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Handout # 14 (MEEN 626) Application example 

Experimental identification of bearing force coefficients 
 
Experimental identification of the dynamic force coefficients of bearings, seals and other rotor 
support elements is of importance (a) to predict, at the design stage, the dynamic force performance 
of a rotor using these elements; (b) to reproduce rotordynamic performance when troubleshooting 
rotor-bearing system malfunctions or searching for instability sources; and (c) to validate (and 
calibrate) predictive tools for bearing and seal analyses. The ultimate goal is to collect e a reliable 
data base from which to determine the confidence of bearing and/or seal operation under both 
normal design conditions and extreme environments due to unforeseen events.  

In addition, even advanced predictive computational physics based models are very limited or non-
existing for certain bearing and seal configurations and with stringent particular operating 
conditions, and thus experimental measurement of the actual element force coefficients constitute 
the only option available to generate engineering results of interest. Squeeze film dampers 
operating with persistent air ingestion and entrapment are an application example where systematic 
experimentation becomes mandatory. 
 
The widespread availability and low-cost of PC high-speed data acquisition equipment and (real 
time) data signal processing have promoted dramatic advancements in the field of bearing and seal 
parameter identification. In most cases, methods are restricted to the laboratory environment and 
strictly applicable to rigid rotor configurations and identical bearing supports. Time and frequency 



Notes 14. IDENTIFICATION OF BEARING FORCE COEFFICIENTS. © Dr. Luis San Andrés (2009) 2 

domain based parameter identification procedures are based on the seminal works of Goodwin 
[1991] and Nordmann [1980], respectively.   
 
Tiwari, R., Lees, A.W., Friswell, M.I.  2004. “Identification of Dynamic Bearing Parameters: A Review.”  
The Shock and Vibration Digest,  36, pp. 99-124. 
The paper reviews the most popular test techniques and analysis methods to identify linearized force coefficients 
in fluid film bearings. The methods include time and frequency domain procedures, while experimentation 
focuses on the types of dynamic load excitation most efficient for a particular procedure.   The review also 
includes physics based mathematical modeling with governing equations of the test bearing element or rotor-bearing 
system, parameter extraction algorithms, and uncertainty in the estimates.  The classification of identification 
techniques is based on the method used to excite the test element or system: short duration (impacts and shock loads), 
periodic load excitation, fixed or sine-sweep and including imbalance induced forces, and random load excitation 
techniques. 
 
Identification algorithms consider the test bearing or support as a two degree of freedom 
mechanical system undergoing lateral motions (x, y)(t) and with readily available (measured) 
support transmitted forces and rotor displacements from which test impedances or mobilities are 
obtained. Curve fits to the appropriate transfer functions give the support mechanical parameters. 
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For lateral rotor motions (x, y), a bearing or seal reaction force vector f is usually modeled as 
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where fo is a static equilibrium force typically counteracting a fraction of the rotor weight, for 
example.  The test element force coefficients are four (4) stiffness K and four (4) damping C force 
coefficients in mineral oil lubricated bearings, oil seals, and also gas damper seals. In liquid annular 
(damper) seals and bearings (hydrostatic and/or hydrodynamic) working with process fluids (water 
or LOx, for example), four (4) inertia force coefficients M are also important.   

 Please note that these force coefficients (K, C, M) are mechanical parameters representative of a 
linear or rather linearinzed physical system. In this regard,   the (K, C, M) coefficients are to be 
determined in a system or test element undergoing small amplitude motions about an equilibrium 
condition. This operating condition is of utmost importance to obtain reliable and repeatable 
results. Unfortunately, the basic assumption – needed to ensure the physical model is linear- is 
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often not considered by the experimenters, and which explains the vast differences in parameter 
magnitudes when compared to analytical model predictions, for example.  

Incidentally, the linearized coefficient model for the test element, i.e. a bearing or a seal or a 
support, also assumes that the coefficients are frequency independent. Only in the last 10 years, 
since the late 1990’s, the engineering community has recognized this limitations and developed 
techniques to extract parameters from frequency domain measurements.  

