
ξ 0.049=

ξ
δ

4 π
2

⋅ δ
2

+( ).5
:=

δ
2 π⋅ ξ⋅

1 ξ
2

−( )0.5
=from log-dec formula

δ 0.305=
δ

1
n

ln
Xo
Xn

⎛
⎜
⎝

⎞
⎟
⎠

⋅:=Log-dec is derived from ratio:

Xn 0.05 ft⋅:=periodsn 5:=after Xo 0.23 ft⋅:=

Select two amplitudes of motion (well spaced) and count number od periods in between

(c) Determine damping ratio from log-dec:
ωd 41.888

rad
sec

=
ωd

2 π⋅
Td

:=(b) Determine damped natural frequency:

Td 0.15 sec=
Td

0.6 sec⋅
4

:= from 4 periods of 
damped motion

(a) Determine damped period of motion: 

DISPLACEMENT (ft) vs time (sec)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0.25

0.2

0.15

0.1

0.05

0

0.05

0.1

0.15

0.2

0.25

time (s)

X
 [f

t)
The figure shows the dynamic free response (amplitude [ft] versus time [sec]) of a  simple mechanical structure. Static load measurements 
determined the structure stiffness K=1000 lbf/in. From the measurements, determine 

a) damped period of motion Td (sec) 
b) damped natural frequency ωd [rad/s], 
c) Using the concept of log-dec (δ), if applicable, determine the system damping ratio ξ. Explain your method 
d) Undamped natural frequency ωn [rad/s], 
e) Estimate the system equivalent mass, Me [lb] 
f) Estimate the system damping coefficient, Ce [lbf s/in] 

MEEN 363/LSA/ FALL 07Identification of parametersProblem 2 (Exam 2 Fall 02)
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ζ 0.05=C 2.4 lbf
sec
in

⋅=M 220lb=
Note:
Actual values of parameters are

Ce 2.314 lbf
sec
in

⋅=
Ce ξ 2⋅ K Me⋅( )0.5⋅:=

(f) Determine system damping coefficient:

Me 219.526 lb=
Me

K

ωn
2

:=

and from the equation for natural frequency, the equivalent system mass is

K 1 103×
lbf
in

=Static tests conducted on the structure show its stiffness to be 

(e) Determine system mass:

a little higher than the damped frequency (recall damping ratio is small)

ωn 41.937
rad
sec

=

ωn
ωd

1 ξ
2

−( )0.5
:=

(d) Determine damped natural frequency:

is a very good estimation of damping 
ratio

δ

2 π⋅
0.049=Note that approximate formula:

2



M 2t
Yd

d

2
⋅ C

t
Yd

d
⋅+ K Y⋅+ Fo= + initial conditions Y0 0 m⋅:= V0 13.889

m
s

= and Fo 0 N⋅:=
Yss

Fo

K
:=

From cheat sheet,
soln is: Y t( ) ess t⋅ A1 t A2⋅+( )⋅ Yss+= (2) ss ωn−:= root of characteristic eqn.where

A1 Y0 Yss−:= A1 s⋅ A2+( ) V0= ss 18.85−
1
s

=

A2 V0 A1 ss⋅−:= A1 0 m= A2 13.889
m
s

= =Vo
The dynamic response of the car Y(t) is given by:

Y t( ) ess t⋅ t⋅ A2⋅:= (3)

The graph below displays the car motion for a time equal to 3 periods of natural motion (undamped). Note the  
overshoot and largely damped response w/o oscillations. The car does not bounce from the wall.

Tmax 1.5 Tn⋅:=
without damping, max bumper deflection is

Based on PCME 1
2

M⋅ V0
2

⋅
1
2

KXmax
2= Xmax

V0

ωn
:= Xmax 0.737 m=

MEEN 363/502 FALL 06: PROBLEM 1
The car of mass M=500 kg is traveling at constant speed Vo= 50 kilometer/hour when it hits a rigid wall. A spring (K) and a viscous 
dashpot (C) represent the car front bumper system. The system natural frequency fn=3 Hz, and the dashpot provides critical 
damping.  Disregard friction on the car wheels and ground. 
a) Derive the EOM for the car after the collision using the coordinate Y(t) that has its origin at the car location when the bumper 

first touches the wall. Provide initial conditions in speed and displacement. [10] 
b) State the solution to the EOM, i.e. give the system response Y(t) as a function of the system parameters [natural frequency, 

damping ratio, etc] and initial conditions.  [10] 
c) Find the maximum bumper deflection and the time, after collision, when this event occurs. Compare the calculated deflection 

with the maximum deflection for a system without damping. Comment on your findings. [5] 
d) Sketch the motion Y(t) vs. time (to 0.5 sec)  labeling the axes with physical units and noting important parameters. Will the car 

bounce from the wall? Explain your answer. [5] 

kph
1000 m⋅
3600 s⋅

:=a) EQN of motion for car after collision, use Y coordinate: (Y=0, no bumper deflection)

Rigid
wall

K

C

Y(t)

V

M
car

bumper

Fdamper C
t
Yd

d
⋅=M 2t

Yd

d

2
⋅ Fdamper− Fspring−=

Fspring K Y 0−( )⋅=

Thus the EOM is:
M 2t

Yd

d

2
⋅ C

t
Yd

d
⋅+ K Y⋅+ 0= (1)

with I.C's at t=0 Y 0( ) Y0= 0 m⋅= no bumper deflection, and

and
t
Yd

d
V0= V0 50 kph⋅:= = V0 13.889

m
s

= car speed at instant of collision with wall.

