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Lubricated Journal Bearings

Advantages
Do not require external source of 
pressure.

Support heavy loads. The load 
support is a function of the 
lubricant viscosity, surface speed, 
surface area, film thickness and 
geometry of the bearing. 

Long life (infinite in theory) without 
wear of surfaces.

Provide stiffness and damping 
coefficients of large magnitude.

Disadvantages
Thermal effects affect performance if 
film thickness is too small or 
available flow rate is too low. 

Potential to induce hydrodynamic 
instability, i.e. loss of effective 
damping for operation well above 
critical speed of rotor-bearing system

Radial and axial load support of rotating machinery 
– low friction and long life

Typically use MINERAL OIL as 
lubricant. Modern trend is to 
replace with working fluid (water)
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Fundamentals of Thin Film Lubrication

Geometry of flow region in a thin fluid film bearing (h << Lx, Lz)

DB=2 RBDJ=2 RJ

Cylindrical bearing

•Film thickness << other dimensions
•No curvature effects
•Laminar flow, inertialess

TYP (c/L*) = 0.001

μ
ρ cU*Re = SMALL Couette flow Reynolds #
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Flow equations: continuity + momentum (x,y)

Quasi-static (pressure forces = viscous forces)

Figures 1 & 2
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Importance of fluid inertia in thin film flows

Importance of fluid inertia effects on several fluid film bearing 
applications. (c/RJ )=0.001, RJ =38.1 mm (1.5 inch)

9,2969300.16313.30R134 refrigerant

8,4778480.17913.93Liquid nitrogen

7,9427940.19110.47Liquid oxygen

7,0527050.2161.075Liquid hydrogen

1,5881591.0064Water

711712.14120Light oil

515.130.01,682Thick oil

999.915.41.23Air

Re at 10,000 rpmRe at 1,000 rpm
Kinematic 

viscosity (ν) 
centistoke

Absolute 
viscosity (µ) 
lbm.ft.s x 10-5

fluid

Fluid inertia is important for operation at high speeds and with
process fluids. These are prevalent conditions in HP 
turbomachinery

Reynolds numbers

Table 1
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Fluid inertia effects at inlet & edges

Fluid inertia (Bernoulli’s effect) causes sudden pressure drop (or 
raise) at sharp inlets (exits). Most important effect on annular
pressure seals and hydrostatic bearings with process fluids

Pressure drop & rise at sudden changes in film thicknessFigure 3

ΔP ~ ½ ρU2

PP
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ΔP ~ ½ ρU2
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Thin Film Lubrication: Reynolds Equation

Cylindrical journal bearing & coordinates
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Journal bearing reaction force

Fluid film force acting on journal surface

Dynamic forces = fn. of 
journal position and 
velocities, rotational speed 
(Ω), viscosity (μ) and 
geometry (L, D, c) 
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LONG journal bearing (limit geometry)

LONG BEARING MODEL

L/D >>> 1

Pressure does not vary axially. 
Not applicable for most practical 
cases, except sealed squeeze 
film dampers 
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SHORT journal bearing (limit geometry)

SHORT JOURNAL BEARING MODEL

L/D < 0.50

Applicable to actual rotating machinery
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STATIC LOAD PERFORMANCE

Force Balance for Static Load

Bearing reaction force = applied 
static load (% of rotor weight)
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DESIGN PARAMETER: STATIC LOAD PERFORMANCE

Given S, iterative solution to find 
operating journal eccentricity (ε = e/c) 
and attitude angle (φ):

Sommerfeld number N rotational speed (rev/s)
W static load 
L, D=2R, c : clearance &
μ viscosity
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DESIGN PARAMETER: STATIC LOAD PERFORMANCE

Sommerfeld number

Sommerfeld # vs journal eccentricity

Low load, high speed, large viscosity

High load, low speed, small viscosity
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DESIGN PARAMETER: STATIC LOAD PERFORMANCE

Sommerfeld number

Attitude angle # vs journal eccentricity

Low load, high speed, large viscosity

High load, low speed, 
small viscosity
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DYNAMICS OF ROTOR-BEARING SYSTEM

Symmetric - rigid rotor supported on short length journal bearings

Rigid rotor supported on journal bearings. 
(u) imbalance, (e) journal eccentricity

Equations of motion:
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DYNAMICS OF ROTOR-BEARING SYSTEM

Consider small amplitude motions about static equilibrium position 
(SEP). SEP defined by applied static load.

