note all damping ratios < 1

575
®d, = C‘)nk'[ 1- (Ck) ] (10b) UNDERDAMPED CASE

The modal responses for arbitrary excitations are easily obtained for each natural mode (based on
response of simple 1DOF system).
And, the response in the physical coordinates is given by the superposition of the modal

responses, i.e.
X() =@q@® (11

[«] Modal matrices

Response to a STEP Load

Set STEP load vector: 2000
| _ . T
F :=| -3000 modal force is: Q= -F
2000 ~460.81
and set vectors of initial conditions 0 0 Q=| -675.13
Hpi= U = | U 321x10°
0 0
[*] Calculate response
calculate modal initial displs. & vels.
_ T - T
0o := Mim 1-(@ -M-Xo) q_doty := M 1-(@ -M-Vo)
Evaluate response in modal coordinates:
j=1.n
0. = Qj : static displacement in modal space
5 K,
’ g_doto. — Cj'mn.'Ac.)
Ac. = - ( J ) )
o (qu qu) A =
J O)dj
p := 1.. Npoints
tp = (p — 1)At
—Qj'(l)n.'tp
dj,p:=¢€ ‘(Ac.'cos((’)d.'tp) + As_'Sin((Dd.'tp)) + (s. | see your cheat-sheet
J J J J J | (1 DOF response)
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Response in modal space

0
Go=|0
_ 0
-3-10 *
0
g doto=1|0
nqnd 0
610 0 0052 01 016 021 026 0.31
time(secs)
— al _4
— q2 —23 X 10
-3 Os=|-437x10°
_ _ _ ~1.13x 104
The response in physical coordinates is: X(t) = ®-q(t) (11)
Let m:= 3 <----- select number of modes for physical response Stafic resnonse as f-> inf
Response in physical coordinates Recall I.C's
0 0
XO = O VO = O
ry
AN AT T ° °
! \ / \\\ l/ VNN
" ‘\I' ¢ Steady state response (long times)
0
Xs=|-2x10"4
005 01 015 02 025 03 0.35 _4
time(secs) ~1x10
- X1
- X2
=== X3

Check steady-state (t infinite) response:

7.86x 10 ° 0

_ —4 N -
S.Npoints ~ | ~1-85 10 Xs=|-2x10

5 _1x10”

-8.29x 10



ORIGIN =1 PropDamping_STEPMDOF.mcd

PERIODIC RESPONSE of MDOF system with proportional
damping

Original by Dr. Luis San Andres for MEEN 617 class /SP 2012

The equations of motion are:

M d2Xdt2+ C dX/dt+ K X = Fo cos(Qt) @

where M,K,C are nxn matrices of inertia, stiffness, and damping force coefficients,
and X, V=dX/dt, d2X/dt2,and are the nx1 vectors of displacements, velocity and

accelerations, respectively.
F(t) is a vector of nodal forces - periodic. At t=0, Xo,Vo=dX/dt are known.

For proportional damping, C =a M + b K, so the undamped mode shapes are still
valid. a & b are physical constants usually determined from measurements.

1. Define elements of inertia, damping & stiffness matrices: n:=3 #of DOF
100 2 1 0 example a-=0
M := 10>/ 0 2 0 K:=10"-1 2 -1 b := .00025
00 1 0 -1 1 C=aM+bK

[*] find natural fregs.

0.33 0.53 -0.88

1
® =061 032 04
o
D q 05 ~-2. 0.72 -0.79 -0.27
=== .,’ \\-\ 0
P2 of NN -
';'*' / \\ 2 f, = (19.19 59.61 78.8)
k,3 :
&6 05 K4 \ Hz
/ \
@ T
10 1 3 4
=== mode 1
==+ mode 2
©© mode 3

[*] Modal matrices

-
damped natural freqs. and fq' = (19.19 59.55 78.65) Hz  C = (0.02 0.05 0.06)

damping ratios



Response to a PERIODIC Load

Set amplitude load vector: 2000 modal force is:
| _ T 3
Fo := | —4000 Qo= ® Fy 2.51x 10
SO0 Qo = | -4.92x 10°
Assume effect of initial conditions has vanished since periodic load —4.97x 10°

acts for very long time.

