Applications of oil seals in turbomachinery

Floating ring seals. Effect of eccentricity

Applications of oil seals in turbomachinery

Long seals

Read
Childs & Vance., 1997, TurbSymp, pp.201, 220.
Notes 11.

High Pressure Long Oil Seals

Small clearance oil seals minimize process gas leakage while allowing a limited lubricant flow accompanied by a pressure drop. Annular seals are used in agitators and mixers, balance pistons in centrifugal pumps, etc.

Long annular seals ($L/D>>1$), however, have a major impact on the stability of rotating machinery since they introduce large cross-coupled forces. The imposed axial pressure drops prevents liquid cavitation, and hence full film conditions prevail for most operating conditions.
In practice, long seals integrate two sealing sides, each with a small clearance, and fed with some mineral lubricant at a pressure (P_s) slightly higher than the pressure (P_i) of the process product.

The **inner side seal** faces the process fluid and has a lubricant flow towards it, thus providing some degree of product contamination.

The **outer side seal** faces the support bearing (also oil lubricated) and has a larger pressure drop (usually) to atmospheric conditions (P_a) with a return to the main oil reservoir or sump.

Typical sealing pressures can be as high as 30,000 psig (2,040 bar). In these applications, the lubricant viscosity depends greatly on the local pressure (oil viscosity can increase to three orders of magnitude its value at ambient pressure).

Oil seals have very small clearances (tighter than the support bearings) and **dissipate** large amounts of mechanical energy (**lubricant heats**) shear-induced by shaft rotation and by the extrusion of lubricant due to the pressure drop. In some cases, oil seal assemblies contain a **water-cooling jacket** to remove the
heat generated and to provide an accurate control of the seal clearances. The large pressure drops also produce elastic deformations of the seal bushing and shaft with enlarged clearances on the sides of the high pressure condition.

The fluid flow in the seal is typically laminar since the (mineral oil) lubricant viscosity is large and the radial clearance is rather small. Operation without allowance for liquid cavitation makes the seal not able to generate direct stiffness coefficients, i.e. the seal cannot support radial loads.
SEAL MASS FLOW RATE

In a centered long seal, the mass flow rates towards the inner \((\dot{m}_i) \) and outer \((\dot{m}_o) \) sides of the seal are given by the simple formulas:

\[
\dot{m} = \dot{m}_i + \dot{m}_o \quad ; \quad \dot{m}_o >> \dot{m}_i
\]

\[
\dot{m}_i = \frac{\pi D \rho_i c_i^3 (P_s - P_i)}{12 \mu_i L_i},
\]

\[
\dot{m}_o = \frac{\pi D \rho_o c_o^3 (P_s - P_o)}{12 \mu_o L_o}
\]

where \((\rho, \mu)_{i,o} \) are the lubricant effective density and viscosity, \((L,D,c)_{i,o} \) are the seal axial length, diameter and radial clearance; and \((P_s-P_o) > (P_s-P_i) \) are the pressure differentials across the outer \((o) \) and inner \((i) \) sides of the seal.
Note that tight (small) seal clearances \((c) \) have a pronounced effect on the seal leakage, i.e. \(\dot{m} \sim c^3 \). Furthermore, the journal rotational speed \((\Omega) \) has no effect on the seal leakage for laminar flow conditions.

SEAL POWER LOSS AND LUBRICANT TEMPERATURE RAISE

The mechanical power loss \(\dot{\varphi}_S \) due to shear (drag of the lubricant by shaft rotation) is given by

\[
\dot{\varphi}_S = \dot{\varphi}_{si} + \dot{\varphi}_{so} = 2\pi \Omega^2 \left[\mu \left(\frac{D}{2} \right)^3 \frac{L}{c} \right]_i + \left[\mu \left(\frac{D}{2} \right)^3 \frac{L}{c} \right]_o
\]

(2)

Also mechanical power \(\dot{\varphi}_E \) is required to extrude (push) the lubricant through the thin film clearances, i.e.

\[
\dot{\varphi}_e = \dot{\varphi}_{ei} + \dot{\varphi}_{eo} = (1 - \beta_A T_s) \left[F_i \nu_i + F_o \nu_o \right]
\]

(3)
where

\[F_i = (P_s - P_i)(\pi D c_i); \quad F_o = (P_s - P_o)(\pi D c_o) \] \hspace{1cm} (4)

are axial forces pushing fluid into the inner and outer sides of the seal,

\[v_i = \frac{\dot{m}_i}{\rho_i \pi D c_i}; \quad v_o = \frac{\dot{m}_o}{\rho_o \pi D c_o} \] \hspace{1cm} (5)

are the lubricant axial velocities on each side of the seal; and \(\beta_A \) is the oil volume-thermal expansion coefficient. Note that

\[F_i v_i = (P_s - P_i) \frac{\dot{m}_i}{\rho_i}; \quad F_o v_o = (P_s - P_o) \frac{\dot{m}_o}{\rho_o} \] \hspace{1cm} (6)

