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Notes 8. 
Turbulence in Thin Film Flows 
 
Notes 8 detail the characteristics of turbulent flows and provide insight into the flow instabilities 
that precede transition from a laminar to a turbulent flow condition. Turbulence is eminently a 
fluid inertia driven effect, i.e. when inertia forces are much larger than viscous forces A flow 
instability can be of centrifugal type that induces Taylor vortices when an inner cylinder rotates, 
or due to wave propagation in parallel flows. In fluid film bearings, the transition from laminar to 
turbulent flow at a Reynolds number of ~2,000 is referential only.  
The Notes also provide insight into the closure problem of turbulence (how to evaluate the six 
components of the apparent Reynolds stresses) and explain the concept of eddy viscosity. 
Equations for the transport of turbulent flow kinetic energy and dissipation (κ-ε  model) to 
determine the eddy viscosity are given. However, in thin film lubrication to this date, much 
simpler models are in use. Hirs’ turbulent bulk-flow model, as derived from an insightful 
observation that measurements in pressure and shear driven flows show similar wall shear 
stresses, is detailed. Hirs’ model focuses on relating the wall shear stress differences to the bulk-
flow velocity components. Hence, details of turbulence transport across the film are entirely 
avoided. A generalized Reynolds equation, valid for either laminar or turbulent flows, is the end 
result of the analysis. The Notes also derive turbulent flow equations that are identical to those 
under laminar flow conditions, expect for the introduction of shear factors due to flow 
turbulence.  
 
Nomenclature 
 
C  Radial clearance [m] 

f 
m

MU hf n ρ
μ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
= n Rem. Friction factor in turbulent flow 

h Film thickness 
m, ,n Parameters in friction factor formula 
p Pressure [N/m2] = ( )p p′+  

,p p′  Time averaged and fluctuations of pressure [N/m2] 
r Surface roughness [m]
R ½ D. Journal radius [m] 

Re  
R cρ

μ
Ω . (Shear flow) Reynolds number 

S i,j=1,2,3 1,2,3
1 ;
2

ji
i

j i

uu
x x =

⎧ ⎫∂∂⎪ ⎪+⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
. Fluid strain rate tensor [N/m2] 

t Time [s] 

T1 , T2 
Small (fast) and large (slow) time scales for averaging of turbulent flow 
velocities [s] 
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Ta 2ReC
R

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Taylor number 

( ) 1, 2, 3i iu =  Components of velocity field [m/s] = ( )i iu u′+  

( ) 1, 2, 3,i i iu u =
′  Time averaged and fluctuations of velocity field [m/s] 

u, v, w Components of velocity in x, y, z directions [m/s] 
U ΩR. Journal surface velocity [m/s] 
UM  Mean velocity of bulk-flow [m/s] 

Vx, Vz 

0 0

1 1;

h h

udy wdy
h h∫ ∫ . Bulk flow velocities [m/s] 

ε  Dissipation function in turbulent flow [m2/s2] 

κ  
' ' ' ' ' '
1 1 2 2 3 3

1
2

u u u u u u⎡ ⎤+ +⎣ ⎦ . Kinetic energy of turbulent fluctuations (per unit 

mass) [m2/s2] 
, ,

,
x y

J B

κ κ

κ κ
 ( )1

2x z J Bκ κ κ κ= = + ; ;J J J B B Bf R f Rκ κ= = . Bulk flow turbulence 

shear parameters. =12 for laminar flows 
ρ  Fluid density [kg/m3] 
μ  Absolute viscosity [N.s/m2]

tν  
2ˆ ulV l

s
∂

=
∂

Turbulence eddy viscosity [m2/s]. l characteristic length, 

V̂ characteristic mean flow velocity.  

( )
, 1,2,3ij i j

τ
=  

Wall shear stress tensor [N/m2] 

( ) , 1,2,3tij i jτ =  ( )i ju uρ ′ ′− . Reynolds  (apparent) stress tensor [N/m2] 

xyτΔ  0 2
h

xy x x J
UV

h
μτ κ κ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

. Wall shear stress difference x-direction 

(N/m2) 

zyτΔ  ( )
0

h
zy z zV

h
μτ κ= − . Wall shear stress difference z-direction (N/m2) 

σ i,j=1,2,3 Stress tensor [N/m2] 
Ω  Journal rotational speed (rad/s) 
Subscript  
B Bearing 
J Journal 
c Critical value 
Superscript  
- Time average  
‘  Fluctuating value 
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The characteristics of flow turbulence 
Turbulent fluid flow motion is an irregular flow condition in which the various flow quantities 
(velocity, pressure, temperature, etc.) show a random variation in time and space, but in such a 
way that statistically distinct averages can be discerned (Hinze, 1959). The forms of the largest 
eddies (low-frequency fluctuations) are usually determined by the flow boundaries, while the 
form of the smallest eddies (highest frequency fluctuations) are determined by the viscous forces 
(Roddi, 1980). 

