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Handout 8 

Modal Analysis of MDOF Systems with 
Proportional Damping 
 

The governing equations of motion for a n-DOF linear 
mechanical system with viscous damping are:  
 

( ) ( )t tM U + DU +K U =F     (1) 

 

where andU,U, U  are the vectors of generalized displacement, 

velocity and acceleration, respectively; and ( )tF  is the vector of 

generalized (external forces) acting on the system. 
M,D,K represent the matrices of inertia, viscous damping and 
stiffness coefficients, respectively1.  
 

The solution of Eq. (1) is uniquely determined once initial 
conditions are specified. That is, 

(0) (0)at 0 ,o ot    U U U U    (2) 

Consider the case in which the damping matrix D is of the form 
 

  D M K     (3) 
 
where α, β are constants2, usually empirical. This type of damping 
is known as PROPORTIONAL, i.e., proportional to either the 
mass M of the system, or the stiffness K of the system, or both.  
 

                                                 
1 The matrices are square with n-rows = n columns, while the vectors are n-
rows. 
2 These constants have physical units, α is given in [1/s] and β in [s] 
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Proportional damping is rather unique, since only one or two 

parameters (at most), α and β, appear to fully describe the 
complexity of damping, irrespective of the system number of 
DOFs, n. This is clearly not realistic. Hence, proportional 
damping is not a rule but rather the exception.  

 
Nonetheless the approximation of proportional damping is 

useful since, most times, damping is quite an elusive phenomenon, 
i.e., difficult to model (predict) and hard to measure but for a few 
DOFs. 

 
Next, consider one already has found the natural frequencies 

and natural modes  (eigenvectors) for the UNDAMPED case, i.e. 

given M U+K U=0 ,  
 

 ( ) 1,2...
,i i i n




φ satisfying 2
( ) 1,...,i i i n   M +K φ =0 .  (4) 

 
with properties    ;T TM K Φ MΦ Φ KΦ    (5) 

 
As in the undamped modal analysis, consider the modal 

transformation      ( ) ( )t tU Φ q   (6) 

And with ( ) ( ) ( ) ( );t t t t U Φ q U Φ q   , then EOM (1) becomes: 

 

( )tMΦq + DΦq KΦq =F    (7) 

which offers no advantage in the analysis. However, premultiply 

the equation above by TΦ  to obtain 
 

      ( )
T T T T

tΦ MΦ q + Φ DΦ q Φ KΦ q =Φ F   (8) 

 
And using the modal properties, Eq. (5), and 

l-sanandres
Rectangle

l-sanandres
Rectangle

l-sanandres
Rectangle



MEEN 617 – HD 8 Modal Analysis with Proportional Damping. L. San Andrés © 2013 3

 

 T T T T      Φ DΦ Φ M K Φ Φ MΦ Φ KΦ  

 

          T M K D   Φ DΦ      (9) 

 
i.e., [D] is a diagonal matrix known as proportional modal 
damping. Then Eq. (7) becomes 
  

      ( )
T

tM D K q + q q =Q Φ F    (10) 

 
Thus, the equations of motion are uncoupled in modal space, 
since [M], [D], and [K] are diagonal matrices. Eq. (10) is just a set 
of n-uncoupled ODEs. That is,  
 

1 1 1 1 1 1 1

2 2 2 2 2 2 2

.....

n n n n n n n

M q D q K q Q

M q D q K q Q

M q D q K q Q

  
  

  

 
 

 

     (11) 

 
Or  1,2...,j j j j j j j j nM q D q K q Q        (12) 

 

Where j

jj

K
Mn  and j j jD M K   . Modal damping 

ratios are also easily defined as 
 

2 2
j j j

j

j j j j

D M K

K M K M

 



   ; j=1,2,….n    (13) 

 
 For damping proportional to mass only, 0  , and  
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22
j

j
j

nj j

M

K M

 


     (13a) 

i.e., the j-modal damping ratio decreases as the natural frequency 
increases. 
 

