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NOTES 6.  
LIQUID CAVITATION IN FLUID FILM BEARINGS  
 
Lecture 6 describes the phenomenon of liquid cavitation in steadily loaded fluid film bearings and 
notes the most adequate boundary conditions at the inception and reformation boundaries of the 
cavitation zone. The models developed to predict liquid cavitation model are detailed, from the 
simple Reynolds condition to the elaborate Jakobsson-Floberg-Olsson (JFO) model. Details follow 
on the Universal Cavitation Algorithm rendering a single Reynolds-like  equation valid in both the 
full film (liquid) and cavitation zones. Issues of accuracy and stability when solving the single 
Reynolds equation for a variable known as the density ratio are highlighted.  A digression related to 
dynamic liquid film cavitation applicable to squeeze film flows brings to attention the major 
differences with a steadily loaded (stationary) condition 

 
Nomenclature 
 
C Bearing radial clearance. = RB -RJ   [m] 
g Switch function, =1 in full film zone, =0 in cavitation region 
h  Film thickness [m] 
h*  Film thickness at inception (Start) of cavitation zone [m] 
L Bearing axial length [m]. 
Mx, Mz Mass flow rates (per unit length) [kg/s/m] 
M*, Mη 

* 2cav
Rhρ Ω . Mass flow rate into cavitation zone, flow at reformation boundary  

P Hydrodynamic pressure [N/m2] 
Pamb Ambient pressure [N/m2] 
Pcav Liquid cavitation pressure [N/m2] 
R ½ D.  Bearing radius [m[ 
t Time [s] 
U ΩR. Journal surface speed [m/s] 
V dh/dt.  Squeeze film velocity [m/s] 
X= θR, y, z Coordinate system on plane of bearing 
α ( )/ cavρ ρ . Density ratio  
κ  Pρ

ρ
∂
∂

. Liquid bulk-modulus [N/m2] 

ρ  Liquid density [kg/m3] 
cavρ  Density at Pcav [kg/m3] 

μ  Fluid absolute viscosity [N.s/m2] 
Ω  Journal angular speed (rad/s) 
Subscripts  
* Inception of the cavitation zone 
a Ambient value 
cav Cavitation  
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Introduction 
Lubricants and process liquids making fluid film bearings reduce friction and wear, provide load 
capacity, and add damping to dissipate undesirable mechanical vibrations. Journal bearings and 
thrust bearings represent the vast majority of applications where the mechanical surfaces shear the 
fluid causing it to flow and to produce the physical-wedge where a hydrodynamic pressure generates 
to carry, without contact, an applied load (Hamrock, 1994).  
 
Figure 6.1 shows a typical cylindrical journal bearing. Within the converging film region, the 
hydrodynamic pressure rises to a peak,  decreasing to ambient pressure at the end sides and trailing 
edge of the thin film. In zones where the film thickness locally increases, the fluid pressure may drop 
to ambient, thus releasing the dissolved gases within the lubricant1, or below ambient to its vapor 
pressure causing lubricant vaporization. The phenomenon of film rupture, characteristic of steadily 
loaded bearings, is known as lubricant cavitation, vaporous or gaseous, and its effects on the 
performance and stability of steadily loaded bearings are reasonably well understood and 
documented in the literature (Dowson et al., 1974, Brewe et al., 1990).  

 
 
 
 

                                                 
1 It is well known that liquids (under normal operating conditions) cannot sustain pressures below its saturation or vapor 
pressure (Psat) since then the fluid vaporizes. On the other hand for pressures below ambient (~1 bar [14.7 psia]), the 
dissolved gases in a lubricant (air for example) are released. Streamers of flow coexist with vapor or gas generating the 
cavitation region. Most mineral oils contain between 8 and 12 % in volume of dissolved air (Pinkus, 1990). 
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Liquid cavitation in fluid film bearings is not only important because its onset and extent determine 
the load capacity of a fluid film bearing but also because vapor cavitation collapse (implosion) can 
cause severe surface material damage. Furthermore, in dynamically loaded bearings, the appearance 
of cavitation largely influences the rotordynamic stability of a rotor-bearing system and its 
maximum whirl amplitude of vibration (Brewe, 1986). 