Known: natural frequency and mass of car
fn 3 Hz⋅:= M 500 kg⋅:=

ωn fn 2⋅ π⋅:=

natural period of motioncalculate stiffness: K M ωn
2

⋅:= K 1.777 105
×

N
m

= Tn
1
fn

:=

Transient response of critically damped system, step force Fo=0 ζ=1
at t=0
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A significant reduction in deflection.
Note how quickly the dashpot 
dissipates the initial kinetic energy.

Comparison not for exam for completeness, compare the response with that of a lightly UNDERDAMPED system

ζ 0.05:= Note that model with little 
damping predicts the car will 
bounce from wall .

ωd ωn 1 ζ
2

−⋅:= X t( )
V0

ωd
e

ζ− ωn⋅ t⋅
⋅ sin ωd t⋅( )⋅:=

0 0.13 0.25 0.38 0.5
1

0.42

0

0.74

critically damped
lightly damped

system response after collision

time (sec)

D
is

pl
ac

em
en

t Y
(t)

 [m
] Let's find the forces transmitted to the 

wall - certainly same as force "felt" by 
car

Fw t( ) K Y t( )⋅ C V t( )⋅+:=

Felas_max K Y ta( )⋅:=

Felas_no_damping K Xmax⋅:=

Felas_max 4.816 104
× N=

0 0.13 0.25 0.38 0.5
0

24.08

48.16
Bumper forces after collision

time (sec)

Fo
rc

e 
to

 w
al

l i
n 

kN

Felas_no_damping 1.309 105
× N=kN

K 1.777 105
×

N
m

=

Note how large is the force 
in the bumper. No wonder 
why a car crash is always a 
disastrous event!

0 0.13 0.25 0.38 0.5
0

0.18

0.37

0.55

0.74
system response after collision

time (sec)

D
is

pl
ac

em
en

t Y
(t)

 [m
]

fn 3 Hz=

Tn 0.333 s=

Calculation of maximum bumper deflection

It occurs when velocity is 0 m/s

(Take time derivative of soln, Eq. (3), to obtain)

V t( ) A2 1 ss t⋅+( )⋅ ess t⋅
⋅:=

Graph not for exam Bumper velocity is null at time ta 

0 0.13 0.25 0.38 0.5
10

0

13.89
system response after collision

time (sec)

V
el

oc
ity

 V
(t)

 [m
/s

]

1 ss ta⋅+( ) 0=

Hence ta
1−

ss
:=

ta 0.053 s=

Maximum deflection: Y ta( ) 0.271 m=

compare to undamped system: Xmax 0.737 m=

Xmax

Y ta( ) 2.718=



i.e. an overdamped systemξ 3.062=ξ
2 C⋅
Ccrit

:=, the damping ratio isC 1500
N s⋅
m

⋅:=(b) If 

Amount of damping on each absorberC 489.898
N s⋅
m

=C
1
2

Ccrit⋅:=

Ccrit 979.796 N
s
m

⋅=Ccrit 2 2 K⋅ M⋅( ).5⋅:=

(a) The system must be critically damped to bring the damper to rest in the shortest possible time. Thus, the 
amount of physical damping C must equal (for each shock absorber) 

fn 1.949 Hz=fn
ωn
2 π⋅

:=

ωn 12.247
rad
s

=ωn
2 K⋅
M









.5
:=The natural frequency equals

C (damping coefficient to be determined)

absorber stiffness and damping coefficientsK 3000
N
m

⋅:=

bumper mass, regarded as rigid - non deformableM 40 kg⋅:=where

M 2t
Xd

d

2
⋅ 2 C⋅

t
Xd

d
⋅+ 2 K⋅ X⋅+ F=

For motions from the static equilibrium position,
The equation of motion is:

Assume:
bumper is rigid - undeformable
X=0 denotes SEP.

X(t)

KC

F(t)

M (bumper)

Shock
absorber

KC

The sketch shows a test stand for automobile bumpers. Each of the two
shock absorbers consists of a spring having a stiffness K=3000 N/m that acts
concentrically with a dashpot (C). The bumper mass (M) is 40 kg. The
system is at rest in the static equilibrium position when a force F having an
impulse of 2000 N-s acting over a short interval is applied at the centerline
of the bumper.

(a) determine the value C that will bring the bumper to rest in the shortest
possible time without rebound

(b) If C= 1500 Ns/m determine the displacement x(t) of the bumper.
(c) Find the bumper’s maximum displacement from the equilibrium

position and its time of occurrence. Is the result reasonable? Explain.