For damping proportional to stiffness only, 0  , 
(structural damping) and  

22
jnj

j

j j

K

K M


      (13b) 

 
i.e., the j-modal damping ratio increases as the natural frequency 
increases. In other words, higher modes are increasingly more 
damped than lower modes. 
 
The response for each modal coordinate satisfying the modal Eqn. 

1,2...,j j j j j j j j nM q D q K q Q      is obtained in the same way 

as for a single DOF system (See Handout 2).  
 

First, find initial values in modal space  ,
j jo oq q . These follow 

from either 
1 1;o o o o

  q Φ U q Φ U    (14) 
or  

 
 

1

1

,T
o o

T
o o

M

M









q Φ M U

q Φ M U
    (15a) 

   ( ) ( )

1 1
,

k k

T T
o k o o k o

k k

q q
M M

 φ M U φ M U  (15b) 

k=1,….n 
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Free response in modal coordinates 

Without modal forces, Q=0, the modal EOM is    
 

0
j j jj H j H j H jM q D q K q Q      (16) 

 
with solution, for an elastic underdamped mode   1j   

 

    cos sinj d j

j j j

t

H j d j dq e C t S t
 

 


      if 0
jn   (17a) 

 

where  21 , j

jj j j

K
Md n j n      and  

; j j j

j

j

o j n o

j o j
d

q q
C q S

 




 


    (17b) 

 
See Handout (2a) for formulas for responses corresponding to 
overdamped and critically damped SDOF systems. 
 
 

Forced response in modal coordinates 

 
For step-loads, S jQ , the modal equations are    

 

j j j j j j S jM q D q K q Q     (18) 

 
with solution, for an elastic underdamped mode   1j   

    cos sinj d j

j j j j

t

j d j d Sq e C t S t q
 

 


       0
jn   (19a) 
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where  21 , j

jj j j

K
Md n j n       and  

 ; ;j j j

j j j

j

S o j n j

S j o S j
j d

Q q C
q C q q S

K

 




   


 (19b) 

 
See Handout (2a) for formulas for physical responses 
corresponding to overdamped and critically damped SDOF 
systems. 
 

For periodic-loads, 
Consider the case of force excitation with frequency 

jn  and 

acting for very long times.  The EOMs in physical space are 

 cos t PM U + DU K U =F   

The modal equations are    
 

cos( )
jj j j j j j PM q D q K q Q t       (20) 

 
with solutions 
for an elastic mode, 0

jn   

    
   

( )

cos sin

cos sin

j n j

j j

j j

j transient ss t

t

j d j d

c s

q q q

e C t S t

C t C t

 
 



  

 

  

  (21) 

 
The steady state or periodic response is of importance, since the 
transient response will disappear because of the dissipative effects 
of damping. Hence,  the j-mode response is: 
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 cosj

j

P

PS j j
j

Q
q A t

K


 
    
 

     (22) 

 
Let 

j

j
n

f



 be a  jth-mode excitation frequency ratio. Then, define 

 

 
   2 22

1

1 2  
j

j j j

A
f f


 

and    2

2
tan

1
j j

j
j

f

f


 


  (23) 

 
Recall that j  is a phase angle and Aj is an amplitude ratio for 

the jth-mode.  
Note that depending on the magnitude of the excitation 

frequency Ω, the frequency ratio for a particular mode, say k, 
determines the regime of operation, i.e., below, above or around 
the natural frequency. 
 

Using the mode displacement method, the response in physical 
coordinates is 

 
1

cosj
m

P

j j j
j j

Q
A t

K




 
    

 
U φ   (24) 

 

and recall that 2
( ) ( )j

T
j n j j jK M φ Kφ and ( )j

T
P jQ  Pφ F .  

 
A mode acceleration method can also be easily developed to 

give  (* read addendum) 

  2
1 1

2
cos

j j

m m
j j

j PS PS
j jj j

t q q

  

    SP

φ
U U φ    (25) 
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where 1SP pU K F . Note that the mode acceleration method 

cannot be applied if there are any rigid body modes (K is singular) 
  

Frequency response functions for damped 
MDOF systems. 
 