  
Dowson and Taylor (1974) provide a seminal discussion of the physical nature of liquid cavitation 
and the boundary condition models appropriate for thin film rupture. Brewe et al. (1990) also note 
the importance of bubble dynamics in bearing performance that affects the dynamic forced 
performance of an entire rotor-bearing system.  
 

 
Diagram of liquid cavitation in fluid film bearings 

 
Digression 
Often fluid film bearings, and most notably squeeze film dampers (SFDs), carry large dynamic loads, 
transient or periodic, which cause the fluid in the film to go through local flow reversals. The fluid film 
pressure may fall repeatedly to ambient or even less to the lubricant vapor pressure if and only if the bearing 
is fully submerged in a lubricant bath.  
 
However, in open end bearing configurations, the fluid does not only release its gaseous content, but it is 
more likely that the dynamic journal motion draws or ingests air into the lubricant film. Large amplitude 
journal motions at high frequencies then lead to the generation of a bubbly mixture (air in lubricant), which 
affects the bearing dynamic forced performance. The air entrapped as small bubbles clusters to make large 
striations. Bubbles may persist in the fluid film even in the zones of high dynamic pressure. Foamy oil at the 
damper outlet evidences this pervasive operating condition. Zeidan, et al. (1996) review the state of the art in 
SFDs and remark the importance of the air entrainment phenomenon, as it considerably reduces the dynamic 
squeeze film forces and the SFD overall damping capability. Diaz and San Andrés (1998, 1999) provide 
fundamental experimental measurements and an engineering model for prediction of the effects of air 
ingestion on the dynamic performance of squeeze film dampers. No accurate model has yet been forwarded 
for dynamically loaded journal bearings. See Notes 14 on squeeze film dampers for an extended discussion on 
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this topic. 
 
Reynolds equation governs the generation of fluid pressure P within the full film region of thickness 
h. Under laminar and isothermal flow conditions and for an isoviscous liquid, Reynolds Eqn. is 
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   (6.1) 

 
with U=ΩR as the surface speed of the rotating journal. Recall that the laminar mass flow rates per 
unit length are 
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Reynolds equation needs to be solved with appropriate boundary conditions at the cavitation zone.  
 
The Jakobsson- Floberg-Olsson (JFO) film rupture (cavitation) model 

A film rupture model, based on mass flow continuity through 
the cavitation region, renders boundary conditions for the 
inception of the cavitation zone and the full film reformation 
boundary. Figure 6.2 shows a picture of a gas (air) cavity in a 
steadily loaded journal bearing. Note that within the cavitation 
zone the pressure, gas or vapor, is taken as constant.  
 
At the inception of the cavitation zone, flow continuity requires 
a null pressure gradient with the pressure taking either ambient 
pressure or the fluid saturation vapor pressure. These conditions 
known as the Swift-Stieber model or simply as Reynolds 
condition do not warrant satisfaction of flow continuity in the 
cavitation zone except at its onset.  
 
The flow separation model also considers lubricant motion in 
streamers, under or over the cavitation boundary, and derives a 
null velocity gradient to account for the inception of a 
secondary flow reversal. This flow detachment allows for the 
occurrence of subambient pressures as observed in some 
measurements.  

 
The Floberg model postulates the conservation of liquid mass 
flow through the whole cavitation zone, but without mass 
transfer between the liquid lubricant and the vapor or gas 
bubble at uniform pressure (Floberg, 1961). In this model, a 
liquid of film thickness smaller than the local gap develops 
striations or streamers flowing parallel to the shear surface 

Figure 6.2. View of gas 
cavitation region in a 
journal bearing 
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velocity until a full liquid film develops again. The Jakobsson-Floberg model also accounts for fluid 
tensile strengths in the case of lightly loaded bearings (Dowson et al., 1974). 
  
