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Handout #2b (pp. 40-55) 
 

Dynamic Response of 
Second Order Mechanical 
Systems with Viscous Dissipation 
forces 
 

( )tM X D X K X F+ + =�� �  
 

Periodic Forced Response to   

F(t) = Fo sin(Ω t) and F(t) = M u Ω2 sin(Ωt) 

 
Frequency Response Function of Second Order 
Systems 
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(c) Forced response of 2nd order mechanical 
system to a periodic force excitation 
 
Let the external force be PERIODIC of frequency  Ω  (period T=2π/Ω) and 
consider the system to have initial displacement X0 and velocity V0. The 
equation of motion for a system with viscous dissipation mechanism, is: 
 

( )
2

2 sino
d X d XM D K X F t
d t d t

+ + = Ω     (41) 

with initial conditions  (0) and (0)o oV V X X= =    
 
 
The external force F(t) has amplitude Fo and  
frequency Ω.  This type of forced excitation 
is known as PERIODIC LOADING. 
 
The solution of the non-homogeneous ODE (41) is of the form: 
 

( ) ( )1 2
1 2( ) cos sins t s t

H P c sX t X X A e A e C t C t= + = + + Ω + Ω    (42)        
 
where XH  is the solution to the homogeneous form of (1) and such that (s1, 
s2) satisfy the characteristic equation of the system: 
 

( )2 22 0n ns sζ ω ω+ + =      (43) 
 
The roots of this 2nd order polynomial are:  
 

( )1/ 22
1,2 1n ns ζ ω ω ζ=− −∓     (44) 

 

where n
K

Mω = is the natural frequency, 
cr

D
D

ζ =  is the viscous 

damping ratio, and 2crD K M= is the critical damping coefficient. 
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The value of damping ratio  determines whether the system is 
underdamped (ζ <1), critically damped (ζ =1), overdamped (ζ >1). 
 
Response of 2nd Order Mechanical System to a Periodic Loading:   
 
and 
  ( ) ( )cos sinP c sX C t C t= Ω + Ω    (45) 
 
is the particular solution due to the periodic loading,  Fo sin (Ω t). 
 
Substitution of Eq. (42) into Eq. (41) gives 
 

( ) { }
( ) { } ( )

2

2

cos

sin sin

c s

s s o

t K M C DC

t K M C DC F t

⎡ ⎤Ω −Ω + Ω +⎣ ⎦
⎡ ⎤Ω −Ω − Ω = Ω⎣ ⎦

  (46) 

        
since the sin() and cos() functions are linearly independent, it follows that 
 

 
 
   (47) 
   

 
{ }

{ }

2

2

0c

s o

K M D C
C FD K M

⎡ ⎤−Ω Ω ⎧ ⎫ ⎧ ⎫⎢ ⎥ =⎨ ⎬ ⎨ ⎬
⎢ ⎥−Ω −Ω ⎩ ⎭ ⎩ ⎭⎣ ⎦

 

i.e. a system of  2 algebraic equations with two unknowns, Cc and Cs.  
Divide Eq. (47) by K and obtain: 
 

{ }
{ }

2

2

1 0

1
c

s o

M K D K C
C F KD K M K

⎡ ⎤−Ω Ω ⎧ ⎫ ⎧ ⎫⎢ ⎥ =⎨ ⎬ ⎨ ⎬
⎢ ⎥−Ω −Ω ⎩ ⎭ ⎩ ⎭⎣ ⎦

      (48) 

since   n
K

Mω =  ; and with 
cr

D
D

ζ =  then 

{ }
{ }

2

2

0c s

s s o

K M C DC

K M C DC F

⎡ ⎤−Ω + Ω =⎣ ⎦
⎡ ⎤−Ω − Ω =⎣ ⎦
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n

K MD D M
K K D K

ζ ζ ζ
ω

= = =  

 
and     Xss = Fo/K  is a “pseudo” static displacement 
 

Define a frequency ratio as     
n

f
ω
Ω

=  (49) 

 
relating the (external) excitation frequency (Ω) to the natural frequency 
of the system  (ωn);  i.e.  when 
 

1n fωΩ →� � ,  the system operates below its natural frequency 
 

1n fωΩ →� � , the system is said to operate above its natural 
frequency 

 
With this definition, write Eq. (48) as: 
 

{ }
{ }

2 2

2 2

1 0

1

n n c

s ssn n

C
C X

ω ζ ω

ζ ω ω

⎡ ⎤−Ω Ω ⎧ ⎫ ⎧ ⎫⎢ ⎥ =⎨ ⎬ ⎨ ⎬
⎢ ⎥−Ω −Ω ⎩ ⎭ ⎩ ⎭⎣ ⎦

 