The steady state or periodic modal response for the j-mode is: 
 

 cosj

j

P

PS j j
j

Q
q A t

K


 
    
 

     (22) 

 
Or, taking the real part of the following complex number 
expression 

j

j

P i t
PS j

j

Q
q H e

K


 
   
 

    (26) 

 

where      2

1

1 2  
j

j j j

H
f i f


 

   (27) 

 

with 1i   is the imaginary unit, and where 
j

j
n

f



 is the  jth-

mode excitation frequency ratio. Then, recall from Eqs. (23) 
 

   2 22

1

1 2  
j j

j j j

A H
f f


 

and  argj jH    (28) 

 
Using the modal transformation, the periodic response UP in 

physical coordinates is 
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 
1

cosj
n

P

j j j
j j

Q
A t

K




 
    

 
PU φ   (24)  

 
or take the real part of the equation below 

 
1 1

1

Tn n
j i t

j j j j
j j j

n
jT i t

j j
j j

q H e
K

H
e

K



 





 
     

 
          

 



P
P

P

φ F
U Φq φ φ

φ φ F

(29)  

  

Now, the product ( )T
j j n n φ φ matrix . That is, define the 

elements of the complex – frequency response matrix H as 
 

   , 2

1

1 2  
p q

T
j j

p q
j j j j

H
K f i f

  
        

φ φ
  (30) 

p,q =1,2…. n. The response in physical coordinates thus becomes: 
 

i te 
P PU = H F      (31) 

or in component form, 
 

, 1,2..
1

;
j r

n
i t

P j r P j n
r

U H F e 




  
 
    (32) 

 

The components of the frequency response matrix H are 
determined numerically or experimentally. In any case, the 
components of H depend on the excitation frequency (Ω). 
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Determining the elements of H seems laborious and (perhaps) its 
physical meaning remains elusive.  
 
 

Direct Method to Find Frequency Responses in 
MDOF Systems  

Nowadays, with fast computing power at our fingertips, the 
young engineer prefers to pursue a more direct approach, one 
known as brute force or direct approach. Recall that the 
equation of motion is  

 

Or   

 
 
cos

Re i t

t

e 

 



P

P

M U + DU K U =F

M U + DU K U = F

 

   (33) 

Assume a periodic solution of the form 
i te 

PU = V   (34) 

where PV  is a vector in the complex domain. Substitution of Eq. 
(34) into Eq. (33) gives 
 

2i      P PK D M V F    (35) 

 
Define at each excitation frequency the complex impedance 
(dynamic stiffness) matrix as: 

 
2i      DK K D M    (36) 

 
And find the vector of physical responses (amplitude and phase) as 

 

1


   P PDV K F     (37) 
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Since
real imaginary

i P P PV V V , the physical response for each DOF 

follows as: 
 

   
1,2...

2 2

cos ;

; tan

r

P imaginaryr

r r r P realr

r P r r n

V
P P real P imaginary r V

U V t

V V V



 





 

  

  
 (38) 

 
The direct method requires calculating the inverse of the 

dynamic stiffness matrix at each excitation frequency. The 
computational effort to perform this task could be excessive but for 
systems with a few DOFs (n small). 
 
 

 



Let:  
2

= (3)

If M is invertable, then define A M 1 K (4)

and write Eq. (2) as:   A = (5)

 sort eigenvals A( )( ) <---- find eigenvalues

j 1 n
The undamped
natural frequencies
are:

nj
 j n

T
120.57 374.57 495.14( )

rad/s
fnj

nj

2 


fn
T 19.19 59.61 78.8( ) Hz

and undamped natural modes:  j eigenvec A  j 

 j   j

ORIGIN 1 PropDamping_STEPMDOF.mcd

FORCED RESPONSE of MDOF Linear system with 
proportional damping

Original by Dr. Luis San Andres for MEEN 617 class /SP 2012, FA2001

The equations of motion are:
(1)M d2Xdt2 + C dX/dt+ K X = F(t)

where M,K,C are nxn matrices of inertia, stiffness, and damping force coefficients,
and X, V=dX/dt,  d2X/dt2,and are the nx1 vectors of displacements, velocity and 
accelerations, respectively. 
F(t) is a vector of nodal forces. At t=0, Xo,Vo=dX/dt are known.

