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Lecture 13.  LAGRANGE’S  EQUATIONS  OF  MOTION

Lagrange developed an alternative approach to deriving equation
of motion to Newtons’s  force differential equation
approach.  A review of Lagrange’s development is the subject of
this lecture

The double pendulum has two degrees of freedom; e.g., 
could be used to completely define the positions of the two

masses.   are generalized coordinates satisfying the

following definition:
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(6.2)

(6.1)

Generalized =     The least number of coordinates that
Coordinates are required to define the position and                 
                       location of a system of particles or rigid                  
                    bodies.

Choosing to use more coordinates than the minimum number of
coordinates will result in relationships between the coordinates;
e.g., using   yields

The Cartesian coordinates   can be defined in terms

of the generalized coordinates  as

We are going to develop Lagrange’s equations of motion for a
system of n particles with k degrees of freedom.  For the double-
pendulum, with  as generalized coordinates the number of

degrees of freedom equaled the number of particles.  Using
 as generalized coordinates would yield four

coordinates for two degrees of freedom.  In general, .  
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(6.4)

(6.5)

(6.3)

The kinetic energy for our system of particles is

where  is the velocity of mass mj with respect

to an inertial coordinate system.  For the double-pendulum
example, this equation is

Returning to the general situation, the n Cartesian coordinates,
can be stated in terms of the k generalized

coordinates  as

Eqs.(6.2) provide these expressions for the double-pendulum
example with serving as generalized coordinates. 

Differentiating Eqs.(6.5) defines the Cartesian velocity
components as
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(6.6)

(6.7)

(6.8)

where is the ith generalized velocity. For the double-pendulum

example, the two generalized velocities are . 

Outline of the Derivation
The physical expression that we will use in developing

Lagrange’s equation is

which states that, for a general system of particles, the change in
system kinetic energy equals the change in work due to all forces
(conservative and nonconservative).  In the following
developments we will obtain expressions for dT and dW of the
form:
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(6.11)

(6.10)

(6.12)

(6.9)

Substituting these expressions into  gives

Because the generalized coordinates are linearly independent,
each of the coefficients must equal zero, giving the k differential
equations of motion

Most of the work in the development involves getting the
expressions for dT and dW in Eqs.(6.8) and (6.9), respectively.

Derivation
Hoping that you now understand the variables and the ideas,

we will proceed with the derivation.  Substituting From Eq.(6.6)
into Eq.(6.5) gives

Note that this expression for the kinetic energy is a function only
of the generalized coordinates and the generalized velocities; i.e.,

Taking the partial derivative of T with respect to each

6

generalized velocity gives the following k equations 

Multiplying each expression by the appropriate  gives

Summing these k equations gives 

The abrupt simplification of this result follows from Eq.(6.6) that
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(6.13)

(6.14)

(6.15)

(6.16)

defines the Cartesian-coordinate velocities in terms of
generalized velocities.  Reversing this equation gives

Differentiating with respect to time yields

We can use the functional definition of Eq.(6.12),
to obtain the following alternative statement for

Subtracting Eq.(6.15) from (6.14) gives

Hence,
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(6.17)

This is the desired final expression for dT  cited earlier in
Eq.(6.8).

Moving onwards to develop the comparable expression for
dW , we can state

Reversing the order of summation gives the final desired result

where the Qi’s are the generalized force terms defined by

Recall that several of the one-degree-of-freedom problems of
subsections 3.6b and 5.7c involved generalized forces.  

Eqs.(6.16) and (6.18) provide the requisite definitions for dT
and dW  for Eq.(6.8); hence
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(6.19)

(6.18)

Because of the qm’s linear independence , all of the
coefficients must be zero, and the Euler-Lagrange

differential equations of motion are

This form of the equations can be made more useful by
separating the generalized forces into conservative and
nonconservative terms as

Remember that a conservative force can be expressed as the
gradient of the potential-energy function V.   Note also that V  is
a function only of the generalized coordinates, not the
generalized velocities .  With this definition, Eq.(6.19) can be

stated 
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(6.20)

(6.21)

where, because V is only a function of the

coordinates qm .  Finally,

where the “Lagrangian function” L is defined as 

“Dynamicists” occasionally argue the issue: Is the variational
approach more or less fundamental than the Newtonian approach
to dynamics?  Note in developing the present equations that the
physics of this development starts with dT = dW, an integrated
form of , and, Newton’s approach is taken as the
starting point.