Furthermore, note that the so called “experimental” force coefficients (K, C, M) are in actuality not 
measured parameters but mere ESTIMATIONS derived from procedures (ranging from simple or 
complex) that relate motions of the test system or element due to known applied forces.  

 

Until recently, estimation of bearing and seal rotordynamic force coefficients was traditionally 
based on time domain response methods. These techniques, often limited in scope, use only a 
limited amount of the recorded information rendering poor results with marginal confidence levels. 
Modern parameter identification techniques are based on frequency domain procedures, 
where dynamic force coefficients are estimated from transfer functions of measured 
displacements (velocities and accelerations as well) due to external loads of a prescribed time 
varying structure. Frequency domain methods take advantage of high speed computing and digital 
signal processors, thus  producing estimates of system parameters in real time and at a fraction of 
the cost (and effort) with cumbersome time domain algorithms. 
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Consider a test bearing or seal element as a point mass undergoing forced vibrations induced by 
external forcing functions. 
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For small amplitudes about an equilibrium position, the equations of motion of a linear 
mechanical system are 
 

   M x C C x C y K K x K y fh XX hX XY XX hX XY X          
 

   M y C C y C x K K y K x fh YY hY YX YY hY YX Y             (2) 
 

where  
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{fi}i=X,Y    external excitation forces,  
Mh     test element mass,  
{Khi, Chi}i=X,Y   (any) structural support stiffness and remnant damping coefficients1, and  
{Kij, Cij}i,j=X,Y   seal or bearing dynamic stiffness and damping force coefficients. 
 
Inertia force coefficients are not included in the model above.  Added mass coefficients are NOT 
significant, i.e. their magnitude is small, for highly compressible fluids (LH2 or gases) and in most 
bearing and seals lubricated with mineral oil2. The apparent simplification is easily removed and 
does not diminish the importance of the identification method.  The test system structural stiffness 
and damping coefficients, {Khi,Chi}i=X,Y, are obtained from prior shake tests results under dry 
conditions, i.e. without fluid through the test element 
 

Two independent force excitations (impact, periodic-single frequency, sine-swept, random, etc) 
(fX, 0)T and (0, fY)T, for example, are applied to the test element.  This process is formulated as 
 
 

1. Apply 1

1 ( )

x

y t

f

f
 
 
  

 and measure ( )

( )

1

1

t

t

x

y

 
 
  

  (3a); apply 2

2 ( )

x

y t

f

f
 
 
  

 and measure ( )

( )

2

2

t

t

x

y

 
 
  

  (3b) 

 

                                                           
1 Refers to any  mechanical component assisting to support the test bearing, for example connecting rods or 
springs;  and damping from the test system DRY, i.e. without any lubricant,  for example.  
2 Note that test data by Childs et al. obtained for mineral oil tilting pad bearings, pressure dam bearings and 
floating ring seals actually evidence these test elements show large added mass coefficients; larger in magnitude 
than theoretical model predictions. See Notes 7 or Notes 11 for further details and discussion.  
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2. Obtain the discrete Fourier transform (DFT)3 of the applied forces and displacements, i.e. 
Let  
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The DFT is an operation that transforms the information from the time domain into the 
frequency domain. Incidentally, recall that 
 

2
( ) ( ) ( ) ( );t ti X DFT x X DFT x                (5) 

 
                                                           