The Jakobsson- Floberg-Olsson (JFO) model applies to dynamic load situations in which the 
surfaces may also undergo (time varying) squeeze film motions (Floberg, 1974). The temporal 
change of the ruptured film volume is included in the liquid flow continuity equation and without 
consideration of the bubble dynamics. The boundary (shape) of the cavitation zone changes 
instantaneously as the surfaces squeeze speed changes, i.e. the phase change of liquid into vapor (or 
vice-versa) takes place at infinitesimally small times2.  

 
Figure 6.3 depicts possible configurations of the fluid flow through the cavitation zone as observed 
experimentally. Streamers attached to the runner surface (journal) carry the lubricant flow 
downstream of the cavitation inception point. In other observations, the whole journal surface 
appears wetted by a film of lubricant with the cavitation zone (bubble) attached to the stationary 
surface. The bottom sketch offers a depiction when both surfaces move and minute lubricant films 
adhere to both surfaces. Mistry et al. (1997) extended the JFO model to account for the balance of 
centrifugal force and surface tension in the weakly bonded streamers flowing with the journal 
surface. 

 

                                                 
2 Sun and Brewe (1992) note that the characteristic time for liquid vaporization (or vapor condensation) is very 
small when compared to the typical period of typical rotating machinery (> 1 ms), while on the other hand, the 
characteristic time for gas diffusion is orders of magnitude larger. Hence, the authors conclude that a dynamic 
cavitation bubble must contain fluid vapor since dissolved gases will not have enough time to come out of solution 
in a typical dynamic loading cycle. Braun and Hendricks (1984) measured the pressure and chemical contents within 
the cavitation zone in a steadily loaded, fully flooded journal bearing. These authors, however, noted the appearance 
of sub ambient pressures in the cavity zone formed by gasses coming out of solution from the lubricant. The authors 
argue that a phase change (oil vaporization) requires of a source of energy not readily available in actual operation. 
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Figure 6.4 shows a schematic view of the inception boundary of the cavitation zone that is bounded 
by a film of lubricant moving with the journal surface. Within the cavitation region, the fluid 
pressure is uniform and equals a cavitation value, i.e., 
 
                                         P(x, z, t) = Pcav   (6.3) 
 
Thus, it follows that there is no pressure induced flow within this region, i.e., ∂P/∂x=∂P/∂z=0. 
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The line θ1(z*) with film thickness h* defines the leading edge (incipience angle) where the film 
ruptures. At the circumferential position, θ<θ1, the pressure must be decreasing toward the 
cavitation value, i.e., ∂P/∂x < 0. Hence, the local circumferential and axial flow rates are 
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and h > h*. Within the cavitation region the liquid pressure is constant (∂P/∂θ = 0), and thus the 
liquid mass flow is 
 
  ** and;0,

22
hhMRhRhM zAxA >=

Ω
≤

Ω
= ρρα     (6.5) 

 
where α is known as a fluid fraction content at the cavitation zone, i.e. the ratio between the liquid 
volume to the total (liquid plus vapor) volume filling the film gap. 
 
For steady loaded conditions (no temporal variations) the amount of liquid flow that enters into the 
cavitation zone must also leave, i.e. flowin = flowout. Hence, at the leading edge of the cavitation zone 
there can not be a flow discontinuity. Thus, it follows that the appropriate boundary condition 
(Reynolds condition or Swift-Stieber model) at the leading edge of the cavitation zone are: 
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Within the cavitation zone there is an amount of liquid flow transported in the circumferential 
direction,  

     
2**
RhM Ω

= ρ      (6.7) 

where h* is the film thickness at the inception of the cavitation zone (θ1).  
 
The model does not discern whether the transported flow is made of liquid streamers attached to the 
journal or whether the liquid fills part or the entire film gap. The distinction is not important unless 
the cavitation zone is a source or sink of thermal energy.  
 
Film reformation occurs at the trailing edge of the cavitation zone (θt). At this boundary, a film of 
liquid fills completely the gap between the journal and the bearing; see Figure 6.5. Consider at the 
reformation boundary line Γ a small line element (Δs) with unit normal η . From Figure 6.5,  note 
that  
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Thus the flow entering the full film zone at the reformation boundary is 
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The solution of Eqn. (6.11) determines the slope (dx/dz) of the reformation line boundary (Γ), i.e. 
the coordinate (x) defining the cavitation boundary as a function of the axial position z. Note that to 
preserve flow continuity at the reformation boundary, there is a discontinuity in the pressure 
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gradient. 