 
{ }

{ }

2

2

1 0

1
c

s ss

f f C
C Xf f

ζ

ζ

⎡ ⎤− ⎧ ⎫ ⎧ ⎫⎢ ⎥ =⎨ ⎬ ⎨ ⎬
⎢ ⎥− − ⎩ ⎭ ⎩ ⎭⎣ ⎦

   (50) 

  
Solve Eq. (50) using Cramer’s rule to obtain the coefficients Cs and Cc: 
  

( ) ( )
( )

( ) ( )

22

2 22 22 2

12  ;
1 2  1 2  

c ss s ss

ffC X C X
f f f f

ζ

ζ ζ

−−
= =

− + − +
 (51) 
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Response of 2nd Order Mechanical System to a Periodic Load:   
For an underdamped system,  0 <  ζ   <  1,  the roots of the 
characteristic eqn. have a real and imaginary part, i.e.  
 

( )1/ 22
1,2 1n ns iζ ω ω ζ=− −∓     (52) 

 
where 1i= −   is the imaginary unit. The homogeneous solution is 
 

( ) ( )( )( ) 1 2cos sinn t
H t d dX e C t C tζ ω ω ω−= +   (53) 

 
where  ( )1/ 221d nω ω ζ= − is the damped natural frequency of the 
system. 
 
Thus, the total response is ( ) H PX t X X= + = 
 

( ) ( )( ) ( ) ( )( ) 1 2cos sin cos sinn t
t d d c sX e C t C t C t C tζ ω ω ω−= + + Ω + Ω

 
    (54) 

where  Cs and Cc are given by Eq. (51). 
 
At time t = 0, the initial conditions are (0) and (0)o oV V X X= = . 
Then 
 

( ) 0 1
1 0 2and n s

c
d

V C CC X C C ζ ω
ω

+ − Ω
= − =   (55)  

 
Now, provided  ζ   > 0, the homogeneous solution (also known as the 
TRANSIENT or Free response) will die out as time elapse.  Thus, after all 
transients have passed, the dynamic response of the system is just the 
particular response XP(t) 
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Steady State – Periodic Forced Response of Underdamped 
2nd  Order System 

As long as the system has some damping (ζ > 0), the transient 
response (homogeneous solution) will die out and cease to influence the 
behavior of the system.  Then, the steady-state (or quasi-stationary) 
response is given by: 
 

( ) ( ) ( )( ) cos sin sint c sX C t C t C t ϕ≈ Ω + Ω = Ω −  (56.a) 
 
where  (Cs, Cc)  are given by equation (51) as: 
 

( ) ( )
( )

( ) ( )

22

2 22 22 2

12  ;
1 2  1 2  

c ss s ss

ffC X C X
f f f f

ζ

ζ ζ

−−
= =

− + − +
 

 
and   ss oX F K= .  Define ( ) ( )cos ; sins cC C C Cϕ ϕ= = − ; then  

 

( ) ( )2

2tan
1

c

s

C f
C f

ζϕ −
= =

−
 

where ϕ  is a phase angle, and 
2 2  S C ssC C C X A= + =  

 
       

with      
( ) ( )2 22

1 ;
1 2  

A
f fζ

=
− +

      as the amplitude ratio 

 
where 

n

f
ω
Ω

= is the frequency ratio. Thus, the system response is: 

 

( )( ) sint ssX X A t ϕ= Ω −     (56.b) 
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Regimes of Dynamic Operation: 
 

1n fωΩ →� � ,  the system operates below its natural frequency 
 

( ) ( )21 1; 2  0 1 0f f Aζ ϕ− → → ⇒ → →  

 

( )( ) sinssX t X t→ Ω      i.e. similar to the “static” 
response 

 
 

1n fωΩ = → = ,  the system is excited at its natural frequency 

( ) ( )2 11 0; ; 90
2 2

f A πϕ
ζ

− → ⇒ → → D  

( ) sin
2 2

ssXX t t π
ζ

⎛ ⎞→ Ω −⎜ ⎟
⎝ ⎠       

  
if    ζ  < 0.5, the amplitude ratio A > 1 and a  resonance is 
said to occur. 

 
1n fωΩ →� � , the system is said to operate above its natural 

frequency 

( ) ( ) ( )21 1; 2  0 0 180f f Aζ ϕ π− << ⇒ → → D�  
 

 ( ) ( )( ) sin sinss ssX t X A t X A tπ→ Ω − =− Ω  
 
  A <<< 1, i.e. very small,    
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Frequency Response of Second Order Mechanical System 
 

( ) ( )( ) ( )sin for        sint ss t oX X A t F F tϕ= Ω − = Ω  
 

FR F 2nd orde r syste m
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0

2

4

6

8

10

12

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

frequen cy ratio  (f)