A portion of the total mechanical power (shear + extrusion), \(\phi = (\phi_s + \phi_e) \) is conducted into the seal cartridge or housing and into shaft. The other portion is carried away (convected) by the lubricant, thus increasing its temperature.
The **temperature rise (ΔT)** on the lubricant (on each side of the seal) is determined from the balance of heat transported by the lubricant, i.e.

\[
\Delta T_i = (T_i - T_s) \sim \kappa_i \frac{\dot{\rho}_i}{\dot{m}_i C_{pi}}; \quad \Delta T_o = (T_o - T_s) \sim \kappa_o \frac{\dot{\rho}_o}{\dot{m}_o C_{po}}
\]

where \(C_p \) is the lubricant specific heat and \(\kappa \) represents a fraction of the mechanical power convected into the fluid flow. Note that lubricant temperature rises can be large since the fluid flow rates are (by necessity) small. \(\kappa = 0.8 - 1.0 \) when the seal walls are insulated. With a cooling jacket (typically water flow) then \(\kappa << 1 \).

LONG SEAL ROTORDYNAMIC FORCE COEFFICIENTS

For a centered seal (vertical configuration or unloaded condition), the direct and cross-coupled stiffness (\(K_{XX}, K_{YY} \) and \(K_{XY}, K_{YX} \)) coefficients and damping (\(C_{XX}, C_{YY} \) and \(C_{XY}, C_{YX} \)) coefficients are:
where \(\Omega = \text{RPM}(\pi/30) \) is the rotor speed in (rad/s). Note that the direct stiffnesses are zero and the cross-coupled stiffnesses increase (linearly) with shaft speed \(\Omega \). The direct damping coefficients from the inner and outer sides of the seal are\(^1\)

\[
C_{XX_i} = 12 \pi \mu_i L_i \left(\frac{D}{2c} \right)_i \left[1 - \frac{\tanh \left(\frac{L_i}{D_i} \right)}{\left(\frac{L_i}{D_i} \right)} \right] \]

\[
C_{XX_o} = 12 \pi \mu_o L_o \left(\frac{D}{2c} \right)_o \left[1 - \frac{\tanh \left(\frac{L_o}{D_o} \right)}{\left(\frac{L_o}{D_o} \right)} \right] \]

\[\text{for short length seals, recall that } \lim_{s \to 0} s^2 = 3\]
and the whirl frequency ratio is simply

\[WFR = \frac{K_{XY}}{\Omega C_{XX}} = 0.50 \]

i.e. identical to that of a conventional (unloaded) cylindrical journal bearing. Thus, long annular seals are potential sources of rotordynamic instability!

Note the cross-coupled stiffnesses are proportional to rotor speed (\(\Omega \)) and to the third power of the seal diameter over clearance ratio \((D/2c)^3\).

In lieu of recent test data by Childs et al. (2006, 2007) that shows oil seal rings develop large added mass coefficients (smooth land and grooved configurations), formulas for direct added mass coefficients \((M_{XX} = M_{YY})\) are (Reinhardt, E., and Lund, J., 1975)

\[
M_{XXi} = \pi \frac{\rho_i L_i}{c_i} \left(\frac{D_i^3}{8} \right) \left[1 - \frac{\tanh \left(\frac{L_i}{D_i} \right)}{\left(\frac{L_i}{D_i} \right)} \right], \quad M_{XXo} = \pi \frac{\rho_o L_o}{c_o} \left(\frac{D_o^3}{8} \right) \left[1 - \frac{\tanh \left(\frac{L_o}{D_o} \right)}{\left(\frac{L_o}{D_o} \right)} \right]
\]

(10)

for the inner and outer sides of the seal, respectively.
San Andrés (1997, for an industrial sponsor) recommended substitution of a long annular oil seal with a helically grooved seal to fix a (quite destructive) rotordynamic instability in a large size chemical mixer. The replacement was highly successful.

A seal with axial grooves divides the overall seal length \(L \) into \(N \)-small portions, each of length \(L_s (<<D) \). In this case the seal cross-coupled stiffnesses reduce to:

\[
K_{XY} = -K_{YX} = \sum_{s=1}^{N} \frac{\pi \mu \Omega D L_s^3}{4 c^3}
\]

Note that the direct damping coefficients are also reduced and the whirl frequency ratio remains unchanged at \(\text{WFR}=0.50 \).
An engineered **helically grooved or spiral grooved seal** pumps the lubricant backwards (towards the high pressure zone), thus producing a more effective sealing with a larger film clearance and reducing substantially the lubricant temperature raise.

Furthermore, grooved seals provide direct stiffness \((K_{XX}, K_{YY})\) and reduce considerably the cross-coupled stiffnesses \((K_{XY}, K_{YX})\) while preserving the same leakage rate.

FURTHER NOTES
- Using large clearance seals is not recommended
due to the excessive leakage rates of the sealing lubricant.

- Spirally grooved seals have consistently smaller load capacity, cross-coupled stiffnesses and direct damping coefficients than smooth land seals.
- Using a cooling jacket prevents overly large lubricant temperature rises and provides a way to control tight clearances.

References

