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NOTES 3 
KINEMATICS OF JOURNAL BEARINGS 
 
Lecture 3 introduces the analysis of fluid flow in a (simple & ideal) cylindrical journal bearing 
whose film thickness is a function of the radial clearance and the instantaneous journal center 
displacements (eccentricity vector). The thin film is described with either of two coordinate 
systems, one inertial (fixed) and the other one (r, t) moving with the journal center. 
Corresponding expressions for classical Reynolds equation follow. In a coordinate system 
rotating with ½ the journal angular speed, the journal motion (translation and rotation) is seen as 
a pure squeeze type motion, thus enabling a simpler understanding of the physical terms in 
Reynolds equation.  
 
Nomenclature 
C Bearing radial clearance. = RB -RJ  [m] 
e 2 2

X Ye e . Journal center eccentricity [m] 

F 
 

FX, FY 

Fluid film reaction force (acting on journal) 2 2 2 2
X Y r rF F F F F     [N] 

Components of fluid film force along fixed X,Y axes 
Fr , Ft Components of fluid film force along fixed r, t axes [N] 
h  C+e cosθ = C + eX cosΘ + eY sinΘ. Film thickness [m] 
L Bearing axial length [m] 
Mx, Mz 

0 0

,
h h

x zV dy V dy   . Mass flow rates per unit length [kg/(m-s)] 

P Hydrodynamic pressure [N/m2] 
Pcav Liquid cavitation pressure 
RB , RJ Bearing and Journal Radii [m] 
t Time [s] 

,x zV V  ,x z

A A

M M

h h 
. Mean flow velocities [m/s] 

VX, VY ,X Ye e  . Components of journal velocity along X,Y axes [m/s] 

Vr, Vt ,e e . Components of journal velocity along r,t axes [m/s] 
VS (pure) squeeze film velocity [m/s] 
(X,Y) & (r,t) Fixed coordinate system, moving coordinate system 
Θ=x/R, y, z Coordinate system on plane of bearing 
  

tan Y

X

e
e

  
 

. Journal attitude angle 

  Fluid density  [kg/m3] 
  Fluid absolute viscosity  [N.s/m2] 
ω Whirl frequency [rad/s] 
  Journal angular speed [rad/s] 
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The global mass conservation Eqn. in thin film flows is: 
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or, in terms of the mean flow velocities: 
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Substitution of the mean velocities 
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leads to Reynolds Equation of Classical Lubrication Theory, 
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Recall that the wall shear stress differences are given as functions of the mean flow components, 
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Fluid Flow in a Cylindrical Journal Bearing 

Cylindrical fluid film bearings are 
commonly used to support loads, static 
and dynamic, in rotating machinery. 
These lubricated bearings also introduce 
viscous damping that aids in reducing the 
amplitude of vibrations in operating 
machinery.  
 
A depicted in Figure 3.1, a plain 
cylindrical journal bearing comprises of 
an inner rotating cylinder (JOURNAL) of 
radius RJ and an outer cylinder 

(BEARING) of radius RB (>RJ). The two cylinders are closely spaced and the annular gap 
between the two cylinders is filled with a lubricant. The radial clearance C = (RB -RJ) is very 
small, typically C/RJ    0(10-3) in mineral oil lubricated bearings. 

DB=2 RB 
DJ=2 RJ 

Figure 3.1 Schematic of cylindrical bearing 
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The journal spins with angular speed (). The journal center, denoted by OJ, may also perform 
translational motions within the bearing clearance. The bearing or housing is stationary (not 
moving) in most applications. Notable exceptions are those of floating ring journal bearings and 
crankshaft support bearings in reciprocating engines.  
 