 
The characteristics of fluid turbulence observed in nature 
are, according to Abbott and Basco (1989) and Tennekes 
and Lumley (1981): 
 
Irregularity:  Flow too complicated to be fully 
described with detail and economically. Deterministic 
approaches are impossible (to date). 
 
Three Dimensionality:  Turbulence is always rotational 
and flow fluctuations have three-dimensional 
components even if the mean flow is one or 
two-dimensional. Turbulence flows always exhibit high 
levels of fluctuating vorticity. 
 
Diffusivity: Rapid mixing and increased rates of 
momentum, heat, mass transfer, etc. 
 
Dissipation:  The kinetic energy of turbulence is 
dissipated to heat under the influence of viscosity since 
viscous shear stresses perform mechanical deformation 
work that increases the internal energy of the fluid. The 
energy source to produce turbulence must come from the 
mean flow by interaction of shear stresses and velocity 
gradients. 
 

Once turbulence initiates, it cannot sustain itself, but depends on its flow environment to provide 
its energy. 
 
Large Reynolds Numbers:  Turbulence is a fluid flow feature that occurs at high Reynolds 
numbers; it is not a property of the particular fluid itself. Turbulence often originates as a form 
of instability of the laminar flow if the Reynolds number becomes too large. These instabilities 
are related to the interaction of viscous and inertia forces. 
 
Turbulence is generally anisotropic, i.e. its intensity varies in each spatial direction. Some 
simple flows have a limited range of eddy scales and may be idealized as isotropic, or 
independent of direction. Usually only the very smallest turbulence scales can be properly 
idealized as homogeneous, i.e. independent of the spatial location. 

 

Figure 1. Volcanic eruption in 
Ecuador (10/1999). The largest 
turbulent jet/plume flow ever seen 
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Turbulence is a continuum phenomenon, governed by the equations of fluid mechanics. Even the 
smallest scales occurring in a turbulent flow are order of magnitudes larger than any molecular 
length scale. 
 
Instabilities in fluid flows: 
Flow transition from a laminar condition to a turbulent condition is usually preceded by flow 
instability. In isothermal flows, instability arises in two basic forms: 
 
1. Centrifugal Instability:  occurs in flows with curved streamlines when the destabilizing 

(centrifugal) force exceeds in magnitude the stabilizing (viscous) force. This instability is 
characterized by a steady secondary laminar flow often referred as Taylor-Gortler vortices. 

 
2. Parallel Flow Instability:  characterized by propagating waves. Here the fluid inertia force 

is destabilizing and the viscous force is stabilizing, thus the Reynolds number is a parameter 
of importance. Examples are found in shear flows such as in jets and boundary-wall flows 
such as in pipes. 

 
In the literature of thin film bearings (Szeri, 1980), the accepted critical value of the Reynolds 
number (Rec) for a parallel flow instability leading directly to flow turbulence is  
 

       Re 2,000c
RCρ
μ
Ω

= ≥          (1) 

 
where (ρ,μ) are the lubricant material density and viscosity, (R, c) are the bearing radius and 
clearance, and (Ω) is the journal rotational speed in rad/s. The Couette flow Reynolds number 
(Re) denotes the ratio between fluid inertia forces ρ (ΩR)2 and viscous forces μ (ΩR)/C in a 
shear flow induced by motion of a bounding surface.  
 
This criterion does not account for either side (axial) flow effects due to an imposed pressure 
gradient or the surface condition and macroscopic structure of the journal and bearing surfaces. 
The critical Reynolds number magnitude noted is referential only, strictly valid for 
hydrodynamic bearings operating at a near centered journal condition   
 
Even to this date, a handful of researchers claim that transition to turbulent flow in thin film 
journal bearings is delayed to Reynolds numbers (Rec) two orders of magnitude larger than 
2,000. This uncommon assertion dismisses the large body of experimental evidence that 
confirms the critical value given above.  
 