CAR BUMPER SYSTEM RESPONSE TO AN IMPULSE MEEN 363 - FA03  LSA(c)
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v 0 s⋅( ) 50
m
s

=
v t( ) A e

s1 t⋅
s1⋅ e

s2 t⋅
s2⋅−





⋅:=

VELOCITY

Note large overshoot
(max deflection)
and return
to equilibrium with no
oscillations.

0 0.51 1.03 1.54 2.05 2.56 3.08
0

0.5

1

time (s)

D
is

p 
X

 [m
]

x t( )

t

x t( ) A e
s1 t⋅

e
s2 t⋅

−




⋅:= Tmax 3 Tn⋅:=

DISPLACEMENT
Tn

1
fn

:=
thus, the dynamic response of the bumper after the impuse acts is:

for graphing
A 0.705 m=

A
vo

s1 s2−( ):=

initial velocity is quite large!
(180 km/hour!)

vo 50
m
s

=vo
Imp
M

:=

The solution of the EOM, with RHS = 0, is:

x t( ) A e
s1 t⋅

⋅ B e
s2 t⋅

⋅+=
t
xd

d
A s1⋅ e

s1 t⋅
⋅ B s2⋅ e

s2 t⋅
⋅+=

The roots of the characteristic equation are

s1 ξ− ωn⋅ ωn ξ
2

1−( ).5
⋅+:=

s1 2.056−
1
s

=

s2 ξ− ωn⋅ ωn ξ
2

1−( ).5
⋅−:= s2 72.944−

1
s

=

satisfying the initial conditions. At t=0 s x 0( ) 0= A B+= Thus, B A−= no initial displacement

The impulse produces an initial velocity equal to
v 0( ) v0= Imp

M
= A s1 s2−( )⋅= as explained in class

Imp 2000 N⋅ s⋅:=



s

0 0.51 1.03 1.54
50

0

50

time (s)

V
el

 V
 [m

/s
]

v t( )

t

Max bumper displacement (deflection) occurs when velocity equals 0, i.e

v 0= A e
s1 tM⋅

s1⋅ e
s2 tM⋅

s2⋅−




⋅=

e
s1 tM⋅

e
s2 tM⋅

s2
s1

=

take natural log of both sides to find

s1 s2−( ) tM⋅ ln
s2
s1









=
tM

ln
s2
s1









s1 s2−
:=

tM 0.05 s=

and the maximum bumper deflection is
x tM( ) 0.618 m=

This is a large deflection! probably bumper will deform plastically
before this occurs.



Dc 0.052
lbf s⋅

in
=Dc 2 K M⋅( ).5:=Critical damping

ωn 500.957
rad
s

=ωn
K
M









.5
:=

natural frequency

Damping coeffic.not 
specified

D D
lbs

in
⋅=K 13

lbf
in

:=

M
W
g

:=

g 386.089
in

s2
=W 0.02 lbf⋅:=

b) Determine system parameters: 

(4)M 2t
Yd

d

2
⋅ D

t
Yd

d
⋅+ K Y⋅+ M− 2t

Zd

d

2
⋅=

Substitution of (3) and (1) into (2) gives the EOM as:

(3)Fspring K Y⋅=Fdamper D
t
Yd

d
⋅=

with

(2)M 2t
Xd

d

2
⋅ Fdamper− Fspring−=

No effect of gravity since
sensor is positioned horizontal.
Actually, not important for any
dynamic motion.

PCLM (Newton's Law) refers to inertial (absolute) references:

(1)X t( ) Z t( ) Y t( )+=

The relationship between the absolute motion X(t) of the sensor mass and the case motion is

a) EQN of motion using Y (relative) coordinate:

Z(t)

K D

Y(t)

Vibrating
surface

Case of mass Mc

M

The figure shows a seismic instrument with its case rigidly attached
to a  vibrating surface. The instrument displays the motion Y(t)
RELATIVE to the case motion Z(t).

a) Derive the equation of motion for the instrument using the
relative motion Y(t) as the output variable. Show all
assumptions and modeling steps for full credit.

b) Determine the instrument natural frequency ωn [rad/s]and
critical damping Dc [lb.s/in]  for M=0.02 lb and K=13
lb/in.

c) When will the instrument show Y=0, i.e. no motion?
d) If the vibrating surface moves with a constant acceleration of 3

g, what will the instrument display at s-s? Give value in inches.
Note: the sensor works under all attachment configurations, i.e. vertical, horizontal, top, bottom, etc.

