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Handout #2c (pp. 56-71) 
 
 

Dynamic Response of Second Order 
Mechanical Systems with Viscous 
Dissipation forces 
 
 

( )tM X D X K X F+ + =�� �
 

 

Interpretation of Forces for the Periodic Forced 
Response of a 2nd  Order Mechanical System. 
 
Transmissibility: Analysis of forces transmitted 
to base or foundation 
 
Frequency Response Function for Support or 
Ground Motion 
 
 
 
 
 



MEEN 617 Notes: Handout # 2c Luis San Andrés  © 2008                                    2-57

 
Interpretation of Forces for the Periodic Forced Response of 
a 2nd Order Mechanical System 
 
Recall that the equation of motion for a 2nd order system forced into motion 
by a harmonic force is:  
 

( )
2

2 sino
d X d XM D K X F t
d t d t

+ + = Ω          (61) 

 

or as a balance of forces: ( ) 0D K IF t F F F+ + + =          (62) 
 

with solution              ( )( ) sinssX t X A t ϕ= Ω −                         (63)  
     

 and   
magnitude of external force :

stiffness
o

ss
FX
K

=  

  
 
where:   Damping Force,   DF D X=− �  
      Elastic Force,      KF K X=−    (64) 
      Inertia Force,      IF M X=− ��   
 
From Eq. (63 )  

 DISPLACEMENT ⇒  ( )( ) sinssX t X A t ϕ= Ω −    

 VELOCITY⇒  ( )( ) cosssX t X A t ϕ= Ω Ω −�            (65) 

 ACCELERATION ⇒ ( )2 2( ) sin ( )ssX t X A t X tϕ=− Ω Ω − =−Ω��    
 

Then ( )( ) sinK oF t F A t ϕ=− Ω −                     

           ( ) ( )( ) 2 cosD oF D X t F f A tζ ϕ=− =− Ω −�  (66)  
              

ƒ = Ω/ωn 
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          ( )2( ) sinI oF t M X F f A t ϕ=− = Ω −��           
2

D

K M
ζ =    

Let’s plot the external force and ( x,x,x ��� ) as rotating phasors.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that the velocity X�  leads by 90°  the displacement ( )X t , and the 
acceleration X�� leads by 180°  the displacement ( )X t . 
 
The elastic, damping and inertia forces are 
 graphed as: 
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( )
2

2 sino
d X d XM D K X F t
d t d t

+ + = Ω          (61) 

 

Balance of Forces for 2nd  Order System: ( ) 0D K IF t F F F+ + + =                       
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Let’s study the forced response at various excitation 
frequencies of: 
 
 
 

1n fωΩ →� �  Then:    1 0A ϕ⇒ → →  
 

( ) ( )( ) sin 1 sin 0 ( )
0, 0

K o o

D I

F t F A t F t F t
F F

ϕ=− Ω − ≈− Ω − ≈−

≈ ≈  

 
At low frequencies the elastic force FK balances the external 
force F(t). 
 
 
 

 
 

1n fωΩ →� � then  

( )2

2 2

1 0 , 180

1 , 1 0

as f A f
A f A f f

ϕ π→ ∞ ⇒ → →

→ → →

D∼
 

 

and   
( ) ( )( ) 0 sin 0 sin 0 0

0
K o o

D

F t F A t F t
F

ϕ≈ = − Ω − ≈ Ω − ≈

≈   

 

( ) ( ) ( )
( )

2( ) sin 1 sin

sin ( )
I o o

o

F t F f A t F t

F t F t

ϕ π= Ω − ≈ Ω − =

= − Ω =−
 

             
  

At high frequencies: 

At low frequencies: 
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At high frequencies the inertia force FI balances the external 
force F(t) 
 
At resonant conditions, i.e. excitation with a frequency close to the 
system natural frequency,  
 

1n fωΩ = → =   ( )1 ; 90
2 2

A πϕ
ζ

⇒ → → D  

 

( ) ( )

( )2

( ) sin cos2

( ) sin 2

K o o

I o K

F t F A t F A t

F t F A f t F

π

π

= − Ω − = Ω

= Ω − =−
 

( ) ( )
( ) ( )

12 cos 22

cos sin ( )2

D o

o o

F F f t

F t F t F t

πζ
ζ

π

= − Ω − =

=− Ω − =− Ω =−
 
i.e., the viscous damping force balances the external force. 
                  