Small amplitude journal motions about an equilibrium position
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ROTORDYNAMIC FORCE COEFFICIENTS

Strictly valid for small 
amplitude motions. Derived 

from SEP
The “physical representation” of stiffness 
and damping coefficients in lubricated 
bearings
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Stiffness
Matrix:

Damping
Matrix:

Static reaction force:

Inertia ~ 0 in journal 
bearings

Strictly valid for small amplitude motions. Derived from SEP
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Journal Bearing: STIFFNESS COEFFICIENTS

Care with non dimensional value interpretation
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Journal Bearing: DAMPING COEFFICIENTS

Care with non dimensional value interpretation

Eccentricity (e/c) Sommerfeld # (σ)
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Low load
Large viscosity
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Journal Bearing: OPERATION at CENTERED CONDITION

High speed
Low load
Large viscosity

eo→ 0, φo = 90 deg

Significance of cross-coupled effect in journal 
bearing

Pure cross-coupling effect
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STABILITY OF  ROTOR-BEARING SYSTEM
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If rotor-bearing system is to become unstable, this will occur at a
threshold speed of rotation (Ωs) with rotor performing 
(undamped) orbital motions at a whirl frequency (ωs)
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STABILITY OF  ROTOR-BEARING SYSTEM

= whirl frequency (ωs)/threshold speed instability (Ωs) 
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PHYSICS of WHIRL MOTION

At centered condition: No radial support, 
tangential force must be < 0 to oppose whirl 
motion

Figure 22
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PHYSICS of WHIRL MOTION

Figure 22 Force diagram for circular centered whirl motions

Loss of damping for 
speeds above ωs
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PHYSICS of WHIRL MOTION

Figure 23 Forces driving and retarding rotor whirl motion

Cross-coupled force is 
a FOLLOWER force0)1( <=− eqrttt CKC

ω
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Cross-coupled 
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PHYSICS of WHIRL MOTION

Figure 24 Follower force from cross-coupled stiffnesses

Work from bearing forces. E<0 is dissipative; 
E>0 adds energy to whirl motion
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PHYSICS of WHIRL MOTION

Figure 24 Influence of bearing asymmetry on whirl orbits

Bearing asymmetry creates strong 
stiffness asymmetry – a remedy to 
reduce potential for hydrodynamic 
instability 

Energy from cross-coupled forces = Area (Kxy-Kyx)

X

Y

X

Y
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EXPERIMENTAL EVIDENCE of INSTABILITY

Figures 25 & 26

Amplitudes of rotor 
motion versus shaft 
speed. Experimental 
evidence of 
rotordynamic 
instability

Waterfall of recorded 
rotor motion 

demonstrating 
subsynchronous whirl
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EXPERIMENTAL EVIDENCE of INSTABILITY

WFR ~ 0.47 X

Transition from 
oil whirl to oil 
whip (sub sync 
freq. locks at 
system natural 
frequency)
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EXPERIMENTAL EVIDENCE of INSTABILITY

Automotive 
Turbocharger
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EXPERIMENTAL EVIDENCE of INSTABILITY

Automotive 
Turbocharger

Multiple sub-
synchronous 
motions
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EXPERIMENTAL EVIDENCE of INSTABILITY

Metal Mesh Gas Foil Bearing
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CLOSURE

Cutting axial grooves in the bearing to supply oil flow into the lubricated 
surfaces generates some of these geometries. 

Other bearing types have various patterns of variable clearance (preload and 
offset) to create a pad film thickness that has strongly converging wedge, 
thus generating a direct stiffness for operation even at the journal centered 
position. 

In tilting pad bearings, each pad is able to pivot, enabling its own 
equilibrium position. This feature results in a strongly converging film 
region for each loaded pad and the near absence of cross-coupled stiffness 
coefficients.