Example Problem: Seismic instrument MEEN 363 FALL 02
kinetics of M-K-C system
L San Andres
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SEE Video_seismic_instrument

Response of seismic instrument to sudden acceleration

Ys 0.117− mm=

0 0.05 0.1
0.3

0.2

0.1

0

time [s]

Y
(t)

 [m
m

]

Td
2π
ωd









:=Y t( ) e
ζ− ωn⋅ t⋅



 C1 cos ωd t⋅( )⋅ C2 sin ωd t⋅( )⋅+( )⋅ Ys+:=

C2
V0 ζ ωn⋅ Y0 Ys−( )⋅+ 

ωd
:=C1 Y0 Ys−( ):=

ωd ωn 1 ζ
2

−( ).5
⋅:=V0 0

m
s

⋅:=Y0 0 m⋅:=

Then the sensor response for a sudden (3g) acceleration becomes with zero initial conditions:

ζ 0.10:=For example, let 

Let's calculate the instrument dynamic response:

Ys 4.615− 10 3−× in=
Ys 3− g⋅

M
K

⋅:=

d) if the vibrating surface moves with a constant acceleration equal to 3 g's. Then, the instrument 
will display, at steady state (after transients have disappeared due to damping):

c) Instrument will record NO motion Y=0, if Z(t)= cte or dZ/dt=cte, i.e. the "vibrating surface" 
remains stationary or moves at constant speed.

ζ
D

2 K M⋅( ).5
:=

Damping ratio.



Tn 0.1 sec= natural period of motionDAMPING RATIO:

ζ
C

2 M⋅ ωn⋅
:= a small valueζ 0.021=

ωd ωn 1 ζ
2

−( ).5⋅:= ωd 62.647
rad
sec

=DAMPED NATURAL FREQUENCY:

Td
2 π⋅

ωd
:= Td 0.1 sec=

The damping ratio is very small, thus the system is very lightly damped.
Tn
To

100.274=

(b) engineering judgment: The (damped) natural period of motion is very large compared to 
the time the load acts. Hence, the pulse can be treated as an impulse, which changes 
"instantaneously" the initial velocity of the system. This initial velocity equals

Impulse F To⋅:= (1)Vo
Impulse

M
:=

Vo 130.877
in
sec

=

The spring-mass-damper system represents a 
package cushioning an electronic component. 
The package rests on a hard floor. A pulse force 
F(t) of very, very short duration is exerted on the 
package as shown. The component vibrates 
without rebounding. Let K=60 lb/in, M= 5.9 lb, 
and C=0.04 lb-sec/in, 
a) Calculate the system natural frequency (Hz) 
and damping ratio [8].
b) Provide an engineering estimation (value) for 
the maximum system velocity (ft/sec). 
c) The maximum deflection (ft) of the spring 
(displacement of system) and the time when it 
occurs. 
d) Draw a graph of the system displacement x 
vs. time. Label all physical coordinates.

MEEN 363 SP08 EXAM 2: PROBLEM 1

t

To =0.001sec

Fo=2000 lbf

KC

M

F(t)

t

To =0.001sec

Fo=2000 lbf

KC

M

F(t)

KEY: KNOWLEDGE base: DOES APPLIED FORCE ACT OVER  A LONG TIME OR NOT? IS time To very long?

F 2000 lbf⋅:= applied during To 0.001 sec⋅:=Pulse: force magnitude
(a) Find the natural frequency, natural period of motion and viscous damping ratio:

K 60
lbf
in

⋅:= M 5.9 lb⋅:= C 0.04 lbf⋅
sec
in

⋅:=

NATURAL FREQUENCY: ωn
K
M

:= ωn 62.66
rad
sec

=
fn

ωn
2 π⋅

:= fn 9.973 Hz=

Tn
1
fn

:=

lsanandres
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Vo 10.906
ft

sec
=

1
2

M⋅ Vo
2⋅

1
2

K⋅ Xmax
2⋅=

Note that Xmax can also be easily
determined from PCME: T=V

Xmax 2.089 in=

Note how close the engineering 
approximation is with respect to 
the exact solution, in particular 
during the first period of motion.

0 0.05 0.1 0.15 0.2 0.25 0.3
4

2

0

2

4

Xa
X exact

Displacement vs time

time (s)

di
sp

la
ce

m
en

t X
 (i

n)

Let's graph the responses (displacement and velocity):

Tn
4

0.025 sec=
which occurs at a time ~ 1/4 natural period of motion, i.e

Xmax 2.089 in=
Xmax

Vo
ωn

:=
The maximum displacement is: 

Xa t( )
Vo
ωn

sin ωn t⋅( )⋅:= (3)Va t( ) Vo cos ωn t⋅( )⋅:=with velocity

However, since damping is so small ζ~0, the engineering approximation leads to:

(2)X t( )
Vo
ωd

e
ζ− ωn⋅ t⋅

⋅ sin ωd t⋅( )⋅:=

The motion starts from rest, X(0)=0.m. Thus, the response of the system becomes (cheat sheet):

This initial velocity is (of course) the maximum ever, since damping will remove the initial 
kinetic energy due to the impact until the system returns to rest.



excellent agreement!