3 A sequence of N time-domain data points, say [(z1,t1=0), (z2,t2), …. (zN,tN=tmax )] and with t=t2-t1= t3-t2=…, 
will transform, using the DFT algorithm, into ½ N coefficients (complex numbers with amplitude and phase) at 
discrete frequencies Zk=akeik at discrete frequencies 0=0, 1=, 2=2,….. N/2=½ N = max= 1/(2t). 
Hence, =1/(N t) ~ 1/tmax.  Typically, N is a power of 2, i.e. N=256, 512, etc for efficient and fast data 
processing. Note that 1/t is known as the sampling rate. In addition, the longer the time span for analysis 
(tmax), the smaller is the frequency step (); while the faster the data acquisition sampling rate,  t is 
small, the highest is the maximum frequency (max) of the DFT. Satisfying both small   and very high max 
may require of exceedingly large number of data points. Often, these two conditions can not be attained 
simultaneously; and in which case care is needed to avoid aliasing of the recorded signal as well as other 
spurious effects. Read a dedicated book in Fast Fourier Transform analysis for more accurate and relevant 
details. 
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3. For the assumed physical model, the motion ODEs become for the first test set and in the 
frequency domain: 
 

   
1

2
1 1 1 1 1h XX hX XY XX hX XY XM X C C i X C i Y K K X K Y F            

 

   
1

2
1 1 1 1 1h YY hY YX YY hY YX YM Y C C i Y C i X K K Y K X F           (6) 

 

Or, written in matrix form as 
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Define complex impedances4 {Hij}i,j=X,Y  as 
 

   2
ij ij hi ij hi ij ij hi ijH K K M i C C                       (7) 

 

where 1i   ,  ij = 1 for i = j = X, Y ; zero otherwise.   
 

                                                           
4 As you know well, impedance is a misnomer. Dynamic (complex) stiffness is a more appropriate name.  
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The impedances comprise real and 
imaginary parts, both functions of the 
excitation frequency ().  The real part 
denotes the dynamic stiffness, while the 
imaginary part (quadrature stiffness) is 
proportional to the viscous damping 
coefficient, as shown in the figure.  

 
 
 
 

Real and imaginary parts of ideal 
mechanical impedance representative of 
assumed physical model 

 

 
With definition (7), the EOMs (6) become, for the first & second tests,   
 

( ) ( ) 1

( ) ( ) 1

1

1

XX XY X

YX YY Y

H H FX
YH H F

 

 

           
       

 and ( ) ( ) 2

( ) ( ) 2

2

2

XX XY X

YX YY Y

H H FX
YH H F

 

 

           
       

   (6a) 

 

Add these two equations and reorganize them as 
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At each frequency (ωk=1,2,…n), Eq. (8) represents four independent equations with four 
unknowns, (HXX, HYY , HXY , HYX). Hence, 
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The meaning of linear independence of the test forces (and ensuing motions) should now be 
clear. That is, the forces in the second test cannot be a multiple of the first set of forces since then, 
both the matrix of forces [F(1) F(2)] and the matrix of ensuing displacements [X(1) X(2)] become 
singular.  
 

The experimenter must select sets of excitations that are linearly independent, for example (fX, 0)T 
and (0, fY)T are preferred (and easy) choices.  
 
In the identification process, the importance of linear independence in the application of forces 
and ensuing test system or bearing displacements is MOST important to obtain reliable and 
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repeatable results. In actual practice, measured displacements may not appear similar to each other 
but nonetheless produce an identification matrix that is ill conditioned, i.e., the determinant of 
matrix [X(1) X(2)] is close to zero or is zero. In this case, the condition number of the 
identification matrix is of importance to determine whether the identified coefficients are any 
good. Test elements that are nearly isotropic and that are excited by periodic (single frequency) 
loads producing circular orbits of the test system usually determine a too ill conditioned system 
(Murphy, 1990).  
 
Often enough the calculation of the matrix [X(1) X(2)] condition number and checking for ill-
conditioning is easily overlooked.  
 