Centrifugal flow instability has been studied with great detail in the flow between rotating 
cylinders. Experiments and analysis show that the flow is stable to centrifugal disturbances if the 
outer cylinder rotates and the inner cylinder is stationary. On the other hand, if the inner cylinder 
rotates and the outer cylinder is at rest, centrifugal instabilities can lead to flow instability 
depending on the value of a characteristic parameter known as the Taylor Number (Ta).  
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As the rotational speed (Ω) of the inner cylinder increases, the flow becomes unstable, and 
characterized by the appearance of toroidal vortical cells equally spaced along the spinning axis 
of the cylinder. These Taylor vortices greatly affect the torque required to spin the inner 
cylinder. The critical Taylor number (Tac) is  

  

       2Re 1,707.8a cc
CT
R

⎛ ⎞= =⎜ ⎟
⎝ ⎠

     (2) 

 
for concentric cylinders (no eccentricity) with (C/R) <<1. In a typical thin film journal bearing, 
(C/R)=1/1,000, and thus the critical Reynolds number needed for the appearance of Taylor 
vortices is 
 

      
1/2

1/2Re 41.3 1,000 1,304c c
RTa
C

⎛ ⎞= = × =⎜ ⎟
⎝ ⎠

   (3) 

 
As the Taylor number increases above its critical value, the Taylor vortices become unstable to 
non-axisymmetric disturbances, i.e. the vortex cells become distorted. Szeri (1980) provides a 
lucid discussion on the process leading from Taylor vortex flow to the ultimate appearance of 
flow turbulence as the speed of the inner cylinder increases further. Note that as the ratio(R/c) 
increases, the transition towards turbulent flow could occur due to parallel flow instability 
without the appearance of Taylor vortices! 

 
Some relevant operating conditions provide a stabilizing influence to the flow between rotating 
cylinders and delay the appearance of Taylor vortex flow. These conditions, predicted by 
complex analysis (DiPrima and Stuart, 1972) and confirmed by experiments, are: 

 
- Axial flow due to an external pressure gradient. 
 

Figure 2. Taylor vortices in flow between concentric rotating cylinders 
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- Operating journal eccentricity. For example at ε = e/C = 0.8 and C/R=0.010, the critical 
Taylor number (Tac) is about 3 times the value of 1,708 valid for concentric cylinders 
(ε=0). 

 
- Circumferential pressure flow in the direction of the Couette flow, i.e., for ∂P/∂θ  < 0. 

 
Incidentally, the aspect ratio in the axial direction (L/C) appears not to have any effect on the 
appearance of Taylor vortices. 
 
In the design of thin film journal bearings operating at small eccentricities (ε ~ 0) it is accepted 
that 
 

A parallel flow transition occurs when Re ~ 2,000. If the value of Ta½ = 41.3 is 
reached before the Reynolds number attains this value, then the transition is to 
vortex flow. However, if the flow Reynolds number, Re, exceeds 2,000 while Ta½ is 
still less than 41.3 then the transition is directly to turbulent flow (Seri, 1980). 

 
Note that this criterion is valid for concentric cylinders (e=0). Appropriate criteria for journal 
eccentric operation is too cumbersome and given only for ideal cases. 
 
Equations of Turbulent Fluid Flow Motion 
Flow turbulence is a random process very difficult to model and to predict. It only “makes sense” 
to describe turbulence global or average behavior. This averaging may be in the time domain or 
space domain, both, or some other kind of meaningful ensemble procedure. For time procedures, 
the characteristic time for averaging must be much smaller than that typical time describing the 
temporal fluctuations of the mean flow. For space averaging, the physical size of the averaging 
volume must be much smaller than the size of the largest eddies confined within the boundaries 
of the mean flow.  Thus, it is clear that the equations derived (and solution methods) cannot 
resolve below the smallest time (and space) characteristic scales.      
 
The classical theory of turbulence modeling represents the flow variables, i.e. fluid velocities 
(ui)i=1,2,3 and pressure (p), as the superposition of an averaged quantity (mean variable) and a 
fluctuating component, i.e. 
 
      3,2,1;; =′+=′+= iiii uuuppp    (4) 
where for time averaging, 
 

      21
0

;)(1)( TTTdu
T

Tu
T

ii ≤≤= ∫ ττ    (5) 

 
T1 is the time scale of the “largest” eddies in the flow, and T2 is the time scale of the “slow” 
temporal variations of the flow that are not directly induced by turbulence. 
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Abbott and Basco (1989) provide an interesting description establishing the fallacy of Eqn. (5) in 
the context of the concept of a continuum. Determining a-priori the appropriate time scales T1 
and T2, which depend on the flow itself can be rather cumbersome. 
 
The use of the (time) averaging process leads to a set of properties for the mean flow and 
fluctuation variables. These are expressed as: 
 

   

; , constant

. . ; ; 0; 0

; . . 0

f g f g a f a f a

f g f g f f f f f

f f f g f g
x x

+ = + = =

′= = = − =

∂ ∂ ′ ′= = =
∂ ∂

    (6) 

 
The equations of flow continuity and momentum transport for an incompressible fluid are 

 

     
1,2,3

, 1,2,3

0;

;

i
i

i

iji i
j i j

j i

u
x

u uu
t x x

σ
ρ ρ

=

=

∂
=

∂
∂∂ ∂

+ =
∂ ∂ ∂

                                          (7)             

  
where {ui}i=1,2,3 are the fluid velocity components in the {xi}i=1,2,3 (x1=x, x2=y, x3=z) directions, σ 
is the stress tensor, and ρ is the fluid density.  
 