The smallness of the film thickness ratio, h/C<<1, allows for a Cartesian coordinate1 (x=R, y, 
z) be located on the bearing surface (see Figure 3.2). Then, the Reynolds equation describing the 
flow in the journal bearing becomes 
 

   
3 3

2

1

12 12 2

h P h P
h h

R z z t

   
 

         
             

   (3.8) 

 
in the flow domain {0    2 , -½ L  z  ½ L}, where h(, z, t) is the film thickness, L is the 
bearing axial length, and U = RJ is the journal surface speed. 
 
The boundary conditions for the hydrodynamic pressure in the plain cylindrical bearing are2: 
a) The pressure is continuous and periodic in the circumferential direction (Θ), i.e. 
 

   P(, z ,t) = P( + 2, z, t)      (3.9) 
 
b) At the bearing sides or axial ends, the pressure equals the discharge or atmospheric value 
 
    P(, ½ L  , t) = P(, - ½ L, t) = Pa    (3.10) 
 
Alternatively, in the absence of journal misalignments the flow domain is symmetric about the 
plane z = 0 and P(z)=P(-z). Hence, the axial flow rate is nil at the bearing mid-plane (z=0), i.e. 
 

    P/ z = 0     at  z = 0   for all (,  t)   (3.11) 
 
As a constraint, everywhere in the flow domain, the hydrodynamic pressure must be above 
(greater than) the liquid cavitation pressure, i.e. 
 
   P  Pcav    in  0      2 ,  - ½ L   z  ½ L    (3.12) 
 
Here Pcav represents the lubricant saturation pressure or the saturation pressure for release of 
dissolved gases, typically ambient pressure. In practice, no distinction is made between these two 
types of pressures since hydrodynamic film pressures can be one to two orders of magnitude 
larger than ambient.  

                         
1 Surface curvature effects in the fluid flow are negligible in most bearing configurations.  
2 The following simple model does not account for feeding holes or axial grooves for supply of the lubricant into 
the bearing.  



NOTES 3. KINEMATICS OF JOURNAL BEARINGS   © Dr. Luis San Andrés (2012) 4

 

e 

 

x=R 

Figure 3.2.  Schematic view of a cylindrical journal bearing. Coordinate systems: 
fixed (X,Y) and moving (r,t)  
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Note: film gap enlarged for description 
purposes
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Film thickness in a cylindrical journal bearing 
Figure 3.2 shows the film thickness (h) expressed in two coordinate systems (, z) and (, z), 
both located on the bearing surface. The angular coordinate  has its origin at the line of -X axis, 
as shown in the Figure, while the coordinate  starts from the position of maximum film 
thickness.  
 
The journal center OJ is displaced a distance (e) from the bearing center OB. This offset distance 
is known as the journal eccentricity, and it may vary with time depending upon the imposed 
external load on the bearing and the journal rotational speed (). The journal eccentricity cannot 
exceed the bearing clearance, i.e. e<C; otherwise, solid-solid contact and potential catastrophic 
failure may occur.  
 
For a journal eccentric displacement e ( C), as shown in Figure 3.2, the following relation 
becomes apparent from triangle (0B - 0J –A),  
 

2 2 2( ) 2( ) cos ( ) ( )J J JR C e R C e R h             (3.13)  

 
where RJ is the journal radius, h is the film thickness and  is the angle measured from the 
location of maximum film thickness. Expansion of the formula above gives, 
 

2 2 2 2 22 2( ) cos 2J J J J JR R C C e R C e R R h h              

 
and dividing by (2 RJ), 
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 
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and since the ratio (C/RJ)  is very small, then the film thickness is just  
 

)cos(eCh         (3.15) 
 
This formula is accurate for (C/RJ) ratios as large as 0.10. The film thickness formula derived 
assumes: 

a) no journal misalignment, 
 b) a uniform axial and circumferential clearance, 

c) rigid bearing and journal surfaces. 
 