Preliminary estimates of the system parameters {M, K, C}i,j=X,Y   are determined by curve fitting 
of the test derived discrete set of impedances (HXX, HYY , HXY , HYX)k=1,2…., one set for each 
frequency ωk, to the analytical formulas over a pre-selected frequency range.  That is, for example 
 

   2 RealXX hX h XXK K M H        ImaXX hX XXC C H        (10) 
 
Since 1993, Childs and students excel in employing the impedance identification method to 
“measure” rotordynamic force coefficients in hydrostatic bearings and annular seals with water as 
the lubricant (Rouvas and Childs, 1993). The method lends itself to simple curve-fitting of the 
recorded impedance functions H to physically representative analytical functions, i.e.  K-ω2M and 
ωC. 
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Analytical curve fitting of any data renders a correlation coefficient (r2) representing the 
goodness of the fit. A low value of the correlation coefficient, r2 << 1, does not mean the test data 
or the obtained impedance are incorrect, but rather that the physical model (analytical function) 
chosen to represent the test system does not actually reproduce the measurements.  On the other 
hand, a high r2 ~ 1 demonstrates that the physical model, say with a constant stiffness K and 
viscous damping C in K-ω2M and ωC, respectively, actually describes the measurements (system 
response) with accuracy. 
 
System transfer functions (output/input) are often used to obtain more precise estimates of the 
seal or bearing force coefficients (Nordmann and Schollhorn, 1980, Massmann and Nordmann, 
1985).  This process leads to curve fits of nonlinear functions. 
 
Transfer functions (displacement/force) known as test system flexibilities G are derived as 
functions of the impedances, (Hij)i,,j=X,Y from the fundamental equation G = H-1, i.e. 
 

1 2

1 2

( ) ; ( )

( ) ; ( )

YY XY
XX XY
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 
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 

   (11a) 

 
 

where            H H H HXX YY XY YX       (11c) 
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Next, the Instrumental Variable Filter (IVF) method of Fritzen (1985), an extension of a 
least-squares estimation method, is used to simultaneously curve fit all four transfer functions 
from motion measurements due to two sets of (linearly independent) applied loads. The IVF 
method has the advantage of eliminating bias typically seen in an estimator due to 
measurement noise. 
 
The product of the flexibility (G) and impedance (H) matrices should be identically equal to the 

identity matrix 
1 0
0 1
 

  
 

I  since G=H-1.  
 

However, in any measurement process there is some noise associated with the experiments. Thus, 
an error matrix (e) is introduced into the fundamental relationship, 
 

2 i       G H G K M C I + e     (12) 
 

where K, C and M are matrices of system stiffness, damping  and added mass coefficients.   
 

, ,XX hX XY XX hX XY XX h XY

YX YY hY YX YY hY YX YY h

K K K C C C M M M
K K K C C C M M M
       

              
K C M  

 
For generality, added mass coefficients (MXX, MYY , MXY , MYX) are included in the matrices 
above.  
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In Eq. (12) G denotes the measured flexibility matrix while H represents the (to be) estimated 
test system impedance as defined in Eq. (7). Recall that Eq. (7) corresponds to the physical 
model ASSUMED to best represent the test system or test element.  
 
In the present method, the flexibility coefficients (G) work as weight functions of the errors in a 
minimization procedure. Whenever the flexibility coefficients are large, the error is also penalized 
by a larger value. As a result, the minimization procedure will become better in the neighborhood 
of the system resonances (natural frequencies) where the dynamic flexibilities are maxima (i.e., 
null dynamic stiffness, (K-2M)=0. That is, the measurements containing resonance regions will 
have more weight on the fitted system parameters. External forcing functions exciting the test 
system resonances are more reliable because at those frequencies the system is more sensitive, and 
the measurements are accomplished with larger signal to noise ratios.  
 
In addition, it is precisely around the resonant frequencies where all the physical parameters 
(mass, damping and stiffness) most affect appreciably the system response. For “too low” 
frequencies the important parameter is the stiffness, while for “too high” frequencies the inertia 
dominates the response. Only near the resonance do all three parameters have an important effect 
on the system amplitude response.  
 