 
 
Equations (6.6), (6.7) and (6.11), known as the JFO model,  provide physically correct boundary 
conditions to solve the Reynolds equation in the full film zone. The JFO model applies to smooth 
surfaces and does not address to the material and thermo-mechanical aspects of liquid cavitation. For 
example, surface conditions play an important role in cavitation nuclei, i.e. crevices and surface 
roughness providing nuclei for vapor bubble inception and growth and leading to localized micro-
spots of lubricant cavitation.  
 
The JFO model predicts accurately3 the onset and shape of the cavitation pattern in bearings 
operating with moderate to heavy loads (moderate to large journal eccentricities).   
 
The JFO model, however, is not easily implemented in the (numerical) solution of Reynolds 
equation since the cavitation zone (inception and extent) is unknown a-priori. This condition is akin 
to the problem of determining a free surface in open flows, just as in liquid channel flows, sea 
waves, etc.  

 

                                                 
3 Etsion and Ludwig (1982) argue, in lieu of extensive experimental evidence in flooded journal bearings that the 
JFO model is not strictly in accordance with the observed physics within the film-rupture zone, namely the 
occurrence of subambient pressures and flow reversals. 
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Elrod and Adams (1974) and Elrod (1981) advance the ingenious universal cavitation algorithm 
where the JFO model is directly incorporated into a single Reynolds equation valid in both the full 
film zone and the cavitation zone. In the model, the lubricant pressure and density are related 
through the fluid bulk modulus (κ). A switch function (g=1 or 0) allows automatic satisfaction of 
the boundary conditions at the cavitation interface. The function also switches the character of the 
flow continuity (Reynolds) equation from elliptic to parabolic in the full film and cavitation regions, 
respectively. A variable (θ) is introduced for book keeping; θ ≥ 1, in the liquid (full film) region, and 
 θ < 1 in the rupture (cavitation) zone denotes a void or volume fraction (gas or vapor/liquid). The 
universal cavitation algorithm is detailed next. 

 
Later developments have concentrated mainly on the implementation of fast and efficient numerical 
methods for the solution of the Elrod algorithm with applications to practical bearing configurations, 
and including dynamically loaded conditions. Brewe (1986), Woods and Brewe (1989), and 
Vijayaraghavan and Keith (1989) provide the most significant advances with continued refinements 
to the present day. However, the predicted pressure fields and cavitation extent depend greatly on 
the magnitude of the liquid bulk modulus (κ) used. In practice, artificially low values of the fluid 
bulk-modulus4, orders of magnitude lower than the typical value of 2.41 GPa for a mineral lubricant, 
are needed to “soften” the system of equations, to ensure numerical stability, and to avoid excessive 
round-off errors in the evaluation of the liquid pressure in the full film zone. 

 
In general, the existing thin film rupture models are suitable to predict the onset, extent, and global 
shape of stationary enclosed vapor or gas cavities in steadily loaded, fully flooded bearings. The 
qualification of fully flooded or submerged operation is most important since in this case, ventilation 
to the (gaseous) ambient condition does not take place.  

 
Consider, as depicted schematically in Figure 6.5, the flow evolution due to the sudden separation of 
two surfaces enclosing a thin film of lubricant. As the instantaneous film thickness increases with 
velocity V=dh/dt  > 0, the fluid pressure drops and leads to the appearance of vapor (or gas) 
cavitation patterns (bubbles). Further motion of the top surface brings the formation of complex 
(dendritic) patterns as the bubbles expand and coalesce with others. Air (gas) from the surrounding 
may also be ingested into the film, eventually leading to the collapse of the thin film.  