compare it to engineering approx:
X t_( )
Xmax

0.968=Xmax 2.089 in=

X t_( ) 2.022 in=
and the maximum deflection is

t_ 0.025 sec=
t_
Tn

0.247=
t_

θ_
ωd

:=and time for maximum displacement is

θ_
180
π

⋅ 88.803=θ_ atan
1 ζ

2
−( )0.5

ζ

⎡⎢
⎢
⎣

⎤⎥
⎥
⎦

:=Let:

tan ωd t_⋅( )
ωd
ωn ζ⋅

=
1 ζ

2
−( )0.5

ζ
=

ζ− ωn⋅ sin ωd t_⋅( )⋅ ωd cos ωd t_⋅( )⋅+ 0=

Take time derivative of X(t) and obtain time t_
t

Vo
ωd

e
ζ− ωn⋅ t⋅

⋅ sin ωd t⋅( )⋅
⎛
⎜
⎝

⎞
⎟
⎠

d
d

0=Maxiimum displacement happens when speed =0, i.e.

0 0.05 0.1 0.15 0.2 0.25 0.3
20

10

0

10

20
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Vexact

Velocity vs time

time (s)
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 V
 (m
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Q3: Description of motion in a moving reference frame
An instrument package installed in the nose of a rocket is cushioned
against vibration with a soft spring-damper. The rocket, fired
vertically from rest, has a constant acceleration ao. The instrument
mass is M, and the support stiffness is K with damping C. The
instrument-support system is underdamped. The relative motion of
the instrument with respect to the rocket is of importance.
a) Derive the equation of relative motion for the instrument 
b) Give or find an analytical expression for the relative displacement
of the instrument vs. time. Express your answer with well defined
parameters and variables. 
c) Given M=1 kg, K=1 N/mm, and damping ratio ζ=0.10. Find the
natural frequency & damping coefficient of the system 
d) For ao=3g, find the steady-state displacement of the instrument,
relative to rocket and absolute. 
  

Luis San Andres, MEEN 363 (c) FALL 2010

M

ao

K

rocket head

AC
ME

AC
ME

sensor

C

Definitions: coordinate systems
X t( ) Absolute displacement of instrument recorded from ground

X

M
K

Z

az=ao

Y=X-Z

ground

C

X

M
K

Z

az=ao

Y=X-Z

ground

C
Z t( ) Absolute displacement of rocket from ground.

Y X Z−= displacement of instrument relative to rocket

aZ 2t
Zd

d

2
= ao= acceleration of rocket fired from REST

sensor parametes: M 1 kg⋅:= K 1000
N
m
⋅:=

ao 3 g⋅:= ζ 0.10:=

Newton's Laws are applicable to inertial CSEquation of motion for instrument

M

W

Fs=-W + K (X-Z)
Fd=-C d(X-Y)/dt

Free body diagram
from free body diagram, let Y=(X-Z)>0

M 2t
Xd

d

2
⋅ W− Fs− Fd−= (1) where

Fs W− K X Z−( )⋅+= W− K Y⋅+= (2a)

is the spring force supporting instrument. The dashpot force is

Fd C
t

X Z−( )d
d
⋅= 2b( )

Substitute Eqs. (2) into Eq.(1):



M 2t
Xd

d

2
⋅ W− W+ K Y⋅− C

t
Yd

d
⋅−= M 2t

Xd

d

2
⋅ K− Y⋅ C

t
Yd

d
⋅−=

But interest is in the relative motion Y;
hence, substitute X=Y+Z M 2t

Y Z+( )d

d

2
⋅ K Y⋅+ C

t
Yd

d
⋅+ 0=

M 2t
Yd

d

2
C

t
Yd

d
⋅+

⎛⎜
⎜⎝

⎞⎟
⎟⎠

⋅ K Y⋅+ M− aZ⋅= M− ao⋅= (3) is the desired EOM. 

Find natural frequency and damping coefficient
natural frequency of sensor is:

ωn
K
M
⎛
⎜
⎝

⎞
⎟
⎠

.5
:= ωn 31.623

rad
s

=
Natural period: Tn

2 π⋅
ωn

:=
damping coefficient.

C ζ 2⋅ K M⋅( )0.5⋅:=
C 6.325 N

s
m
⋅= Tn 0.199 s=

damped natural
frequency ωd ωn 1 ζ

2−( )0.5
⋅:=

ωd 31.464
rad
s

=

Motion starts from rest
Solution of ODE - prediction of relative motion

Yo 0 m⋅:= Vo 0
m
s

⋅:=
The solution of ODE Eq. (3) with null initial conditions since
motion starts from rest is (Use cheat sheet)

Ys
M− ao⋅

K
:=

Y Ys e
ζ− ωn⋅ t⋅

C1 cos ωd t⋅( )⋅ C2 sin ωd t⋅( )⋅+( )⋅+=

is the formula describing
the motion of instrument
relative to rocket

C1 Yo Ys−:= C2
Vo ζ ωn⋅ C1⋅+( )

ωd
:=

C1 0.029 m= C2 2.957 10 3−× m=
and, after long time Y approaches: Ys 0.029− m=

To find the instrument absolute displacement, first determine the absolute motion of the rocket, i.e.

