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Introduction 

Microturbomachinery (MTM)1 demands gas bearings to ensure compactness, lightweight and 

extreme temperature operation. Gas bearings with large stiffness and damping, and preferably of 

low cost will enable successful commercial applications. Gas film bearings offer advantages of 

low friction and reduced heat generation. These advantages enable their successful applications 

in air-cycle units for airplane cabins, high-precision instruments, auxiliary power units, and high-

speed MTM. In addition, gas bearing systems do not require costly, complex sealing and 

lubricant circulation systems; hence ensuring system compactness, low weight and extreme 

temperature operation. Furthermore, these bearings eliminate process fluid contamination and are 

environmental friendly. Gas foil bearings are in use; however, their excessive cost, protected 

technology and lack of calibrated predictive tools have prevented widespread use in mass-

produced applications. 

Gas bearings have a low load carrying capacity and require a minute film thickness to 

accomplish their intended function. Thus, their fabrication and installation tends to be expensive 

and time consuming. Another disadvantage is poor damping because of the inherently low 

viscosity of the gas. 

The literature on the analyses of gas bearing analyses is extensive, albeit experimental 

verification and successful commercial implementations have not always been reported. Gross 

[1] (1962) covers the fundamentals of analysis that span the fast development of gas bearing 

technology in the 1960’s. Pan [2] gives a serious description of the analysis and performance of 

(rigid surface type) gas bearings summing knowledge until 1980. The textbook of Hamrock [3] 

(1994) provides comprehensive analyses for the static load performance of both thrust and radial 

gas bearings. Czolczynski [4] (1999) gives a comprehensive review of the analyses for prediction 

of frequency dependent force coefficients of gas bearings.  

The last decade (2000s) has seen a rebirth of gas bearings, in particular gas foil bearings for 

MTM [5] and aerostatic gas bearings for spindle machines [6]. San Andrés et al. [7-16] report the 

results of a comprehensive research program, experimental and analytical, evaluating and 

developing cost effective reliable gas bearings for MTM.  

 

 

                                                           
1 As per the IGTI (International Gas Turbine Institute), a microturbomachinery has power < 250 kW.  
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Types of gas bearings 

Bearings in rotating machinery are of two types: (a) radial bearings supporting lateral loads 

including rotor weight, and (b) thrust bearings carrying axial loads. See Figure 1 for a few 

relevant gas bearing configurations. These loads can be either static or dynamic or both. Gas film 

bearings behave as mechanical elements that provide stiffness, damping and inertia force 

coefficients that, in conjunction with the structural parameters of a rotor, determine the stability 

and dynamic behavior of the entire rotor bearing system (RBS).  

In a gas bearing, a film of gas, hereby liberally referred as the lubricant, separates the rotating 

component (a journal, for example) from the stationary part (a housing or stator).  Hydrodynamic 

shear action from the moving component enables the generation of the lubricant wedge where a 

hydrodynamic pressure evolves to produce the reaction force opposing the externally applied 

load. Gas bearings operating under the hydrodynamic (self-acting) principle are, in general, of 

simple construction although at times difficult to manufacture and install because of the required 

minute film clearances. Other bearings employ external pressurization supplied through 

restrictors (orifices, slots or capillaries) to enable a hydrostatic action that separates the surfaces 

thus inducing journal or rotor lift without rotation, for example. Hydrostatic bearings are 

mechanically more complex than hydrodynamic bearings because of their additional supply 

ports; albeit their major advantage lies on their usage in applications without rotor spinning. This 

advantage must be weighed against the extra cost plus the need of an external source of 

pressurized gas. More importantly, in a hybrid bearing configuration, i.e., one where both 

hydrostatic and hydrodynamic operating principles act jointly, the external supply pressure is 

typically used to promote early rotor lift off thus reducing temporary rubs, avoiding wear of 

surfaces and extending bearing life. 

There are (probably) as many types of gas bearing configurations as there are applications; 

that is, a gas bearing is selected to fulfill certain functions while keeping a cost low, including 

component fabrication and installation, and of course, operation. The archival literature features 

successful applications of gas bearings; often failing to notice that, in contrast to liquid lubricated 

bearings, gas bearings have inherent limitations that prevent their widespread usage as load 

support elements in (heavy) commercial machinery.  

Gases, although chemically more stable than liquids, have an inherent low viscosity – one or 

two orders of magnitude lower than that of mineral oils for example. Recall that the load 
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carrying capacity (W) of a self-acting hydrodynamic film bearing is roughly proportional to 

2
min

AU
h

 
 
 

 [3] where  is the lubricant viscosity, U is the surface speed, A is the area of action, 

and hmin is the minimum film thickness. Hence, in order to achieve a desired load capacity, a gas 

lubricated bearing replacing a similar size oil-lubricated bearing must operate at an exceedingly 

high surface speed (U) or with a minute film thickness (h). That is, hydrodynamic gas bearings 

are not intended for supporting rotating machinery that operates with relatively low surface 

speeds or if the film clearance or gap is too large. Hence, the need for accurate manufacturing of 

parts which increases both cost and makes installation complicated. Of course, externally 

pressurized (aerostatic) gas bearings can be used efficiently to carry loads at low or even zero 

surface speeds. However, aerostatic bearings require a source of pressurized gas which adds cost 

and complexity [1,6,10].    