 
Before the ultimate rupture of the film, a sudden reversal in the top surface motion, dh/dt  < 0, will 
expel some the bubbles out of the film as the instantaneous gap h begins to decrease. Further 
squeezing will generate hydrodynamic pressures and the ability to carry dynamic loads; the principle 
of squeeze film damping at work! For surface motions of periodic nature and at sufficiently high 
frequencies, the process leads to the ingestion and entrapment of gaseous media within the film, and 
the eventual formation of a bubbly non homogeneous mixture (Diaz and San Andrés, 1998, 1999). 
This important phenomenon is obviously not considered in the JFO cavitation model described.  
 

                                                 
4 The assumption may have a physical justification. Note that most liquids have an amount of dissolved gas content 
in them. Hence, the lubricant bulk modulus material property is lower than that of the pure fluid. See footnote (1): 
Most mineral oils contain between 8 and 12 % in volume of dissolved air (Pinkus, 1990). 
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A Universal Cavitation Algorithm: 
The Elrod cavitation model avoids the tedious calculation of the cavitation boundary by 
reformulating the problem in terms of a new variable (different from pressure) and by developing a 
unique differential equation, applicable in both the full film region and the cavitation region. The 
algorithm also preserves mass conservation within the entire flow domain. 
 
In a compressible liquid, the density is related to the pressure by the relationship: 

     
ρ

ρκ
∂
∂

=
P       (6.12) 

 
where κ  is the liquid bulk-modulus. Typical bulk modulus values for pure water and oil are ~2.01 
and 2.41 GPa (292 and 350 kpsi), respectively. 
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As a density ratio, with ρcav is the liquid density at the cavitation pressure Pcav. Rewrite Eqn (6.13) as 
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where g is known as a switch function,  
 

    
1 in full film zone

0 in cavitation zone
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Direct integration of equation (6.14) renders 
 
    )(ακ ngPP cav +=       (6.16) 
 

Note that in the full film region, g=1 and P >Pcav since 
cρ

ρα = > 1; and in the cavitation region  

P = Pcav since g = 0.  
 
Incidentally, pressure differences (gradients) are of importance in thin film flows. Thus, for P1 and 
P2, both larger than Pcav,    
 

[ ] [ ]1 2 1 2 1 2( ) ( )P P n nκ α α κ α α− = − ≅ −    (6.17) 
 
Note that since (κ)  has a large magnitude, small differences in density ratio (α) will cause large 
differences in pressure. This consideration may bring difficulties in the numerical model, hence the 
need to artificially reduce κ. 
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Vijayaraghavan and Keith (1989) point out that the variable α, although defined as the ratio of 
densities, has different interpretations in the full film and cavitation regions. In the former, α > 1 
since ρ > ρc  due to the compression of the lubricant. In the cavitation zone, α < 1 for another 
reason. Within the cavitation zone, the lubricant density is uniformly (ρc) and the gap is not 
completely filled with lubricant due to the gaseous (or vapor) material within the cavity. Thus, α is 
termed the fractional film content and (1-α) represents the void (gas volume) fraction.  

 
Recall that the conservation of mass flow in a thin film is  
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where the components of liquid mass flow rate in the full film region are: 
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while in the cavitation region, 0=∂∂=∂∂ zPxP , and the mass flow rate within this zone is just 
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Note that these equations are valid in both flow regions since, in the full film zone g = 1 and α = 
ρ/ρcav, and in the cavitation zone, g =0 with α understood as the fractional liquid film content.  
 
Substitution of the mass flow rates above into the global mass conservation Eqn. (6.18) gives 
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This equation, where the α variable replaces the film pressure P, is valid everywhere within the flow 
domain. Note that in the full film region, g =1 since α > 1.  
 
In the cavitation region, α < 1, g = 0, and Eqn. (6.21) reduces to 
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thus establishing a dynamic flow balance in the cavitation zone. 
 
Vijayaraghavan et al. (1989) discuss the numerical solution of Eqn. (6.21) to obtain the pressure 
field in cylindrical journal bearings. The model renders an elliptical finite (central) difference 
formula within the full film zone, and a hyperbolic formula (backward or upwinding difference) 
within the fluid cavitation zone.  