velocity Vz t( ) ao t⋅:= and displacement Z t( ) ao
t2

2
⋅:=

The absolute displacement of the sensor is X Y Z+= after very-long tines, times removes the
homogenous (transient) response; and the sensor
reaches its steady state motion 

XSS t( ) Z t( ) Ys+:=



not for Quiz Lets graph the relative and absolute displacements of the sensor

without damping 

Y t( ) Ys e
ζ− ωn⋅ t⋅

C1 cos ωd t⋅( )⋅ C2 sin ωd t⋅( )⋅+( )⋅+:= Y_ t( ) Ys 1 cos ωn t⋅( )−( )⋅:=

for plots, set Tmax 7 Tn⋅:=

Relative displacement of sensor w/r to rocket

0 0.5 1
0.06−

0.04−

0.02−

0

Underdamped
UNDAMPED

time (s)

0

Ys

Y 5 Tn⋅( ) 0.028− m=

note the effect of damping

Ys 0.029− m=Y
[m]

The absolute displacement of the sensor isX Y Z+= where

Displacements - Sensor (X) and Rocket (Z)

0 0.5 1
0

10

20

30

X
Z

time (s)

kmh
1

3.6
m
s

⋅:=
[m]

X,
Z



cable lengthL 2 m⋅:= cable diameterd 2 mm⋅:=

G 82.7 109⋅
N

m2
⋅:= Shear modulus for steel

Let:

where Tn is the natural period of motionωn
Kθ
Io

⎛
⎜
⎝

⎞
⎟
⎠

1
2

= 2 π⋅
Tn

⎛
⎜
⎝

⎞
⎟
⎠

= (2)

The natural frequency of the system is

where Io is a mass moment of inertia and Kθ is a torsional stiffness

(1)Io 2t
θd

d

2
⋅ kθ θ⋅+ 0=

The general EOM for rotations θ(t) about 
a fixed axis (o-o) is

Consider the system does not have any 
damping - and there is no external moment 
acting'

θ 

A device designed to determine the moment of inertia of a wheel-tire 
assembly consists of a 2 mm diameter steel suspension wire, 2 m long,
and a mounting plate, to which it is attached the wheel-tire assembly. The 
suspension wire is fixed at its upper end and hangs vertically. When the 
system oscillates as a torsional pendulum, the period of oscillation 
without the wheel tire assembly is 4 seconds. With the wheel tire assembly 
mounted to the support plate, the period of oscillation is 25 seconds.
Determine the mass moment of inertia of the wheel tire assembly. Recall 
that the shear modulus for steel is G= 82.7 x 109 N/m2 and the torsional 
stiffness of the cable is Kθ=(πd4/32)G/L.  

Application: a torsional pendulum LSA for MEEN 363 FA10
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Iwheel_tire 1.002 kg m2=

Iwheel_tire Isystem Iplate−:=

Solve: find mass moment of inertia of wheel-tire

Isystem 1.028 kg m2=

Isystem
Tn2
2 π⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

Kθ⋅:=

Find moment of inertia of system (plate+wheel)

Tn2 25 s⋅:=second case: period of oscillation of assembly with wheel included

Iplate 0.026 kg m2=

Iplate
Tn1
2 π⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

Kθ⋅:=

Find moment of inertia of support plate

first case: period of oscillation of assembly alone
(w/o tire)

Tn1 4 s⋅:=

Io
Tn
2 π⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

Kθ⋅=
From (2)

Kθ 0.065 N
m
rad
⋅=Kθ

G
L

π d4⋅
32

⎛
⎜
⎝

⎞
⎟
⎠

⋅:=



MEEN 363 – FA10 – Mass Moment of Inertia 1

Application example 
A two-blade composite-aluminum of a wind turbine is supported on a 
shaft & bearing system so that it is free to rotate about its centroidal axis. 
A weight W=100 kg is taped to one of the blades at a distance R=20 m 
from the axis of rotation as shown. When a blade is pushed a small angle 
from the vertical position and released, the wind turbine is found to 
oscillate 2 periods of natural motion in 1 minute. Assume there is no 
friction at the support bearings. 
* Determine the wind turbine centroidal mass moment of inertia (IT) in 
(kg.m2).  
* The turbine weighs 2500 kg. Determine the radius of gyration. 
 