Therefore, it is more accurate to minimize the approximation errors using Eq. (12) rather than 
directly curve fitting the impedances, i.e. simply using Eq. (10). Unfortunately, the process is not 
straightforward and leads to a rather complex minimization scheme. 
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Write the impedance matrix H representing the test system or  test element as 

2
( ) i  

 
      
 
 

M
H I I I C

K     (14)  

  

with 1i    and 1 0
0 1
 

  
 

I . Thus Eq. (12) becomes at each discrete frequency  k=1,2…,n 

2k k
k ki 

 
     
 
 

M
G I I I C I+e
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Let       
2k k
k ki    A G I I I     (16) 

And write Eq. (15a) as  

k k
 
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M
A C I+e

K        (15b) 
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Now, stack all the equations, one for each frequency k=1,2…,n , to obtain the set  
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M
A C Ι e
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A e

A A e e

A e
      and    

0 1 0 1 0 1 .. .. .. .. 0 1
1 0 1 0 1 0 .. .. .. .. 1 0

T  
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 
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A contains the stack of measured flexibility functions (at discrete frequencies k=1,2…,n).  Eq. (17) 
is an over determined set of equations, i.e. there are more equations than unknowns. Hence, its 
solution by least-squares aims to minimize the Euclidean norm of e.  This minimization 
leads to the normal equations, 
 

  1
 
 
 
 
 

T T

M
C = A A A I
K

      (19) 

 

A first set of force coefficients (M,C,K) is determined from these equations. 
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Fritzen (1985) introduced the elegant Instrumental Variable Filter Method (IVF) to solve 
the system coefficients that minimize the Euclidean (L2) norm of the system error e. The IVF 
procedure was originally developed to estimate parameters in econometric problems. Massmann 
and Nordmann (1985) applied successfully the method to fluid film annular seal elements.  
 

In the IVF method, the weighting function, A, is replaced by a new matrix function, W, created 
from the analytical flexibilities resulting from the (initial) least-squares curve fit, i.e., solution of 
Eq. (19). This weighting function W is free of measurement noise and contains peaks only at 
the resonant frequencies as determined from the first estimates of stiffness, mass and damping 
force coefficients.  
 

At step m,  

 

1
1

m

T Tm m


 

               
 

M
C W A W I
K

    (20) 

where  

2
1 1( )1

2
( )

m

m

m
n nn i





 

 

       
  
        

F I i I I

W

F I I I


   and   

1

2
( )

m

m i  


               

M
F I I I C

K
 (21) 
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A first iteration (m=1) is performed with W1=A, which corresponds to the standard least-squares 
solution of the problem, eq. (19). Then, Eqs. (20) and (21) are applied iteratively until a given 
convergence criterion or tolerance is satisfied. This criterion can be conveniently chosen depending 
on the desired results. For example, the square summation of the differences between the 
parameters at iteration m and (m-1) can be required to be less than a certain value, i.e. limiting the 
Euclidean norm of the error. Alternatively, it can be required that the largest difference be less than 
the largest acceptable error, i.e. limiting the L1 norm of the error. Different tolerances to each 
variable could also be asserted depending on their physical units and significance.  

It should be clear that the substitution of W for the discrete measured flexibility A (which also 
contains noise) improves the prediction of the system parameters. Note that the product ATA 
amplifies the noisy components and adds them. Therefore, even if the noise has a zero mean value, 
the addition of its squares becomes positive resulting in a bias error. On the other hand, W does not 
have components correlated to the measurement noise. That is, no bias error is kept in the product 
WTA. Consequently, the approximation to the system parameters is improved. 
 
Note that the force coefficients are identified in the frequency domain. Thus, magnitudes of 
uncertainty for the estimated force coefficients must be obtained by comparing the original 
frequency responses with the frequency response of a reference excitation force and 
associated displacement time response. Evaluation of coherence functions then becomes 
necessary to reproduce the exact variability of the identified force coefficients.  
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Closure 
Read the paper of Diaz and San Andrés (1999) – following pages- for further insight on the IVF 
method as applied to a n-DOF system. A MATHCAD® program is available for your self-study 
and further learning.  
 
An example of parameter identification representative of your lecturer’s research will be 
presented in class.  
 