The components of the eccentricity (e) along the (X,Y) axes are 
 

eX = e cos();  eY = e sin()     (3.16) 
 

where  is known as the journal attitude angle, and =+. Then, the film thickness is also 
equal to: 
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cos sin cosX Yh C e e C e                        (3.17) 

and 









sincos;cossin YXYX ee
t

h
ee

h      (3.18) 

 
where ( . ) denotes differentiation with respect to time, i.e. )./( t  
 
Reynolds equations for plain cylindrical journal bearings 
Substitution of the film thickness (h) and its gradients into Reynolds equation (3.8) renders the 
following  PDE for an incompressible and isoviscous fluid: 
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with  sincos YX eeCh   in the flow domain {0    2 , -½ L  z  ½ L}. 
 
An alternative form of Reynolds equation arises when using the angular coordinate () whose  
origin is at the location of maximum film thickness. A coordinate system with radial and 
tangential (r, t) axes is conveniently defined; the radial coordinate joins the bearing and journal 
centers. 
 
Recall that eX = e cos();  eY = e sin(), and 222

YX eee  . The journal center velocities in the 
(X,Y) and (r,t) coordinate systems are related 
by the linear transformation 
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where ;r t

de d
V e V e e

dt dt

       are the 

radial and tangential components of the 
journal center translational velocity, 
respectively, as shown in Fig 3.3.   
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Fig. 3.3 Velocity components of journal center
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Thus, Reynolds equation (3.8) for an incompressible and isoviscous fluid is also expressed as 
 




sin
2

cos
1212

1 33

2 





 





























  ee

z

Ph

z

Ph

R
   (3.22) 

 
with cose Ch  in the flow domain {0    2 , -½ L  z  ½ L}. Note that the (r,t) 
coordinate system may be moving since the journal center can move due to imposed  dynamic 
loads, for example. 
 
Fluid film forces 
Integration of the pressure field on the journal surface produces a fluid film reaction force (F), as 
shown in Figure 3.4. An equal though opposing fluid film force acts on the bearing, i.e. the 
applied load transfers to the bearing casing.  
 
Under static conditions, the reaction force F balances the applied external force W. Under 
dynamic load conditions, when the journal displaces in time, equations of motion that include the 
journal mass times its acceleration need be satisfied. The fluid reaction force can be written in 
terms of its components in either (X, Y) or (r, t) axes, i.e. 
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With reference to the (r, t) coordinate system, the radial and tangential components of the fluid 
film reaction force are  
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With reference to the fixed (X, Y) system, the vertical and horizontal components of the (same) 
fluid film force are 
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The relationship between the components of the fluid film force in both coordinate systems is 
given by the linear transformation 
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In general, the fluid film reaction force is a function of the journal rotational speed (),the 
journal center eccentricity vector ( ,e  ), and the journal center velocity with components 

( ,e  ), i.e. 
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Kinematics of journal motion3 
In vector form the journal center velocity is 
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where  ji


,  and  tr uu


,  are unit vectors in the (X, Y) 

and (r, t) coordinate systems, respectively, as shown in 
Fig. 3.5. 
 
Define VS as a velocity equaling the time rate of 
change of the vector e


 relative to a coordinate system 

that has angular velocity (½ ). k


 with respect to the 
fixed coordinate system (X, Y). VS equals 
 

 

                         
3 Follows the description given by D. Childs in "Turbomachinery Rotordynamics", Wiley Inter-Science Pub., 
1993. 
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Hence, any journal motion (translation and rotation) always appears as a state of pure squeezing 
in the defined rotating coordinate system, as shown in Figure 3.6. Thus, VS is best known as a 
pure squeeze velocity.  
 
From equation (3.28a), 
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where VS  and  are the magnitude and lead angle of the squeeze velocity vector relative to the 
(r, t) coordinate system, i.e. 
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Also, from (3.28b) 
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Thus Reynolds equation in terms of the pure squeeze velocity VS is  
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in the  (r, t) system with h = C + e cos ; or 
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 (3.34) 
in the (X, Y) coordinate system with h = C + eX  cos + eY sin. 
 
 
 