 
 
 
 
 
 
 

g 

R 

W 
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MEEN 363 – FA10 – Mass Moment of Inertia 2

Make a free body diagram of turbine swinging (oscillating) about 
pivot O with angle θ(t) 

 
Assume:  
• no drag (frictionless bearings & no 

air drag) 
• center of mass of turbine = center 

of rotation O 
 
Let IT: mass moment of inertia of 
turbine; hence EOM (moments) about 
O is 
 

2( ) sinT OI M R I W Rθ θ θ+ = =−  (1) 
 
For small θ angles, Eq. (1) reduces to the linear form 

0OI M g Rθ θ+ =     (2) 
i.e. the typical equation of a pendulum with natural period given as 

1/2
2 2 o

n
n

I
T

M g R
π π
ω

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠     (3) 
Hence, the wind turbine mass moment of inertia can be easily 
determined from the measured period of oscillation 

2
2

2
n

T
T

I M R M g R
π

⎛ ⎞
=− +⎜ ⎟

⎝ ⎠    (4) 
Given 

g

R

WT
Wind turbine weight

W
Added weight

Rx, Ry
Reaction forces

θ
FREE BODY DIAGRAM

o



MEEN 363 – FA10 – Mass Moment of Inertia 3

W=100 kgf taped to one of the blades at a distance R=20 m from the axis 
of rotation. Natural period Tn= 60 seconds / 2 periods of natural motion = 
30 sec.   Note M=W/g = 100 kg 

2
2

2
n

T
T

I M R M g R
π

⎛ ⎞
=− +⎜ ⎟

⎝ ⎠ : 
IT 4.071 105

× kg m2
= *

 

 

Since the turbine weighs WT=2500 kgf, and from 2
T T kI M r= , the radius of 

gyration is 
 

1/2
T

k
T

I
r

M
⎡ ⎤

= ⎢ ⎥
⎣ ⎦ =

rk 12.761m= * 



zss
M g⋅( )

k
:= [2] zss 0.392mm= s-s response - after transients die out

from free fall, assume no air drag. the package velocity when touching ground is vo 2 g⋅ h⋅( )0.5:=

The EOM of motion w/o damping is: zo 0 m⋅:=
with
IC. M

2t
zd

d

2
⋅ k z⋅+ W= [3]

vo 2.214
m
s

=

Dynamic response for undamped system, ξ 0:=

The solution of this ODE is very simple, i.e. the superposition of the particular solution (zss) and the 
homogenous solution (periodic with natural frequency).

z t( ) zss Ac cos ωn t⋅( )⋅+ As sin ωn t⋅( )⋅+= [4a] displacement of package

[4b] velocity of packagev t( )
t
zd

d
= ωn Ac− sin ωn t⋅( )⋅ As cos ωn t⋅( )⋅+( )⋅=

a t( )
t
vd

d
= ωn

2
− Ac− cos ωn t⋅( )⋅ As sin ωn t⋅( )⋅+( )⋅= [4c] acceleration of package

MEEN 363/617 01/31/08Example - Cushioning of package
(c) Luis San Andres TAMU

The EOM after the package first contacts hard ground is:

h 

k, c 

m 
v 

z 

Schematic view of package falling and 
impacting ground (hard surface). 

M 2 kg⋅:=
M

2t
zd

d

2
⋅ c

t
zd

d
⋅+ k z⋅+ m g⋅=

[1]
k 50

N
mm
⋅:=

k represent the stiffness of the packaging 
material. M is the component mass.

Assume no damping, c=0
with I.C's: z 0( ) 0=

t
zd

d
vo=

Equation [1] is valid for z>0, i.e. as long as packaging 
material is being compressed. 

Note that if package rebounds, then Fspring=0 h 250 mm⋅:= height of drop

ωn
k
M
⎛⎜
⎝

⎞⎟
⎠

0.5
:= ωn 158.114

rad
s

= fn
ωn

2 π⋅
:= fn 25.165Hz= Natural frequency of sytem

Natural period: Tn 2
π

ωn
⋅:= Tn 0.04s=

lsanandres
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[*]

Now, define a phase angle Φ such that

cos Φ( )
Ac
A

= sin Φ( )
As
A

=

tan Φ( )
As
Ac

=
vo

ωn zss−( )⋅
=withand write expression [*] above as

A cos Φ( ) cos ωn t⋅( )⋅ sin Φ( ) sin ωn t⋅( )⋅+( )⋅
or

A cos ωn t⋅ Φ−( )(⋅
Φ atan

vo

ωn zss−( )⋅

⎡
⎢
⎣

⎤
⎥
⎦

π+:=where Φ 1.599= radians

Hence, with the aid of the simple trigonometry "trick" we write the displacement z(t), Eqn [4a] as

z t( ) zss Ac cos ωn t⋅( )⋅+ As sin ωn t⋅( )⋅+:= [4a]

for graphs
z t( ) zss A cos ωn t⋅ Φ−( )( )⋅+:= [6a] displacement of package

Tnn 0.04 s⋅:=

The constants Ac and As are determined from the initial conditions. At time t=0 s, the pakage materi
is not (yet) deflected z(0)=0 and the pakage initial velocity is that of the free fall, v(0)=vo

From Eq [4a]: z 0( ) zo= 0= zss Ac+= Ac zss−:= [5a]

From Eq [4b] v o( ) vo= As ωn⋅=
As

vo

ωn
:= [5b]

z t( ) zss Ac cos ωn t⋅( )⋅+ As sin ωn t⋅( )⋅+:= [4a]

NOTE that package REBOUNDS when it crosses z=0 on its upward motion
(remember when you jump on a trampolin.)