To enhance the hydrodynamic action, designers have produced a number of bearing 

configurations that exploit geometrical features such as steps, grooves, pockets and dimples, for 

example. Figure 1 shows several typical commercial gas bearing configurations. The bearing 

types with textured surfaces, known as (spiral) grooved bearings and herringbone journal 

bearings have been instrumental to the operation of gyroscopes for aircraft and satellite 

navigation [2], enabled non contacting gas face seal technology [7]; and more recently, allowed 

the revolution in digital storage hard-drive technology [17]. In these applications, static and 

dynamics loads are relatively low. Note that, for optimum load performance giving the maximum 

static (centering) stiffness, the depth of the machined steps or grooves or pockets is just equal or 

a little larger than the operating film gap or clearance, as will be demonstrated later. Until 

recently, these geometrical features were difficult to machine at low cost, except in certain 

materials like silicon-carbide for non-contacting face seals. However, current casting and 

manufacturing processes allow the manufacturing of these bearings (or seals) at a relatively low 

cost and with near identical performance in one or millions of pieces. 

Other radial bearing configurations of interest, i.e., undergoing close scrutiny and 

commercial development, include bump-type foil bearings [5, 15, 18], flexure pivot tilting pad 

bearings [13], and (low cost) metal mesh foil bearings [19]. 
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Spiral grooved thrust and radial bearings 

 

 
Flexure pivot tilting pad bearing 

 

Bump-type foil bearing 

 
Flexure pivot tilting pad bearing with 
hydrostatic pressurization 

    

Metal mesh foil bearing 
 

Overleaf-type foil bearing 

 

Fig. 1 Typical commercial gas bearings for microturbomachinery 
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The fundamentals of gas film lubrication analysis 

The fluid flow in a hydrodynamic gas bearing or gas face seal is typically laminar and 

inertialess, i.e. the Reynolds numbers Re=Uh/ <1, because of the smallness in film thickness 

(h) and the low lubricant density (). Gas annular seals, such as labyrinth and honeycomb types, 

are notable exceptions, since in these applications large pressure drops, high surface speeds and 

large clearances promote flow turbulence accompanied by strong fluid compressibility effects 

[20]. 

Consider, as shown in Figure 2, the flow of an ideal gas in a region confined between two 

surfaces separated by the small gap h. The top surface has velocity U along the x direction.  For 

an isothermal process, the gas density () and pressure (p) are related by
g

p

T
 

 
, with g  

and T representing the gas constant and operating temperature, respectively.  
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Fig. 2 Geometry of a gas lubricated thin film bearing 
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Table 1 shows a list of the physical properties of the most common gases used as lubricants 

in thin film bearings. The gas viscosity () increases with its absolute temperature (T) as 

*

0

*

1

1
o

o

T

T T
T T
T

 

 
 

 
  
 

 where T* and To are reference temperatures and o=(To). 

 

Table 1. Viscosity and molecular weight of gases used in thin film bearings 

Gas formula Molecular   T o T*
weight Pa-s K K

Acetylene C2H2 26.036 10.2 293 198
Air O2+N 29.000 17.1 273 124
Ammonia NH3 17.034 9.82 293 626
Argon Ar 39.950 22.04 289 142
Carbon dioxide CO2 44.010 13.66 273 274
Carbon Monoxide CO 28.010 16.65 273 101
Chlorine Cl2 70.900 12.94 289 351
Chloride HCl 36.458 13.32 273 360
Helium He 4.003 18.6 273 38
Hydrogen H2 2.016 8.5 273 83
Hydrogen sulfide H2S 34.086 12.51 290 331
Methane CH4 16.042 10.94 290 198
Neon Ne 20.180 29.73 273 56
Nitrogen N2 28.020 16.65 273 103
Nitric Oxide NO 30.010 17.97 273 162
Nitrous Oxide N2O 44.020 13.66 273 274
Oxygen O2 32.000 19.2 273 138
Steam H20 18.016 12.55 372 673
Sulfur Dioxide SO2 64.070 11.68 273 416
Xenon Xe 131.300 21.01 273 220  

Gas constant Rg=(8,314,34 J/kg-K)/MW 

Source:  http://periodic.lanl.gov/default.htm  

 

Reynolds equation describes the generation of the film pressure within the flow region [2].  

 

   
3

0
12 2

h p U
p p h p h

x t

   
         

 
   (1) 
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Eq. (1) represents an isoviscous condition without fluid inertia effects. Furthermore, the 

derivation of Eq. (1) assumes the gas satisfies the no-slip condition, i.e. it adheres to the 

surfaces2.  As a boundary condition, the pressure is typically ambient (pa) on the boundary of the 

domain.  