       

If no damping is 
present, then the 
equilibrium of forces is 
not possible and the 
system develops 
amplitudes of motion 
increasing and leading 
to a catastrophic 
failure. 
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TRANSMISSIBILITY: Analysis of forces transmitted 
to base or foundation 
 
The analysis of transmitted forces is important to determine the 
maximum stresses on the structural supports as well as to verify 
the isolation characteristics of the system from the base. 
 
The equation of motion of a (M,K,D) system for a periodic force of 
constant magnitude Fo and frequency (Ω) is: 
 

( )
2

2 sino
d X d XM D K X F t
d t d t

+ + = Ω          (61) 

 

with solution   ( )( ) sinssX t X A t ϕ= Ω −        (62)  
 
 where        
      

( ) ( )
-1

1/2 222

1 2      ;          tan  
11- 2  

o
ss

F fX A
K ff f

ζϕ
ζ

⎛ ⎞
= = = ⎜ ⎟−⎡ ⎤ ⎝ ⎠+⎣ ⎦

 
 

 

 
and nf ω= Ω as the ratio of the excitation frequency to the 
system natural frequency. 
 
The dynamic force transmitted to the base or  
foundation is:         
  

    B D KF F F D X K X= + = +�        (64)   
 
Substitution of Eq. (62) into Eq. (64) gives, 
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( ) ( )   sin     cosB ss ssF K X A t D X A tϕ ϕ= Ω − + Ω Ω −        (65) 
 

( ) ( )    sin  cosB o
DF F A t t

K
ϕ ϕΩ⎡ ⎤= Ω − + Ω −⎢ ⎥⎣ ⎦

 

 

with  
2

n

D
K

ζ
ω

=   and nf ω= Ω , then 

 

( ) ( )   sin 2  cosB oF F A t f tϕ ζ ϕ= Ω − + Ω −⎡ ⎤⎣ ⎦    (66) 
 
Define: ( ) ( )

2 2

1 2   cos   ;   sin
1 (2   ) 1 (2  )

f
f f

ζα α
ζ ζ

= =
+ +

 

And write Eq. (66) as: 
 
 

( ) ( ) ( ) ( )2 1 (2   )   cos sin sin  cosB oF F A f t tζ α ϕ α ϕ= + Ω − + Ω −⎡ ⎤⎣ ⎦
 

( )2 1 (2   )  sinB oF F A f tζ ϕ α= + Ω − +  

 

( )  sinB o T TF F A t φ= Ω −    (68) 
 
where   
                       
 

( )

( ) ( )

( )

1/22

1/222

-1 -1
2

1 2  
=  ;    ;

1- 2  

2  tan ; tan 2  
1

T T

f
A

f f

f f
f

ζ
ϕ ϕ α

ζ

ζϕ α ζ

⎡ ⎤+⎣ ⎦ = +
⎡ ⎤+⎣ ⎦

⎛ ⎞
= =⎜ ⎟−⎝ ⎠

 

 

 

(69) 
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Define the transmissibility (T) as the ratio of force transmitted to 
base or foundation |FB| to the (input) excitation force |F0 sin(Ωt)|, 
i.e., 
 
 

2

 2 2 2

1 (2  )
       

(1 ) (2  )
B

T
o

fFT
F f f

A ζ

ζ

+
= ≡ =

− +
  (71) 

 
Regimes of operation: 
 
at low frequencies: 

0 1n Tf AωΩ → → ⇒ =�  
 
at high frequencies: 

2n Tf A fω ζΩ → → ∞ ⇒ =�  
 
at resonance: 

21 4
1

2n Tf A
ζ

ω
ζ

+
Ω = → = ⇒ =  
 

NOTES:  
 
At low frequencies, ƒ< 2 ,  the transmitted force (to base) is larger than 
external force, i.e. T>1 
 

At ƒ = 2 , the system shows the same transmissibility regardless of the 
damping value. 
 