For proportional damping, C = a M + b K, so the undamped mode shapes are still 
valid. a & b are physical constants usually determined from measurements.

=================================================================

1. Define elements of inertia, damping & stiffness matrices: n 3 # of  DOF

example a 0
M 102

1

0

0

0

2

0

0

0

1









 K 107
2

1

0

1

2

1

0

1

1









 b .001
C a M b K

2. Calculate the undamped naural frequencies and natural mode 
shapes from the fundamental relationship:


2

 M K   0= (2)



dqo

dt
Mm

1 
T

M Vo =qo Mm
1 

T
M Xo =

(9)

and with the initial conditions:

(8)Q 
T

F=and modal forces: 

Cm a Mm b Km=Cm 
T

C 

(7)Km 
T

K 

Modal matricesMm 
T

M where:

(6)Mm
d2q

dt2
 Cm

dq
dt

 Km q Q=

, the equations of motion (1) become uncoupled 
in the modal space (principal coordinates):

X  q=Using the transformation

4. Modal transformation of physical equations to (natural) modal coordinates
Modal matrices



0.33

0.61

0.72

0.53

0.32

0.79

0.88

0.4

0.27











This is the
matrix of undamped
modal vectors

0 1 2 3 41

0.5

0

0.5

1

mode 1
mode 2
mode 3

0

k 1

k 2

k 3

k

3. Plot the natural mode shapes:



Q 
T

F

and set vectors of initial conditions Q

460.81

675.13

3.21 103














Xo

0

0

0









 Vo

0

0

0











Calculate response

calculate modal initial displs. & vels.

qo Mm
1 

T
M Xo  q_doto Mm

1 
T

M Vo 

Evaluate response in modal coordinates:

j 1 n
: static displacement in modal spaceqsj

Qj

Kmj j



Acj
qoj

qsj
  Asj

q_dotoj
 j nj
 Acj

 
dj



p 1 Npoints
tp p 1( ) t

qj p e
 j nj
 tp

Acj
cos dj

tp  Asj
sin dj

tp   qsj
 see your cheat-sheet

(1 DOF response)

Calculate response

Define the damping ratios and damped natural freqs. in modal space: k 1 n

k
Cmk k

2 Mmk k
 nk


 (10a) 

T
0.06 0.19 0.25( )

note all damping ratios < 1

dk
nk

1 k 2
 

.5
 10b( ) UNDERDAMPED CASE

The modal responses for arbitrary excitations are easily obtained for each natural mode (based on 
response of simple 1DOF system).

And, the response in the physical coordinates is given by the superposition of the modal 
responses, i.e. 

X t( )  q t( )= 11( )
=====================================================================================-
==========
Modal matrices

Response to a STEP Load
Set STEP load vector:

F

2000

3000

1000









 modal force is:
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Xs

0

2 10 4

1 10 4













Xs Npoints

7.86 10 6

1.85 10 4

8.29 10 5













Check steady-state (t infinite) response:

Xs

0

2 10 4

1 10 4















Steady state response (long times)

Vo

0

0

0









Xo

0

0

0











Recall I.C's

0 0.05 0.1 0.15 0.2 0.25 0.3 0.354 10 4

2 10 4

0

2 10 4

X1
X2
X3

Response in physical coordinates

time(secs)

Static response as t-> inf.
<------ select number of modes for physical responsem 3Let:

11( )X t( )  q t( )=The response in physical coordinates is:

qs

2.3 10 4

4.37 10 5

1.13 10 4













q_doto

0

0

0











qo

0

0

0











0 0.052 0.1 0.16 0.21 0.26 0.316 10 4

3 10 4

0

q1
q2
q3

Response in modal space

time(secs)