Commercial rotating machinery implements bearing 
configurations aiming to reduce and even eliminate the 
potential of hydrodynamic instability (sub synchronous 
whirl) 
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OTHER BEARING GEOMETRIES

Used primarily on 
high speed 
turbochargers for 
PV and CV 
engines 

1. Subject to oil whirl (two 
whirl frequencies from inner 
and outer films (50% shaft 
speed, 50% [shaft + ring] 
speeds)

1.  Relatively easy to 
make
2.  Low Cost

Floating 
Ring

Round bearings 
are nearly always 
“crushed” to make 
elliptical or multi-
lobe

1.  Subject to oil whirl1.  Easy to make
2.  Low Cost

Axial 
Groove

Bearing used only 
on rather old 
machines

1.  Poor vibration 
resistance
2.  Oil supply not easily 
contained

1.  Easy to make
2.  Low Cost
3.  Low horsepower 
loss

Partial Arc

Round bearings 
are nearly always 
“crushed” to make 
elliptical bearings

1.  Most prone to oil whirl1.  Easy to make
2.  Low Cost

Plain 
Journal

Comments                                           Disadvantages            Advantages      Bearing Type

Table 2 Fixed Pad Non-Pre Loaded Journal Bearings 
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OTHER BEARING GEOMETRIES

Currently used by 
some 
manufacturers as 
a standard 
bearing design

1.  Expensive to make 
properly
2.  Subject to whirl at high 
speeds

1.  Good suppression of 
whirl
2.  Overall good 
performance
3.  Moderate cost

Three and 
Four Lobe

High horizontal 
stiffness and low 
vertical stiffness -
may become 
popular - used 
outside U.S.

1.  Fair suppression of whirl 
at moderate speeds
2.  Load direction must be 
known

1.  Excellent 
suppression of whirl at 
high speeds
2.  Low Cost
3.  Easy to make

Offset Half 
(With 
Horizontal 
Split)

Probably most 
widely used 
bearing at low or 
moderate rotor 
speeds

1.  Subject to oil whirl at 
high speeds
2.  Load direction must be 
known

1.  Easy to make
2.  Low Cost
3.  Good damping at 
critical speeds

Elliptical
Comments                                           Disadvantages            Advantages      Bearing Type

Fixed Pad Pre-Loaded Journal Bearings Table 2
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OTHER BEARING GEOMETRIES

Fixed Pad Pre-Loaded & Hydrostatic Bearings Table 2

Generally high 
stiffness properties 
used for high 
precision rotors

1.  Poor damping at 
critical speeds
2.  Requires careful 
design
3.  Requires high 
pressure lubricant supply

1. Good 
suppression of oil 
whirl
2. Wide range of 
design parameters
3.  Moderate cost

Hydrostatic

Used as standard 
design by some 
manufacturers

1.  Complex bearing 
requiring detailed 
analysis
2.  May not suppress 
whirl due to non bearing 
causes

1.  Dams are 
relatively easy to 
place in existing 
bearings
2.  Good 
suppression of 
whirl
3.  Relatively low 
cost 
4.  Good overall 
performance

Multi-Dam 
Axial 
Groove or 
Multiple-
Lobe

Very popular in the 
petrochemical 
industry.  Easy to 
convert elliptical 
over  to pressure 
dam

1. Goes unstable with 
little warning
2.  Dam may be subject 
to wear or     build up 
over time
3.  Load direction must 
be known

1.  Good 
suppression of 
whirl
2.  Low cost
3. Good damping at 
critical speeds
4.  Easy to make

Pressure 
Dam 
(Single 
Dam)

CommentsDisadvantagesAdvantagesBearing 
Type
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OTHER BEARING GEOMETRIES

Tilting Pad Bearings & Foil BearingsTable 3

Used mainly for 
low load support 
on high speed 
machinery (APU 
units).

1. High cost.
2. Dynamic performance 
not well known for heavily 
loaded machinery.
3. Prone to 
subsynchronous whirl

1.Tolerance to 
misalignment.
2.Oil-free

Foil bearing

Widely used 
bearing to 
stabilize 
machines with 
subsynchronous 
non-bearing 
related 
excitations

1. High Cost
2. Requires careful design
3. Poor damping at critical 
speeds
4. Hard to determine 
actual clearances
5. Load direction must be 
known 

1.  Will not cause 
whirl (no cross 
coupling)

Tilting Pad 
journal bearing

Flexure pivot, 
tilting pad 
bearing

CommentsDisadvantagesAdvantagesBearing Type

Bump foils 

Top foil

Spot 
weld

Journal

Bearing 
sleeve