Recent developments on field or in-situ parameter identification methods 
Field identification of fluid film bearing parameters is critical for adequate interpretation of 
rotating machinery performance and necessary to validate or calibrate predictions from restrictive 
computational fluid film bearing models. The key features of a successful method for ready field 
implementation are minimal external equipment, little or no changes to existing hardware, and the 
use of measuring instruments commonly used in machine protection and monitoring.  
 

 DeSantiago and San Andrés (2004, 2007) detail a simple method for estimating in-situ bearing 
support force coefficients in flexible rotor-bearing systems. The model neither adds 
mathematical complexity to existing rigid rotor models nor requires additional instrumentation 
than that already available in most high performance turbomachinery. The method requires two 
independent tests with known mass imbalance distributions and the measurement of the rotor 
motion (amplitude and phase) at locations close to the supports. A good rotor model (elastic and 
mass properties) must represent the (non observable or not measured) degrees of freedom. The 
procedure finds the bearing transmitted forces as a function of observable quantities (rotor 
motions at one side of the bearings). Imbalance response measurements conducted with a two-disk 
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flexible rotor supported on two-lobe fluid film bearings allow validation of the identification 
method estimations. Predicted (linearized) bearing force coefficients agree reasonably well with 
the parameters derived from the test data.   
 

A commercial compressor company uses successfully the method advanced to qualify its 
equipment as per API requirements and for real-time assessment of bearing condition from 
measurements of rotor motions while the compressor is in operation. 
 
Recent developments on the identification of force coefficients in non-linear 
systems 
San Andrés and Delgado (2007-2009) have developed efficient methods to identify force 
coefficients in test systems that combine both linear and nonlinear mechanical elements. They 
apply the method to a SFD that integrates a contacting end seal to prevent air ingestion.  The 
system motion is non-linear due to dry friction interaction at the mechanical seal mating surfaces. 
Single parameter characterization of the test system would yield an equivalent viscous damping 
coefficient that is both frequency and motion amplitude dependent.  The algorithm takes the 
nonlinear test system as a combination of linear and nonlinear inputs with linear operators on a 
multiple-input/single output scheme (Rice and Fitzpatrick, 1991)  
 

The identification method suited for nonlinear systems allows determining simultaneously the 
squeeze film damping and inertia force coefficients and the seal dry friction force. The 
identification procedure shows similar (within 10 %) force coefficients than those obtained with a 
more involved two-step procedure that first requires measurements without any lubricant in the test 
system to determine the dry-friction parameter.  The identified SFD damping and inertia force 
coefficients agree well with model predictions that account for end flow effects at recirculation 
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grooves. The nonlinear identification procedure saves time and resources while producing reliable 
physical parameter estimations. 
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Brush Seals
Reduce secondary leakage in turbomachinery
Replace labyrinth seals in HP TM (hot side of steam & gas turbines)
Wear and thermal distortions are a reliability problem

Hybrid Brush Seals
Novel improvement over BS. Reduce more leakage and do not 
introduce wear or thermal distortion. Allow bi-directional rotation
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Effect of rotor speed on rotor-HBS natural frequency
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Equivalent Viscous Damping (Cxx~Ceq) vs. Frequency
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HBS predicted & test direct stiffness vs. frequency
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HBS predicted & test damping vs. frequency
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HBS direct damping (Csxx) decreases with excitation frequency. Loss factor 
coefficient (γ) models well seal structural (hysteresis) damping
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Conclusions

• A structural loss factor (γ) and a dry friction 
coefficient(μ) effectively characterize the energy 
dissipation mechanism of a Hybrid Brush Seal (HBS).

• HBS Direct stiffness (Ksxx = Ksyy) decreases minimally 
with rotor increasing rotor speed for Pr = 1.7 and 2.4 HBS 
Cross-coupled stiffness (Ksxy = -Ksyx) is much smaller than the direct 
stiffness coefficients.

• HBS Direct viscous damping coefficients decrease as a 
function of increasing excitation frequency.