Operation above ƒ > 2  determines the lowest transmitted forces, 
i.e. mechanical system is ISOLATED from base (foundation). A 
desirable operating condition 
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When operation at large frequencies, ƒ > 2  , viscous damping causes 
transmitted forces to be larger than w/o damping. Damping is NOT 
desirable for operation at high frequencies. 
 
 

FRF 2nd order system
Periodic force: Fo sin(Ωt)
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Frequency Response Function for Support or 
Ground Motion 
 
Consider the motion of a (M, K, D) system with its base (or support) moving 
with known or specified periodic displacement Z(t) = b cos (Ωt).  
 
The dynamic response of this system is of particular importance for the 
correct design and performance of vehicle suspension systems. Response 
to earthquake excitations as well.  
 
      The EOM is: 
 
      ( ) ( ) 0M Y K Y Z D Y Z+ − + − =�� � �  (71) 
 
      or 
 

     M Y DY K Y K Z D Z+ + = +�� � �  (72) 
 

      Recall ;   
2 n

n

K D
M M

ω ζ
ω

= =  .        

 
Since  cos ( t)Z b= Ω  is prescribed, then 
  
  sin ( t)Z b= − Ω Ω�    
 
 
Substitution of Z and dZ/dt into eqn. (72) gives 
 

( ) ( )

( ) ( )

( ) ( )

    cos   sin

                           cos  sin

                          cos 2  sin

M Y DY K Y K b t D b t

DK b t t
K

K b t f tζ

+ + = Ω − Ω Ω

⎡ ⎤= Ω − Ω Ω⎢ ⎥⎣ ⎦
= Ω − Ω⎡ ⎤⎣ ⎦

�� �

  (73a)  
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where 
2

n

D
K

ζ
ω

=   and nf ω= Ω  

 
The equation of motion is rewritten as: 
 

 ( ) ( )   cos 2  sinM Y D Y K Y K b t f tζ+ + = Ω − Ω⎡ ⎤⎣ ⎦�� �
 (73b) 

 

Let : ( ) ( )
2 2

1 2   cos   ;   sin
1 (2   ) 1 (2  )

f
f f

ζα α
ζ ζ

= =
+ +

 

 
 
   
and write Eq.(73b) as: 
 
 

( ) ( ) ( )2  1 2  cos cosoM Y DY K Y K b f t F tζ α α+ + = + Ω − = Ω −�� �
 
 (74) 
                   
After all transients die out due to damping, the system periodic 
steady-state response (or FRF) is: 
 

( ) ( )2( )  1 2     cos  KY t b f t
K

Aζ ω α ϕ= + − −   (75) 
 

or  
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FRF of Base Motion 
 

( )( )   cosB BY t b A tω ϕ= −                 (76) 
 

with 

( )

( ) ( )

( )

1/22

1/222

-1 -1
2

1 2  
=  ;    ;

1- 2  

2  tan ; tan 2  
1

B B

f
A

f f

f f
f

ζ
ϕ ϕ α

ζ

ζϕ α ζ

⎡ ⎤+⎣ ⎦ = +
⎡ ⎤+⎣ ⎦

⎛ ⎞
= =⎜ ⎟−⎝ ⎠

 

 

 

  (77) 

 
 

NOTE that AB  is identical to the amplitude of FRF for transmitted force, i.e. the 
transmissibility ratio 
 
 

FRF 2nd order system
Support motion: z=b cos(ωt)
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EXAMPLE: 
A 3000 lb (empty) automobile with a 10’ wheel-base has wheels which weigh 70 lb 

each (with tires).  Each tire has an effective stiffness (contact patch to ground) of 1000 
lb/in.  A static test is done in which 5 passengers of total weight 800 lb climb inside and 
the car is found to sag (depress toward the ground) by 2”. 
(a)  From the standpoint of the passenger comfort, what is the worst wavelength (in 

feet) [sine wave road] which the car (with all 5 passengers) could encounter at 65 
mph? 