Calculate response




T

0.02 0.05 0.06( )Hzfd
T 19.19 59.55 78.65( )damped natural freqs. and

damping ratios

Modal matrices

Hz

fn
T 19.19 59.61 78.8( )



0.33

0.61

0.72

0.53

0.32

0.79

0.88

0.4

0.27











0 1 2 3 41

0.5

0

0.5

1

mode 1
mode 2
mode 3

0

k 1

k 2

k 3

k

find natural freqs.

C a M b K
b .00025K 107

2

1

0

1

2

1

0

1

1









M 102
1

0

0

0

2

0

0

0

1










a 0example

# of  DOFn 31. Define elements of inertia, damping & stiffness matrices:

For proportional damping, C = a M + b K, so the undamped mode shapes are still 
valid. a & b are physical constants usually determined from measurements.

where M,K,C are nxn matrices of inertia, stiffness, and damping force coefficients,
and X, V=dX/dt,  d2X/dt2,and are the nx1 vectors of displacements, velocity and 
accelerations, respectively. 
F(t) is a vector of nodal forces - periodic. At t=0, Xo,Vo=dX/dt are known.

(1)M d2Xdt2 + C dX/dt+ K X = Fo cos(t) 
The equations of motion are:

Original by Dr. Luis San Andres for MEEN 617 class /SP 2012

PERIODIC RESPONSE of MDOF system with proportional 
damping

PropDamping_STEPMDOF.mcdORIGIN 1



Calculate response

 

See your cheat-sheet
(1 DOF response)

i k atan
2 i ri k

1 ri k 2









180


 ni  k  0if

180 atan
2 i ri k

1 ri k 2









180


 otherwise



and MODAL Phase Angles:

qi k

qsi

1 ri k 2  j 2 i ri k  


The MODAL complex amplitudes are:

qs
T 1.26 10 3 3.19 10 4 1.75 10 4 qsi

Qoi

Kmi i



frequency ratiori k
k

ni



Evaluate response in modal coordinates:

i 1 n in Hzfreqk

k

2 


max 1.98 103

Response to a PERIODIC Load

Set amplitude load vector: modal force is:

Fo

2000

4000

6000









 Qo 
T

Fo
Qo

2.51 103

4.92 103

4.97 103













Assume effect of initial conditions has vanished since periodic load 
acts for very long time.

Calculate response

Vary the excitation frequency  to determine the amplitude and phase of the FRF for each mode:

set maximum frequency (rad/sec) to display 
calculations

max 4 nn


(larger than highest natural freq)

rad/snn
495.14k 1 log max  100

excitation Frequency
k 10

k
100
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The response in physical coordinates is: X t( )  q t( )=

Let: m 3 <------ select number of modes for physical response

10 100 1 1031 10 5
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DIRECT METHOD make KDk
K M k 2

 i k C for each k

and solve Zk KDk  1 Fo
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Derivation of Mode Acceleration Method for 
MDOF systems (proportional damping or light 
damping) 
(Luis San Andrés, Lecturer. Based on homework delivered by Mr. Rahul Kar) 

 
Problem Statement 

Determine the system response of a MDOF system with proportional damping using the 
Mode Acceleration method.  
 

Solution 
The differential equation governing the motion of a n-DOF linear system is: 
 

[ ] [ ] [ ] ( )M X C X K X P t+ + =       (1) 
 
where [M], [K], [C] are the (nxn) matrices of (constant) mass, stiffness and damping 
coefficients. P(t) is a vector of n-external forces, time dependent, and X(t)  is the vector of 
system displacements (physical responses). The physical damping is of proportional type, 
i.e. [C] = a [M] + b [K]  
 
The system described by (1) has a set of natural frequencies (ωi)i=i,..n and associated 
modal (eigen) vectors (iφ )i=i,..n. Each pair (ωi iφ) satisfies the fundamental relationship   
 

[K] iφ =ωi
2 [M]  

 iφ, i=1,2,…n    (2) 
 
The physical response X(t) or solution to (1) can be found using modal analysis, i.e. 