A
m

pl
itu

de
 ra

tio
 (A

)

dam ping rat io= 0.05

dam ping rat io= 0.1

dam ping rat io= 0.2

dam ping rat io= 0.5

 
FR F 2nd orde r syste m

Pe riodic force : Fo sin(Ω t)

0

20

40

60

80

100

120

140

160

180

200

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

fre que ncy ra tio  (f)

P
ha

se
 a

ng
le

 (
)

dam ping rat io= 0.05

dam ping rat io= 0.1

dam ping rat io= 0.2

dam ping rat io= 0.5

A 

φ 



MEEN 617 Notes: Handout 2bLuis San Andrés ©2008 2-48

 
Steady State – Periodic Forced Response of 2nd Order 
system:  Imbalance Load 
 
Imbalance loads are typically found in rotating machinery. In operation, due 
to inevitable wear, material build ups or assembly faults, the center of mass 
of the rotating machine does not coincide with the center of rotation (spin). 
Let the center of mass be located a distance (u) from the spin center, and 
thus, the imbalance load is a centrifugal “force” of magnitude Fo = M u Ω2 

and rotating with the same frequency as the rotor speed (Ω). This force 
excites the system and induces vibration1. Note that the imbalance force is 
proportional to the frequency2 and grows rapidly with speed.  
 
 
 
 
 
 
 
 
In practice the offset distance (u) is very small (a few thousands of an 
inch).  
 
For example if the rotating shaft & disk has a small imbalance mass (m) 
located at a radius (r) from the spin center, then it is easy to determine that 
the center of mass offset (u) is equal to (m r/M). Note that u<<r. 
 

( ) r mu M m r m u
M

+ = → �  

 
 
The equation of motion for the 2nd order system is 

( ) ( )
2

2
2 sin sino

d X d XM D K X F t M u t
d t d t

+ + = Ω = Ω Ω  

                                                 
1 The current analysis only describes vibration along direction X. In actuality, the imbalance force induces 
vibrations in two planes (X,Y) and the rotor whirls in an orbit around the center of rotation. For isotropic 
systems, the motion in the X plane is identical to that in the Y plane but out of phase by 90 degrees. 

 
M 

u 

Ω 
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then    
2 2

2
o

ss
n

F M uX u u f
K K ω

Ω Ω
= = = =   

 
with ( nf ω= Ω ). The system response at “steady-state” is  
 

( ) ( ) ( )2
( ) sin sint ssX X A t u A tϕ ϕ= Ω − = Ω Ω −     

 
 

( )( ) sintX u B t ϕ= Ω −  (59) 
 
 

where ϕ  is a phase angle, ( ) ( )2

2tan
1

f
f

ζϕ =
−

, and 

 
       

     
( ) ( )

2

2 221 2  

fB
f fζ

=
− +

      (60) is an amplitude ratio 

 
recall 

n

f
ω
Ω

= is the frequency ratio.  

 
Regimes of Dynamic Operation: 
 

1n fωΩ →� � ,  excitation below its natural frequency 
 

( ) ( )2 21 1; 2  0 0 and 0f f B fζ ϕ− → → ⇒ → ≈ →  
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( )2( ) sin 0X t u f t→ Ω →      i.e. little motion 

 
 

1n fωΩ = → = , the system is excited at its natural frequency 

( ) ( )2 11 0; ; 90
2 2

f B πϕ
ζ

− → ⇒ → → D  

( )( ) sin cos
2 2 2
u uX t t tπ
ζ ζ

⎛ ⎞→ Ω − =− Ω⎜ ⎟
⎝ ⎠       

  
if    ζ  < 0.5, the amplitude ratio B > 1 and a  resonance is 
said to occur. 

 
1n fωΩ →� � , the system operates above its natural frequency 

( ) ( )
2

2 2

1 2  1 ; 0 1 180
f f B

f f
ζ ϕ π

− ⎛ ⎞
→− → ⇒ → →⎜ ⎟

⎝ ⎠
D  

 

 ( ) ( )( ) sin sinX t u t u tπ→ Ω − =− Ω  
 
B ~ 1, at high frequency operation, the maximum amplitude of vibration 
(Xmax) equals the unbalance displacement (u) 
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Frequency Response of Second Order Mechanical System due to an 
Imbalance Load 
 

( ) ( )2
( ) ( )sin for        sint tX u B t F M u tω ϕ ω ω= − =

 

FRF 2nd order system
Imbalance  force : M  u Ω ^2sin(Ω t)
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EXAMPLE: 
 
A cantilevered steel pole supports a small 
wind turbine. The pole torsional stiffness is 
K (N.m/rad) with a rotational damping 
coefficient C (N.m.s/rad).   
 
The four-blade turbine rotating assembly 
has mass mo , and its center of gravity is 
displaced distance  e [m]  from the axis of 
rotation of the assembly.   
 