In a Newtonian fluid, the stress tensor σ  is related to the fluid material viscosity (μ), the 
hydrodynamic pressure (p), and the rate of strain (S) by, 
 

     3,2,1,;2 =+−= jiijijij Sp μδσ      (8) 
  

      1,2,3
1 ;
2

ji
ij i

j i

uuS
x x =

⎧ ⎫∂∂⎪ ⎪= +⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
    (9) 

 
where δij is the Kronecker-Delta function, i.e., δij=1 if i=j; 0 otherwise. 
   
Substitution of the mean and fluctuating flow field variables into Eqns. (7), and using the 
function properties in Eqn. (6), renders the equations of motion for the (time averaged) mean 
flow quantities and fluctuation fields, 
 

      
'

1,2,30; 0i i
i

i i

u u
x x =

∂ ∂
= =

∂ ∂
     (10) 
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    { } , 1, 2, 32i i
j ij ij i j i j

j j

u uu p S u u
t x x

ρ ρ δ μ ρ =

∂ ∂ ∂ ′ ′+ = − + −
∂ ∂ ∂

  (11) 

 
Osborne Reynolds derived these equations as early as in 1895. The term in parenthesis on the 
right hand side of Eqn. (11) represents the total mean stress tensor for the turbulent flow. The 
contribution of the turbulent flow motion to the mean stress tensor is usually known as the 
Reynolds stress tensor, 
 
      3,2,1,; =′′−= jijit uu

ij
ρτ      (12) 

 
This tensor has six independent components that determine the influence of the flow fluctuations 
into the mean flow. That is, Eqn. (12) introduces the effect of the flow fluctuations into the mean 
flow field.  
 
Note that the analysis thus far renders four mean flow equations, but at each spatial point in the 
flow field we have ten unknown variables, i.e. 
1 pressure, 3 fluid velocities, and 6 components of the Reynolds stress tensor.  
 
The difference between the number of unknowns and the number of available equations makes a 
direct solution of any turbulent flow problem impossible. The resulting phenomenological 
problem of finding additional equations or conditions to make up the difference is known as the 
CLOSURE PROBLEM of flow turbulence. 

 
The fundamental problem of turbulence flow modeling is to relate the six Reynolds stress 
components (τt) to the mean flow quantities in some physically plausible manner. This topic is, 
however, out of the scope of the lectures in Modern Lubrication. The interested reader may 
consult the fundamental references of Hinze (1959), Tennekes and Lumley (1981), Rodi(1980), 
Frisch (1995), and Holmes et al. (1996).  Incidentally, Abbott and Basco (1989) review the initial 
developments in space-averaged methods leading to the formulation of the large eddy simulation 
(LES) models and the treatment of the Lorenz (turbulent flow) stresses.  
 
At the beginning of the 21th century, powerful computers number crunch flow turbulence without 
resorting to time or space or both types of averages. In addition, novel tool of mathematical 
analysis such as power spectral decomposition and proper orthogonal decompositions enable to 
predict turbulent flows in various scales (time and space wise).   

 
Most homogenous turbulence models in the archival literature relate the Reynolds stresses to the 
gradient of the mean velocity vector (Rodi, 1980), i.e.  
 

    , 1,2,3
2 ;
3ij

ji
t i j t ij i j

j i

uuu u
x x

τ ρ ρν ρ κ δ =

⎧ ⎫∂∂⎪ ⎪′ ′= − ≈ + −⎨ ⎬∂ ∂⎪ ⎪⎩ ⎭
   (13) 

 

     ' ' ' ' ' ' ' '
1 1 2 2 3 3

1 1
2 2i iu u u u u u u uκ ⎡ ⎤ ⎡ ⎤= = + +⎣ ⎦ ⎣ ⎦      (14) 
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where νt is the eddy viscosity, and κ is the kinetic energy (per unit mass) of the turbulence 
fluctuations.  
 
Equation (13), generally known as the Boussinesq approximation (1877), provides a 
mathematical model to the closure problem in flow turbulence; and shows that, just as with the 
viscous stresses in laminar flow, the turbulent flow stresses are proportional to the gradients of 
the mean (time averaged) velocities.  
 
Now, instead of six unknown turbulent shear stresses there is only one unknown, the turbulent 
viscosity νt, which must be determined from the flow itself. Tat is, the eddy viscosity νt is not a 
material property and depends strongly on the turbulence intensity, varying significantly from 
one spatial point to another point in the flow region, and also from one flow to another flow. 
 