What is the maximum dynamic displacement (deflection)?
Prior to obtaining this deflection, let's recall some trigonometry:

Let: amplitude of dyanmic 
motionA Ac

2 As
2+( )0.5

= A zss
2 vo

ωn

⎛
⎜
⎝

⎞
⎟
⎠

2

+
⎡⎢
⎢⎣

⎤⎥
⎥⎦

.5

:=

and in the formula Ac cos ωn t⋅( )⋅ As sin ωn t⋅( )⋅+ , multiply by A and divide by A

Ac

As
A

Φ

Ac

As
A

Φ

A
Ac
A

cos ωn t⋅( )⋅
As
A

sin ωn t⋅( )⋅+
⎛
⎜
⎝

⎞
⎟
⎠

⋅



vo 2.214
m
s

=

v 0 s⋅( ) 2.214
m
s

=

vmax
vo

1=

vmax 2.215
m
s

=

[m/s]

0 0.01 0.02 0.03 0.042.21

1.11

0

1.11

2.21
velocity of package

time (s)

ve
lo

ci
ty

 (m
/s

)

[7b]1 zss
ωn
vo
⋅

⎛
⎜
⎝

⎞
⎟
⎠

2

+
⎡⎢
⎢⎣

⎤⎥
⎥⎦

.5

vo⋅ 2.215
m
s

==vmax A ωn⋅:=what is maximum speed?

[6b]v t( ) A− ωn⋅ sin ωn t⋅ Φ−( )( )⋅:=

 Velocity [m/s], v(t)=dz/dt

The response found is strictly valid for z>0, i.e. when packaging material "spring" is 
compressed. "Spring" of package can not be stretched.

Motion does not die since 
there is no damping.

z>0 means travel downwards, 
i.e. compression of pakaking 
material.

zss 0.392mm=

zmax 14.403mm=

[m]

0 0.01 0.02 0.03 0.040.0144

0.0072

0

0.0072

0.0144
package displacement z

time (s)

z 
[m

]

zmax zss zss
2 vo

ωn

⎛
⎜
⎝

⎞
⎟
⎠

2

+
⎡⎢
⎢⎣

⎤⎥
⎥⎦

.5

+:=

[7a]zmax zss A+:=Max dynamic 
displacement is

z 0 s⋅( ) 0m=Clearly, the trig function cos(x) can be at most +1 or -1, hence the

Let's return to the question, what is the maximum displacement?



negative (peak) acceleration 
denotes upward force

a 0 s⋅( ) 9.807
m

s2
=

peak 
decelerations can 
be much larger 
than 1g!

[m/s2]

0 0.01 0.02 0.03 0.04350.26

175.13

0

175.13

350.26
Acceleration of package

time (s)

A
cc

el
er

at
io

n 
(m

/s
2)

amax
g

35.716=amax 350.256
m

s2
=Max acceleration

if no damping:

Note that if packaging stiffness (k) is very large then zss is very small, and hence, the maximum 
(peak) acceleration can be quite large!!!

zss
W
k

=where[7c]amax g 1
2 h⋅
zss

+⎛
⎜
⎝

⎞
⎟
⎠

⋅:=

Hence:

vo ωn⋅

g
⎛
⎜
⎝

⎞
⎟
⎠

2

2 g⋅ h⋅
k

M g⋅
⋅

1
g
⋅=

2 h⋅
zss

=

zss ωn
2

⋅
M g⋅

k
⎛⎜
⎝

⎞⎟
⎠

k
M
⋅= g=but

amax A ωn
2

⋅= zss
2 ωn

4
⋅ vo ωn⋅( )2

+⎡⎣ ⎤⎦
.5

=
then

A zss
2 vo

ωn

⎛
⎜
⎝

⎞
⎟
⎠

2

+
⎡⎢
⎢⎣

⎤⎥
⎥⎦

.5

:=
since 

amax 350.256
m

s2
=amax A ωn

2
⋅:=what is maximum accel?

[6c]a t( ) A− ωn
2

⋅ cos ωn t⋅ Φ−( )( )⋅:=

acceleration [m/s2], a(t)=dv/dt, 



The force from the cushioning into the package is F = -k z - c v = - W + M acc

F t( ) g− a t( )+( ) M⋅:= Fmax M amax g+( )⋅:=

0 0.01 0.02 0.03 0.04720.13

360.06

0

360.06

720.13
Cushioning force

time (s)

C
us

hi
on

in
g 

Fo
rc

e 
(N

)

Fmax 720.125N=

M g⋅ 19.613N=

F<0 means upwards force
- spring being compressed

Fmax
M g⋅

36.716=

Qute large!! Much larger 
than component weight (W)

The package will REBOUND when z=0 (z<0) and dz/dt=V < 0. 

Approximately at
trebound

Tn
2

:=
trebound 0.02s=

Note: The material above is copyrighted by Dr. Luis San Andres.
This means you cannot distribute or copy the material w/o the consent of its author, i.e. Dr. San 
Andres. The contents above are for use by MEEN students in course MEEN 363 or 617
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