[ ] ∑
=

=Φ=
n

i
i

ittX
1

)()( ηφη      (3) 

where [ ] { }φφφ n.....21=Φ  is the modal matrix. Each of the components of the modal 
response vector η(t) is obtained from solution of the (uncoupled) equations: 
 

iiimiimiim QKCM =++ ηηη   i=1,2,…n  (4) 
 
where [ ] PQ TΦ= , and (Km, Mm, Cm )i are the i-th modal stiffness, mass and damping 
coefficients obtained from: 
 

[ ] [ ] [ ][ ] [ ] [ ] [ ][ ] [ ] [ ] [ ][ ];;; ΦΦ=ΦΦ=ΦΦ= CCKKMM T
m

T
m

T
m   (5) 

 
In (3), using a number of modes m less than the n-DOF is known as the mode 
displacement method, i.e.  
 

nm

m

i
i

itX <
=
∑≅ ;)(

1

ηφ     (6) 

  
The mode acceleration method aims to find exactly the system static response 
should  P be a vector of constant generalized forces. In this case, the mode displacement 
method does poorly when just a few modes, m<<n , are used 
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To derive the appropriate equations, pre-multiply (1) by [K]-1 , i.e. the  flexibility matrix 
(obviously this operation precludes any rigid body motion), to obtain: 
 

1 1 1[ ] [ ] [ ] [ ] [ ] ( )K M X K C X X K P t− − −+ + =  
and 

1 1 1[ ] ( ) [ ] [ ] [ ] [ ]X K P t K M X K C X− − −= − −    (7) 
 

from (6) it follows that
1

( )
m

i i
i

X tφη
=

≅ ∑  and
1

( )
m

i i
i

X tφη
=

≅ ∑ . Replacing these relationships 

into (7) gives: 
 

[ ] [ ] [ ]∑∑
=

<
−

=

−− −−≅
m

i
nmi

i
m

i
i

i tCKtMKtPKtX
1

1

1

11 ;)(][)(][)()( ηφηφ  (8) 

 
Let’s work with the terms: [ ] [ ] φφ ii CKandMK ][][ 11 −− . Since each pair (ωi , iφ) satisfies 
the fundamental relationship  
 

[K] iφ =ωi
2 [M]  

 iφ    (2) 
then  

[K]-1 [M]  
 iφ  = (1/ωi

2)  iφ   (9.a) 
 
and similarly,   [K]-1 [C]  

 iφ  = (2ξi /ωi)  iφ   (9.b) 
 
 where ξi is the i-th modal damping ratio defined as  
 

[ ] [ ][ ] ( ) 2/12,][;
iii

i

mmcr
T

m
cr

im
i MKCCC

C
C

=ΦΦ==ξ   (10) 

 
Note that in the equation above, (Km, Mm)i are the i-th modal stiffness and mass 
coefficients satisfying 

i
m

m

i

i

M
K
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⎞
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⎜
⎝

⎛
2/1

 

 
Replacing (9) into (8) gives the physical response of the system as:  
 

[ ] ∑∑
=

<
=

− −−≅
m

i
nmi

i

i
i

m

i
i

i

i

tttPKtX
11

2
1 ;)(

2
)()()( η

ω
φξ

η
ω
φ

 (10) 

 
which is known as the mode acceleration response method. The first term in the 
response 1[ ] ( )K P t− corresponds to a “pseudostatic” static displacement due to P(t).  
 
Note that for P = Ps (constant), X=Xs=[K]-1Ps since all ηi=0. This simple check certifies 
the accuracy of the mode acceleration method even when using few modes (m<n). 

Reference: 
MEEN 617 Handout #8 Modal Analysis of MDOF Systems with Proportional Damping, L. 
SanAndrés, 2008. 