Thus, substitute Eqn. (13) into the total stress (σ), Eqn. (11) , for the turbulent flow to get 
 

   , 1,2,3
2

3
1 ;jt i

ij ij i j
j i

uup
x x

νσ ρκ δ μ
ν =

⎧ ⎫∂∂⎪ ⎪⎛ ⎞⎧ ⎫≈− + + + + +⎨ ⎬ ⎨ ⎬⎜ ⎟ ∂ ∂⎩ ⎭ ⎝ ⎠⎪ ⎪⎩ ⎭
   (15) 

 
Note that the term ρκ, the kinetic energy of the velocity fluctuations ( )'

1,2,3i i
u

=
, acts as a sort of 

dynamic pressure. Hence we could define a dynamic pressure as 2
3

p ρκ⎡ ⎤+⎣ ⎦ . Thus, the 

appearance of κ in Eqn. (15) does not need its direct determination. Note also that the flow 
fluctuations ( )'

1,2,3i i
u

=
= 0 at a wall or flow boundary. Hence, any pressure measurement at a wall 

does not evidence any velocity induced pressure. Most importantly, it is the distribution of the 
eddy viscosity vt which must be ascertained.  
 
A formulation for the eddy-viscosity (νt) in simple shear flows was conceiving an analogy 
between the turbulent flow motion and the molecular motions that leads to Stokes viscosity law 
in laminar flows. Turbulent eddies are thought as lumps of fluid which, very much like material 
molecules, collide and exchange momentum (Rodi, 1980). The molecular (material) viscosity (ν) 
is proportional to the average velocity and mean free path length of the molecules. Accordingly,  
by analogy, the eddy viscosity (νt) is also proportional to a velocity (V~ ) characterizing the (large 
scale) fluctuating motion and a typical length of this motion (l).  

 
     Vlt

ˆ≈ν       (16) 
 
For shear layers with only one significant turbulent stress ( )vu ′′⋅ρ , Prandtl (1945) shows that the 
velocity scale is properly given by 
 

      
s
ulV
∂
∂

=ˆ       (17) 
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where s is the normal direction to the mean flow u . Hence, the eddy viscosity can be expressed 
as: 

      
s
ulVlt ∂

∂
== 2ˆν      (18) 

 
Thus, Prandtl’s mixing-length hypothesis relates the eddy viscosity (νt) to the gradient of the 
mean velocity and a single unknown parameter, the mixing length (l). Kolmogorov (1942) and 
Prandtl (1945) defined the mixing length.  
 
The original hypothesis extended to complex flows becomes (Rodi, 1980) 

     
2/1

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
∂

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂

∂
+

∂
∂

=
j

i

i

j

j

i
t x

u
x
u

x
u

lν      (19) 

 
Szeri (1980) describes the turbulence flow models commonly used in fluid film bearing analyses. 
Most of the original research, including some fundamental experimental verification, was 
performed in the early 1960’s, driven by the needs of the nuclear power industry. In those days, 
liquid sodium bearings for nuclear reactors as well as water lubricated bearings for boiler feed 
pumps constituted state of the art applications with operating Reynolds numbers (Re) around 
10,000.  Constantinescu (1962), Ng (1964), and Elrod and Ng (1967) pioneered the analyses 
using the mixing-length hypothesis and implementing the law of wall to derive the fundamental 
length scale (l). Final results for these models are given later. 
 
The mixing length model has worked surprisingly well for many simple turbulent flows like 
shear layers, boundary wall flows, wakes, and also in fluid film lubrication. However, as 
Tennekes and Lumley (1981) point out, mixing length models are incapable of describing 
turbulent flows containing more than one velocity and one length scale since turbulent eddies are 
not rigid bodies and certainly their sizes are not small (relative to the flow domain) as required 
by the kinetic theory of gases. 
 
Classification of turbulence flow models 
Several models have evolved to determine the transport of turbulent flow quantities, thus 
determining the components of the Reynolds stresses. Most models employ transport equations 
for scalar function to characterize the eddy viscosity. 
 

Name of Model Number of turbulent flow 
transport equations 

Turbulence Quantities 
Transported 

Zero equation 0 None 
One equation,κ  1 κ → νt   (kinetic energy) 
Two equation, κ-ε 2 κ and ε → νt   

(kinetic energy and dissipation) 
Stress/Flux 6 

ji uu ′′ ′′   
Algebraic stress 2 κ and ε → τt 
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In thin film turbulent flows, Ho and Vohr (1974) presented the first analysis using a one equation 
model for transport of κ, the kinetic energy of fluctuations. Launder and Leschziner (1978) first 
introduced the κ-ε model for turbulent flow in slider bearings. The simple zero equation models 
of Constantinescu (1962) and Elrod and Ng (1967) are still in use to this day.  
 