(b)  For the worst case in (a) above, what percent of critical damping is required to keep 
the absolute amplitude of the vertical heaving oscillations less than ½ of the 
amplitude of the undulated road? 

(c) What is the viscous damping coefficient required for the shock absorber on each 
wheel (assume they are all the same) to produce the damping calculated in (b) 
above?  Give the physical units of your answer. 

(d) State which modes of vibration you have neglected in this analysis and give 
justifications for doing so. 

 
 
 
 
 
 
 
 

 
Let 

 
The wavelength is equal to  λ = v T, with  T  as the 
period  of motion. And the frequency (ω) of the forced 
motion is: 

 
2 2   v
T
π πω

λ
= =  

 
The system mass is: 
 

g
)70x48003000(

g
WM eq

−+
==  

 

2

800  lb lbf 3,520  lbf400 ;        
2  in in 386.4  in/seceqK M= = =  

2sec 9.12 lbf
in

=  
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Hz) 05.1(  
sec
rad 2.6   

2/1

M
K  

eq
n =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=ω  

 
(a) For passenger comfort, the worst wavelength (in feet) which the car could encounter 

at 65 mph is when the excitation frequency coincides with the system natural 

frequency, i.e. ω = ωn. Thus from 
 

n
2 2  .v
T
π πω ω

λ
= = =  Then 

5,280 /2  65   
2 3,600 sec/

6.62 
sec

n

ft milemph
v hour

rad

π
πλ
ω

⎛ ⎞⋅ ⎜ ⎟
⎝ ⎠= =  = λ = 90.47 ft = (0.0171  miles) 

 
 
(b) For the worst case what percent of critical damping is required to keep the absolute 
amplitude of the vertical heaving oscillations less than ½ of the amplitude of the 

undulated road? i.e. What value of damping ratio (ζ) makes n
1    at     ?
2

Y
b

ω ω= =    

 
Recall  that at  ω =ωn, the amplitude of the support FRF is from eqn. (77):  
 

1/22

2

1 (2 ) 1   
(2 ) 2BA ζ

ζ
⎡ ⎤+

= ⇒⎢ ⎥
⎣ ⎦

  ?  2

1 3
4 4ζ

= −  

 
The solution indicates that the damping ratio (ζ) is imaginary! This is clearly impossible. 
Note that the amplification ratio AB > 1 at  f =  1, i.e. the amplitude of motion |Y| for the 
system will always be larger than the amplitude of the base excitation (b), regardless of 
the amount of damping. 
 
(c) What is the viscous damping coefficient required for the shock absorber on each 
wheel (assume they are all the same) to produce the damping calculated in (b) above? 
 
No value of viscous damping ratio (ζ) is available to reduce the amplitude of motion. 
However, if there should be one value, then  

4
2  2  

eq

eq n eq n

D D
M M

ζ
ω ω

= = ; then → 
lb1        

2 in/sec
f

eq nD Mζ ω
⎡ ⎤

= ⎢ ⎥
⎣ ⎦
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(d) State which modes of vibration you have neglected in this analysis and give 
justifications for doing so. 
 
Heaving (up & down) motion is the most important mode and the one we have studied. 
In this example, pitching motion is not important because the road wavelength    is 
large. We have also neglected yawing which is not important if the car cg is low.  
 
One important mode to consider is the one related to “tire bouncing”, i.e. the tires have 
a mass and spring coefficient of their own, and therefore, its natural frequency is given 
by 
 

1,000  74.25
70 / 386.4 sectiren

radω = =    

 
However, the car bouncing natural frequency is 6.62 rad/sec is much lower than the tire 
natural frequency, i.e. 

ωncar = 6.62 rad/s  < < ωn tire = 74.25 rad/sec 

 
Therefore, it is reasonable to neglect the “tire” bouncing mode since its frequency is so 
high that it can not be excited by the road wavelength specified.  
 