 
Implementation of the universal cavitation algorithm in a computational program could lead to 
mixed success and little improvement over more crude techniques. The predictions will depend 
greatly on the magnitude of the bulk modulus(κ)  used in the analysis. For example, realistic values 
of the lubricant bulk modulus (κ) render a system of algebraic equations too stiff for accurate 
solutions since small variations in density will produce very large changes in pressure in the full film 
zone. Thus, the numerical model is plagued with round-off errors.  
 
To avoid the accuracy and slow convergence issues, analysts use an artificial low value of the bulk 
modulus, orders of magnitude smaller than the physical value. A numerically stable algorithm gives 
good results with κ values ranging from 1/100 to 1/10 of the actual physical magnitude. To 
conclude, computed results are problem dependent and the relevant literature is yet to report the 
details on a robust numerical procedure for the universal lubrication model. 
 
Closure 
The accompanying MATHCAD© program implements Elrod's algorithm for the solution of pressure 
in a one-dimensional slider bearing. The program displays results for calculations obtained using the 
simple Reynolds condition and the mass conservation model. The later model relies on point-wise 
under-relaxation since a line-solver produces numerical instabilities at the nodes where the 
cavitation zone starts and ends. Thus, the mass conservation model is both cumbersome and more 
computer intensive than the simpler model.  
 
Extension of the computational model to two-dimensional bearing geometries is straight forward, 
although care must be taken with slow convergence at the cavitation inception boundary.  

 
Use the program provided to assess the accuracy of the Reynolds condition model in relationship to 
the mass conservation model. 

 
See Notes 14 for a lucid explanation on dynamic cavitation in journal bearings operating under large 
transient or periodic (dynamic) loads. The pervasive problems associated with air ingestion and 
entrapment in squeeze film dampers comes to light in the discussion. 
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Κ

Pref
=

where g is a switch function, g=1 in the full film zone, g=0 in the cavitation zone 

In the cavitation zone, α denotes the (void) volume fraction, i.e. the ratio between the lubricant film and the gap 
thickness.

Thus, the differential equation describing both the full film and cavitation zones is:

where Λc
Λ

κ
= and boundary conditions p=pin, p=pout at x=0,1 
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dx
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ε 0.270:= journal eccentricitySET BEARING PARAMETERS:

Λ 10:= (Bearing Number based on Pref=14.7 psi)

κ
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:= dimensionless fluid Bulk modulus Λc

Λ
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Λc 0.00147=

pressures at leading & trailing edge, cavitation pressure

pin 0.0:= pout pin:= pc 0.:= error 1. 10 8−⋅:= (convergence error in film fraction)

N 99:= (Number of nodes in domain) of length L
NITER 600:= (Number of iterations in the solution of 

the non-linear equation)
Mesh & film thickness

0 0.5 1
0

1

2
Dimensionless film thickness

X/L

H
/C

Solution procedures:
(a) SolveNC: finds guess pressure field from soln. of 
incompressible fluid Reynolds equation, with pressures 
below cavitation value neglected on back subsitution 
procedure, i.e. equivalent to setting the Reynolds 
condition (dp/dx)=0 at cavitation inception. Method: Direct 
soln. using TDMA.
(b) Solve: Finds solution of density fraction (α) using 
universal cavitation algorithm. Procedure performs a 
point-wise relaxation since TDMA does not work well and 
causes divergence.

One-dimensional Long Journal Bearing  - Universal 
Cavitation Model (single point relaxation)

ORIGIN 0:=
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The conservation of mass equation in the fluid film is:
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⋅=for a compressible liquid, the relation between density and pressure is: , where Κ is the bulk modulus. Then
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forces and flow rate

Note changes in peak pressure and shift of 
minimum pressure=pcav towards higher x 
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(c) Results:
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(a) find pressure field with simple cavitation model (use as start field
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Forces from univ cav model and simple cavitation model
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The mass conservation model determines the 
corect volume fraction ratio.
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Exercises: 
Change parameters 
oil : bulk modulus Κ, cavitation pressure Pc
operating conditions: speed Λ, end pressures, journal eccentricity ε

Find effect on pressure field, reaction forces and flow rate
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Forces from univ cav model and simple cavitation model
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corect volume fraction ratio.
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Exercises: 
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oil : bulk modulus Κ, cavitation pressure Pc
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