 
The κ-ε turbulent flow model 
Since the early 180’s, and with the advent of high-speed computers, novel and more complex 
turbulent flow models have evolved. Perhaps the most common one, even to this day, is the κ-ε 
model. This model determines the eddy viscosity (νt) from the relationship 
 

      
ε
κν

2

ut C=       (20) 

 
where κ is the kinetic energy produced by the flow fluctuations, Eqn. (14),  and ε is the rate of 
turbulence dissipation at nearly (almost) molecular scales. Eqn. (20) establishes the principle that 
the production of turbulence at large scales (small wave lengths) equals to viscous dissipation at 
the smallest scales (largest wave numbers).  

  
κ and ε are determined from transport equations. The standard form of the transport equations for 
κ and ε are [Rodi(1980), Tennekes and Lumley (1981)] 
  

  

κ
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κ
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ε
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u
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⎝
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⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂

∂
+

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
∂
∂

+
∂
∂

=

  (21) 

 
The κ-ε equations reflect the basic transport mechanisms, i.e. fluid convection equaling to 
diffusion and generation or dissipation of mechanical power. Unique solution of these equations 
requires of adequate boundary conditions for the turbulent kinetic energy (κ) and dissipation (ε) 
fields. These conditions are difficult to obtain, except for the simplest flow configurations. 
Furthermore, often the efficient numerical solution of the equations above requires of the law of 
the wall to avoid too fine meshes. 

 
The coefficients Cμ, C1ε, Cκ, C2ε , σε , σκ  in Eqns. (21) are empirical, derived from measurements 
in simple turbulent flows and at large Reynolds numbers. Universal coefficients, i.e. intended for 
applications into all sorts of flows, are unknown. Thus, much effort continues in the 
experimental aspects of flow turbulence. Coefficients for low-Reynolds number flows are also 
known.  
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Equations for turbulent flow in thin film regions 
The major characteristic of a thin film flow is the smallness of the ratio of film thickness to 

the other physical dimensions in a bearing, i.e. (c/R or c/L <<< 1). Based on this fundamental 
characteristic and assuming that all components of the Reynolds stress tensor ( )

ijtτ  are of the 
same order of magnitude, a dimensionless procedure and an order of magnitude analysis show 
that the (turbulence) equations, Eqns. (10,11), for the mean flow of an incompressible liquid in a 
thin film region reduce to (Szeri, 1980): 
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where the (y) coordinate is across the fluid film. Note that in the equations above, { x=x1 , y=x2 , 
z=x3}, and consequently, { }321 ,, uwuvuu === . Szeri (1980) also shows that identical equations 
are obtained by assuming that turbulence is homogeneous (independent of direction) along cross-
film planes (y = fixed). This assumption is not essential in thin film bearings, yet it is important 
for large clearance seals and bearings. 
 
Equation (25) shows that the mean hydrodynamic pressure does vary across the film thickness. 
However, integration of this equation yields 
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by an order of magnitude analysis or assuming turbulence homogeneity in constant planes across 
the film thickness.  
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The bulk-flow model for turbulent thin film flows 
Hirs (1974) proposed a bulk-flow theory for modeling turbulence in thin film flows. This model 
does not intend to analyze turbulence flow in all its details, better relying entirely on empirical 
information obtained from experiments. In essence, the analysis seeks to relate the wall shear 
stress differences to the mean flow velocity components as described next. In the following the 
mean velocity conveys the meaning of an average (mean flow) velocity across the film thickness. 
 
Before studying in detail this model, it is important to detail the governing equations in terms of 
bulk-flow components. These equations in the absence of fluid inertia effects1 are 
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where τxy, τzy are the total shear stress due to viscous and turbulence flow effects. The boundary 
conditions for the velocities at the boundaries of the film thickness are2: 
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Bulk-flow velocity components are defined as the mean velocities across the film thickness, i.e.  
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Note that this procedure involves a time and spatial averaging since, from Eqn. (5), 
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h h T τ τ

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
∫ ∫ ∫      (31b) 

                                                           
1 The nonlinear fluid inertia terms in the general equations of motion (22-24) are typically small in most mineral oil lubricated 
bearings. It will be shown later that the turbulent flow stresses are more important than their transport by advection. On the other 
hand, fluid inertia effects are most important in the analysis of turbulent flow in seals and process lubricated bearings. 
2 These conditions apply to both the actual and (time) averaged velocity components. Thus, turbulent velocity fluctuations must 
vanish at the boundaries.  
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Integration of Eqns. (22) and (28, 29) across the film thickness leads to the following bulk-flow 
equations 
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where Δτxy and Δτxz  are the wall shear stress differences. In laminar and inertialess film flows, 
the wall shear stress differences are functions of the bulk-flow velocity components (See Notes 
2): 
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In turbulent flows, and using the same analogy as with Prandtl’s eddy viscosity, one assumes that 
the wall shear stress differences are also related to the mean flow components in the following 
manner 
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where κx, κy, κJ  are turbulence shear parameters that depend on the structure of the turbulent 
flow, i.e. the bulk-flow velocities (Vx, Vz) and surface boundary velocity U; and possibly on the 
condition of the bearing and journal surfaces (smooth or rough or textured).  
 