Iz (kg.m2) is the mass moment of inertia 
about the z axis of the complete turbine, 
including rotor assembly, housing pod, and 
contents.  
 
The total mass of the system is  m (kg).  
The plane in which the blades rotate is 
located a distance   d  (m) from the z axis 
as shown.   
 

For a complete analysis of the vibration characteristics of the turbine system, determine: 
 
a) Equation of motion of torsional vibration system about z axis. 
b) The steady-state torsional response θ (t) (after all transients die out). 
c) For system parameter values of k=98,670 N.m/rad, Iz=25 kg.m2, C = 157 N.m.s/rad, and  mo 

= 8 kg, e = 1 cm, d = 30 cm, present graphs showing the response amplitude (in rads) and 
phase angle as the turbine speed (due to wind power variations) changes from 100 rpm to 
1,200 rpm. 

d) From the results in (c), at what turbine speed should the largest vibration occur and what is 
its magnitude? 

e) Provide a design recommendation or change so as to reduce this maximum vibration 
amplitude value to half the original value. 

 
Neglect any effect of the mass and bending of the pole on the torsional response, as well as any 
gyroscopic effects. 
 
 
Note: the torque or moment induced by the mass imbalance is 

 

T(t) = d x Fu =  �
�	�
)(T

2
 d e om

ω

ω cos(ωt),  i.e., a function of frequency 

          
 
 
 
 

Z

m
0

e

d

X Y

t

M
e

0

  

  
 2

m
0

d

X

Z Y

k

M e cos    t
0   

   2  

c

k=  Torsional Tiffness
e=  Torional Damping coefficient



MEEN 617 Notes: Handout 2bLuis San Andrés ©2008 2-53

 
The equation describing torsional motions of the turbine-pole system is: 
 

t cos Tt cos d emKCI )(
2

oz ω=ωω=θ+θ+θ ω
���   (e.1) 

 
Note that all terms in the EOM represent moments or torques. 
 
(b) After all transients die out, the periodic forced response of the system: 
 

( )
( ) ( )

( ) 1/ 22 22
cos

1 2 

sst t
f  f

θθ ω φ
ζ

= −
⎡ ⎤− +
⎣ ⎦

    (e.2) 

 

but   
2

( ) 2    o oz
ss

z z

T m ed m edI f
K K I I
ω ωθ

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
    (e.3) 

 

 with   ; ;
2n

n z z

K Cf
I K I

ω ω ζ
ω

= = = , and  
1

2
2tan

1
f
f

ζφ − ⎛ ⎞
= ⎜ ⎟−⎝ ⎠     (e.4) 

 

  
(e.3) in (e.2) leads to 
 

( ) ( )

2

 1/ 22 22

 ( )  cos  ( - )
1 2  

o

z

m ed ft t
I f f

θ ω φ
ζ

=
⎡ ⎤− +
⎣ ⎦

   (e.5) 

 

Let  o

z

m ed
I

θ∞ =       (e.6)       
( ) ( )

2

 1/ 22 221 2  

fB
f fζ

=
⎡ ⎤− +
⎣ ⎦

       (e.7) 

 
and rewrite (e.5) as:   ( )  cos  ( )t B tθ θ ω φ∞= −   (e.8) 
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 (c) for the given physical values of the system parameters: 

K = 98,670 N.m/rad   
rad

sec
62.82 n

z

K
I

ω = =  

Iz = 25 kg ⋅  m2    0.05
2 z

C
K I

ζ = =  

C  =  157. N.m.s/rad 
 

-58 0.01 0.3 0.024 96 10 rad
25 25

o

z

m ed
I

θ∞
⋅ ⋅

= = = =  

 
And the turbine speed varies from 100 rpm to 1,200 rpm, i.e. 
  

ω= rpm π/30 =  10.47 rad/s to 125.66 rad/s, i.e. 
 

n

f ω
ω

= =  0.167  to  2.00,  

 
thus indicating the system will operate through resonance. 
 
Hence, the angular response is   ( )5( ) 96.4 10 rad cos  ( )t B tθ ω φ−= ⋅ −  
 
(d) Maximum amplitude of response: 
since ζ << 1,  the maximum amplitude of motion will occur when the 
turbine speed coincides with the natural frequency of the torsional system, 
i.e.  
at  f = 1, 1

2B ζ≈ and 

 
1( ) cos

2 2
t t πθ θ ω

ζ∞
⎛ ⎞= ⋅ −⎜ ⎟
⎝ ⎠

 

the magnitude is θMAX = max
-2 rad0.964 x 10

2
θθ
ξ
∞= = , i.e. 10 times larger 

than θ∞ . 
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The amplitude (degrees) and phase angle (degrees) of the polo twist are 
shown as a function of the turbine rotational speed (RPM) 
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(e) Design change:  DOUBLE DAMPING but first BALANCE ROTOR! 