[*] calculate response

Vary the excitation frequency Q to determine the amplitude and phase of the FRF for each mode:

set maximum frequency (rad/sec) to display 0 — Lo
max -— n

calculations N (larger than highest natural freq)

k :=1..10g( Qmax)-100 on =495.14  radss

k
excitation Frequency T

100
Q=10 Qpax = 1.98 x 10°

k
i=1.n freq =5 "M
Evaluate response in modal coordinates:

Q ,
M k = 2k frequency ratio

3

U = a4 = (1.26 x 10> —3.19x 10~ % —1.75x 10‘4)

The MODAL complex amplitudes are:

and MODAL Phase Angles:

See your cheat-sheet
(1 DOF response)

[«] calculate response
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Natural Mode Response Phase angle

—

7
.-..-0"‘.1

\

Phase Angle (in Degrees)

P Ll

100

Forcing Frequency (Hz)




The response in physical coordinates is:  X(t) = d-q(t)

et [mi=@ < select number of modes for physical response

D
- |

Dynamic response in physical coordinates

200

& 100

=)

E \

[«B]

g 0 —

[a

£ \

2‘ —100

; \

%E¥-
2005 100 110°
frequency (Hz)

- X3



DIRECT METHOD

and solve

foreach Qy
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<———{Addendum |
Derivation of Mode Acceleration Method for

MDOF systems (proportional damping or light
damping)

(Luis San Andrés, Lecturer. Based on homework delivered by Mr. Rahul Kar)

Problem Statement
Determine the system response of a MDOF system with proportional damping using the
Mode Acceleration method.

Solution
The differential equation governing the motion of a n-DOF linear system is:

[M]X +[C]X +[K]X = P(t) (1)

where [M], [K], [C] are the (nxn) matrices of (constant) mass, stiffness and damping
coefficients. P(t) is a vector of n-external forces, time dependent, and X(t) is the vector of
system displacements (physical responses). The physical damping is of proportional type,
ie.[Cl=a[M] +b K]

The system described by (1) has a set of natural frequencies (a)i=i.n and associated
modal (eigen) vectors (‘¢ )i=i_n. Each pair (e ') satisfies the fundamental relationship

[Kl'¢=a [M] '4, i=12..n )
The physical response X(t) or solution to (1) can be found using modal analysis, i.e.
XM =[]n®=3"¢n, (3)
i=1

where [q)]:{l(p ’d..... ”¢} is the modal matrix. Each of the components of the modal
response vector 7(t) is obtained from solution of the (uncoupled) equations:

Ivlmi 77| +Cmi 77i + Kmi Ur :Qi i=1,2,...n (4)

where Q=[®[" P, and (K, M, Crn); are the i-th modal stiffness, mass and damping
coefficients obtained from:

M, =[] [M][@] [K, [=[o] [K]@}[C, =[] [C]lo] )

In (3), using a number of modes m less than the n-DOF is known as the mode
displacement method, i.e.

XO='67 ©)

i=1

The mode acceleration method aims to find exactly the system static response
should P be a vector of constant generalized forces. In this case, the mode displacement
method does poorly when just a few modes, m<<n, are used



Administrator
Callout
Addendum


To derive the appropriate equations, pre-multiply (1) by [K] ™", i.e. the flexibility matrix
(obviously this operation precludes any rigid body motion), to obtain:

[KI'MIX +[KT'[CIX + X =[K]"P(t)

and
X =[KI*P(t)~[KI*[M]X ~[K]'[C]X (7)

from (6) it follows that X = > g7, (t) and X = )" 7 (t) . Replacing these relationships
i=1 i=1

into (7) gives:
X = [K]'PO-IKI' M1 i, 0- XK' 4,0 o ©

Let’s work with the terms: [K]*[M]'¢ and [K][C] '¢. Since each pair (=, '¢) satisfies
the fundamental relationship

[Kl'¢=a’[M] '¢ 0
then _ _

[KI* [M] '¢ = (V) '¢ (9.2)
and similarly, [KI[C] "¢ = (2& [wy) ' (9.b)

where & is the i-th modal damping ratio defined as

g==m [c,1=[@] [c]o] c, =2(k, M, }? (10)

Note that in the equation above, (Kn, Mp); are the i-th modal stiffness and mass

1/2
coefficients satisfying [K] o
M 1

m\

Replacing (9) into (8) gives the physical response of the system as:

X @) = [K]* p(t)—i%ﬁi (t)—izi—% O e o

which is known as the mode acceleration response method. The first term in the
response [K] ™ P(t) corresponds to a “pseudostatic” static displacement due to P(t).

Note that for P = P, (constant), X=Xs=[K]™*Pssince all 7=0. This simple check certifies
the accuracy of the mode acceleration method even when using few modes (m<n).
Reference:
MEEN 617 Handout #8 Modal Analysis of MDOF Systems with Proportional Damping, L.
SanAndres, 2008.