Note that setting κx = κy = κJ = 12 in Eqns. (36) reduces them to their familiar laminar flow  
form. 
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From Eqns. (36) it follows that 

2

2

1;

1; ;
2

z z z
z

J
x x J x J

x x

h pV G G
z

h p UV G G G G
x

μ κ

κ
μ κ κ

∂
= − =

∂

∂
= − + = =

∂

   (37) 

 
Thus, the turbulent thin film flow still shows the two basic flow types; i.e. pressure induced 
(Poiseuille) and shear induced (Couette) flow types. 
 
Substitution of the bulk-flow velocities, Eqns. (37), into the mean flow continuity equation (32) 
renders a Reynolds equation for an inertialess fluid undergoing turbulent conditions in a thin film 
region: 
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  (38) 

 
Note that Eqn. (38) preserves the form of the classical Reynolds equation for laminar flows. In 
practice, for smooth surface bearings operating at low eccentricities, 1~−JG .  
 
All thin film turbulent flow theories arrive at Eqn. (38); albeit the functional form of the G 
coefficients varies (Constantinescu, 1962, Elrod and Ng, 1967, Hirs, 1973). 
 
As stated by Hirs (1973), “the bulk-flow theory is based on the empirical finding that the 
relationship between wall-shear stress and mean flow velocity relative to the wall at 
which the shear stress is exerted can be expressed by a common simple formula for 
pressure flow, shear flow, or a combination of these two basic types of flow.” 
 
Extensive experiments carried to investigate drag (pressure losses) in pipe flows, shear drag in 
between rotating cylinders, and pressure (extrusion) flow within  stationary plates show that, for 
sufficiently large Reynolds numbers, the wall shear stress (τ ) can be expressed as3 
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 where UM is the mean velocity of flow relative to the surface at which the shear stress is exerted, 
ReM =(ρUM h/μ) is the Reynolds number for the mean flow, and f is known as a friction factor. 
The coefficients (n, m) are empirical values derived from curve fits of the experimental data. 
 
The magnitude of the coefficients n and m  typically depends on  

- Roughness of the lubricated surfaces. 
                                                           
3 Note that none of these flows present the same physical scales as those found in thin film (lubrication) flows. 
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- Magnitude of the flow Reynolds number.  
- Influence of inertia effects other than those inherent in the flow turbulence. 
- The type of flow, shear or pressure driven.  

 
Hirs provides the following values, strictly valid for smooth surfaces,  
 
For pure pressure flow (τ0),   m0  = -0.25, n0 = 0.066 
             (40) 
For pure shear flow,  (τ1),   m1 = -0.25,  n1 = 0.055 
 
The ratio of wall shear stresses for the two types of flow at identical Reynolds (ReM) numbers, 
i.e. equal bulk-flow velocities, is  
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1 1 1

Re 1.2m m
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= = ≅ =⎜ ⎟
⎝ ⎠

   (41) 

 
Hirs noted the relative insensitivity of the wall shear stress to the type of flow and assumed the 
wall shear stresses to be additive. That is, if τ0 is the wall shear stress due to a pressure 
gradient dp/dx, and τ1 is the wall shear stress due to shear induced by a surface with 
relative velocity V; then, the wall shear stress derived by the combined action of V and 
dp/dx; is τ =(τ0+ a τ1)  on the stationary surface, while τ =(τ0 - a τ1) on the moving 
surface. 
 
Hence, a wall stress due to shear flow (τ1) is equivalent to that obtained by a "fictitious" pressure 
gradient (dp1/dx) as derived from a simple force balance, 
 

     1
1 2 τa

xd
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h =−       (42)   

 
Using the idea set forth above, Hirs generalizes the concept to turbulent flows in thin films. 
Further details of the analysis can be found in the fundamental paper of Hirs (1973) or the 
textbook of Szeri (1980). 
 
The resulting equations of motion for turbulent-inertialess flows in thin film, as derived by Hirs, 
are: 
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where,  [ ] ( )[ ] 2
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are the bulk-flow Reynolds numbers relative to the bearing (B) and journal (J) surfaces, 
respectively. Note that in the equations above U = ΩR.  
 
The general form of the friction factor is, f=nRem. Thus, friction factors for the bearing 
(stationary) and journal (moving) surfaces follow as 
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with n0 = 0.066, m0 = -0.25 for a smooth surface. Eqns. (43-44) are rewritten, by introducing the 
friction factors, in a more compact form as 
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Eqns. (47) are formally identical to Eqns. (36), except that now the κ coefficients are fully 
specified as functions of the flow Reynolds numbers.  
 