Applying Lagrange’s Equation of Motion  to Problems
Without Kinematic Constraints

The contents of this section will demonstrate the application
of Eqs.(6.20) in developing equations of motion for systems of
particles and rigid bodies.  The examples considered in this
section have generalized coordinates implying no constraint
relationships (equations) between the coordinates.

Two-mass Vibration Example
The engineering-analysis task associated with this problem
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is: Apply the Euler-Lagrange Eqs.(6.20) to derive the governing
equations of motion.  The logical generalized coordinates to use
for the task are with their associated generalized velocities

.  The kinetic and potential energy functions are defined in

terms of these variables by

hence,
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Figure 6.2  Coupled,  two-degree of freedom spring-mass
system.

The differential work due to nonconservative forces is

From Eqs.(6.18), the generalized forces associated with  and

 are, respectively,  f1 and f2.  The equations of motion are,
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(6.24)

(6.22)

(6.23)

accordingly:

and the final differential equations of motion are: 

As expected, these equations of motion coincide with
Eqs.(3.101) obtained via  . 

However, this apparent advantage of the variational
approach disappears for the two-mass example of figure 3.44
which includes damping.  Eq.(3.103) provides the differential
equations of motion (from ) and can be restated as:

The terms on the right  are the net nonconservative forces

acting on the two masses.  Substituting these values into
Eq.(6.20) to define the differential work due to nonconservative
forces gives
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Substituting for   from Eq.(6.24) will yield the correct

differential equations; however,  are obtained from the

free-body diagrams of figure 3.43b, and their development
constitutes most of the work in arriving at the equations of
motion, Eqs.(3.103).  Since a central advantage of the variational
approach is avoidance of free-body diagrams, energy-dissipation
forces reduce some of the advantages of the Euler-Lagrange
equations.
Double-Pendulum Example

Figure 3.25  Double 
pendulum.

Develop the governing equations of motion using the Euler-

l-sanandres
Highlight

l-sanandres
Rectangle

lsanandres
Rectangle

lsanandres
Highlight

lsanandres
Line

lsanandres
Line

l-sanandres
Highlight

l-sanandres
Line

l-sanandres
Line



15

(6.2)

Lagrange equations.

The angles will be used as generalized coordinates. From

Eqs.(6.2),

Differentiating fives:

Hence, the kinetic energy function is
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(6.25)

Using a horizontal line through the upper pivot point as datum
leads to the following definition for the potential-energy function

Hence, the Lagrangian is

For the coordinates selected, the Euler-Lagrange equations
are:

The partial derivatives with respect to generalized velocities are:

The derivatives of these terms with respect to time gives:
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(6.27)

(6.26)

Note the last terms in these expressions.  Continuing with the
partial differentiation yields:

Substituting these partial derivatives into Eq.(6.25) defines the
governing equation of motion for θ1 and θ2 as:
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(6.28)

These equations reduce to:

and coincide with Eqs.(3.137) that were derived from . 
Note that these equations were developed without recourse to
free-body diagrams, and only velocities were required in the
kinematics development.

Please go back and review the Newtonian development of
these equations in subsection 3.5b.  Following the statement of
Eq.(3.109), there are three equations in the three unknowns

.  Note particularly Tc2 , the tension in the lower

cord and its presence in the free-body diagram of figure 3.43.  In
a Newtonian development, Tc2 is of obvious importance in
accounting for the forces acting on the two masses. However, in
the Lagrangian formulation, Tc2  does no work;  accordingly  it
does not appear in the Lagrangian development.  The
“nonappearance” of reaction forces in the Lagrangian
development is a major factor in their utility.  You don’t need to
spend time working through algebra to eliminate them, because
they never appear in the first place.
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