Hirs bulk-flow model can be also extended to consider rough bearing surfaces by appropriate 
choice of the coefficients n and m. However, this procedure is quite cumbersome and rarely 
provides any physical insight. The recent literature in turbulent flow seals and bearings with 
macroscopic surface roughness, better known nowadays as textured surfaces, revises Hirs’ 
approach and employs (also) empirically based friction factors that account for surface roughness 
effects (Childs, 1993). 

 
One simple form is to extract directly the friction factors from a curve fit of Moody's diagram for 
pressure driven flow in pipes. This friction factor, fitting to Moody's extensive empirical data, is 
(Massey, 1983) 
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    (49) 

 
where α = 0.001375,  e = 3.0, i= J(journal), or B(bearing) surfaces, and r corresponds to the 
surface roughness. The equation above is strictly valid for (sand like) surface roughness (r) to 
10% of the local film thickness or clearance. 
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Computational analyses for turbulent annular pressure seals present comparisons of numerical 
predictions based on Moody's and Hirs' friction factors to experimental results. In general, the 
experimental - analytical correlation favors the model using Moody's friction factor (Nelson and 
Nguyen, 1987). 

 
The accompanying MATHCAD sheet shows a comparison of the shear factors (k) and friction 
factors derived from Constantinescu turbulent flow theory and Hirs turbulent bulk-flow models. 
Note that Hirs coefficients (n0, m0) are determined from experiments and are strictly valid for 
turbulent flows.  
 
Zirkelback and San Andrés (1996) extended Hirs formulation to include the transition regime 
from laminar to turbulent flows in pressure driven flows. For Reynolds numbers in the range 
from 1,000 to 3,000, the friction factor (fT) is defined as 
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Closure 
The trends towards high speed bearing and seal applications and using process fluids and gases, 
as opposed to mineral oils, determines operating conditions well within the turbulent flow 
regime. Constantinescu’s model is preferred to model turbulent flow in journal and thrust 
bearings.  
 
Hirs’ turbulent bulk-flow including fluid inertia effects has been used extensively to predict the 
flow characteristics and rotordynamic coefficients of annular pressure seals and externally 
pressurized (hydrostatic) bearings. In general, predictions compare well with measurements for 
smooth surface seals and bearings. 

 
Computational analyses based on the bulk-flow model for complex seal geometries such as 
labyrinth seals and honeycomb damper seals predict well the static characteristics (leakage and 
power dissipation) but perform poorly in the estimation of rotordynamic force coefficients, for 
example. It appears that the friction factors in these seal configurations are more complicated 
functions of the Reynolds number and surface conditions (macroscopic or “machined” 
roughness) than the simple formulas advanced by Hirs.  
 
Incidentally, the bulk-flow model does very well in flows without strong recirculations or very 
curved streamlines. Note that honeycomb and labyrinth seals present zones of local recirculation 
that are not accounted for in the bulk-flow model.  
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Learn more 
See below some pictures of Taylor vortices. Visit the URL addresses noted if interested. 
 
 

 
Richard M. Lueptow Home Page 

URL: http://www.mech.nwu.edu/fac/lueptow/HTML/taylor-coutteflow.html 
 
 

 
http://www.engr.wisc.edu/groups/fsd/research/tftc/index.html 
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http://www.princeton.edu/~gasdyn/Research/T-C_Research_Folder/Intro_to_T-C_Flows.html 
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A comparison follows for the shear coefficients (k)x,z derived from the turbulence models of 
Constantinescu and Hirs. These factors are valid for Couette flows, i.e. shear flows with near absence of 
pressure gradients.

The appropriate formulae in the directions (x) along surface moving with velocity U and (z) perpendicular 
to (x) are defined in terms of the Couette flow Reynolds number (Re)

(c) Luis San Andres, UT 02/2000
Shear factors for turbulent flows in thin film regions
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Let's compare the friction factors to some formulae derived from experimental 
measurements by Yamada for smooth surface seals and Childs for a honeycomb surface 
seal.
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The maximum Reynolds number achieved in the tests was well below 100000. 

Note that for smooth surfaces, Hirs and Moody friction factor formulae correlate well with the 
experimental values of Yamada. 

The experiments with honeycomb seals show much larger friction coefficients, nearly equivalent to 
a 20% roughness ratio. Thus, the shear factors k=f*Re will render much larger dissipation effects 
than the smooth surface.



Shear factors for transition regime from laminar to turbulent flow

Zirkelback, N., and L. San Andrés, 1996, "Bulk-Flow Model for the Transition to Turbulence Regime in 
Annular Seals," STLE Tribology Transactions, Vol.39, 4, pp. 835-842 
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