The gas film Reynolds equation is nonlinear; and hence exact solutions exist for a handful of 

limiting conditions [2,3]. The left hand side of the equation is elliptic in character, while the 

terms on the right hand side are known as the shear induced flow and squeeze film flow terms. 

It is convenient to normalize Eq. (1) in terms of dimensionless variables and parameters. To 

this end, let 

* * *
; ; ; ;

a

x z h p
x z t H P

L L h p
         (2) 

where L* is a characteristic length of the bearing surfaces and h* is a characteristic film thickness; 

typically the minimum film thickness or the clearance (c) in a radial bearing. Above  denotes an 

excitation whirl frequency representative of unsteady or time transient effects. With the 

definitions given, Reynolds equation is written in dimensionless form as 

   3 3P P
P H P H P H P H

x x z z x



        

              
  (3) 

 where     
2

* *
2 2
* *

6 12
and

a a

U L L

p h p h

        (4) 

are known as the speed number and the frequency number, respectively [2]. Both parameters 

represent the influence of fluid compressibility on the performance of the gas bearing. For  and 

 small, typically < 1, the gas bearing operates as an incompressible fluid film bearing, as seen 

next.   

For steady state applications, i.e., the film thickness (h) and the pressure (p) do not vary with 

time, and hence squeeze film effects are nil (Eq. (3) reduces to 

                                                           
2 As the film thickness (h) decreases into the nano meter scale, its size approaches that of the gas molecular free path 
(= 60 nm for air under standard conditions); and hence, slipping effects become significant. Magnetic recording 
and digital hard drive applications fall within this category. The Knudsen number (Kn=/h ) aids to distinguish the 
flow regime of operation;  Kn> 15 denotes molecular flow, 0.01< Kn< 15 represents slip flow, and Kn<0.01 gives a 
continuum flow, as in the applications discussed herein [21].   
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 3 3P P
P H P H P H

x x z z x

       
            

   (5) 

For low speed numbers,  <<1, an expansion of the dimensionless pressure as 1P P  , 

and substitution into Eq. (5) gives the simplified Reynolds equation [2] 

 3 3 )P P
H H H

x x z z x

       
           

    (6) 

which is formally identical to the Reynolds equation for an incompressible lubricant. Hence, its 

solution can be easily sought – analytically for either the short length or long journal bearings, or 

using numerical schemes for finite length bearings of any geometry. Refer to Lecture Notes 4 

and 7 for details on the analytical and numerical solution of Eq. (6). 

Clearly, the assumed solution is strictly valid for 0 . Hence, the pressure field cannot be 

much higher than ambient pressure (pa), and consequently, the bearing load capacity is also small 

albeit proportional to the speed number, i.e. it increases linearly with surface speed (U), for 

example. Note that the dimensionless pressure 
  2

*

*

1

6
ap p hP

P
U L


 


as is typical in mineral oil 

lubricated bearings. Analytical solutions to Eq. (5) are available for either the short length or 

infinitely long cylindrical journal bearings, for example. Closed form solutions are also available 

for simple one-dimensional slider or Rayleigh-step bearing geometries, see Refs. [2, 21] for 

example. 

On the other hand, for large speed numbers,  >>1, Eq. (5) is written as 

 3 31 P P
P H P H P H

x x z z x

        
              

   (7) 

and, in the limit  , the left hand side of the equation can be neglected to obtain3 

   0
( )
b

a
h

P H p p
x h x


  


    (8) 

where hb is the film thickness at the boundary where the pressure is ambient. The limiting speed 

solution, Eq. (8) above, shows that the pressure within the film is bounded and independent of 

the surface speed U. This result is in opposition to that in incompressible fluid bearings where 

                                                           
3 The PH solution is an inner field which must be matched to an outer (boundary) solution satisfying the side 
pressure condition (P=1) [2]. For the purposes of this review, the PH solution is adequate.  
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the generated hydrodynamic film pressure is proportional to the surface speed U. Since the 

pressure has a definite limit, it also means that the bearing load capacity has also a limit, i.e. an 

ultimate value. In this regard, gas film bearings do show a significant difference with 

incompressible fluid (mineral oil lubricated) bearings whose (theoretical) load capacity increases 

with surface speed. 

Closed form solutions for finite speed numbers () are not readily available. Hence, 

predictions of bearing film pressure and its force reaction supporting an applied load must rely 

on numerical analysis. For low to moderate speed numbers, finite differences or finite element 

methods applicable to elliptical differential equations are quite adequate. However, it is well 

known that these numerical methods are inaccurate and numerically unstable for large speed 

numbers () since the nature of the Reynolds equation evolves from a (second order) elliptical 

form into a (first order) parabolic form. See Ref. [8] for a significant advance that resolves the 

issue of pressure oscillations and numerical instability for large speed numbers () 

 

Simple slider gas bearings 

Consider, as shown in Figure 3, three typical one-dimensional4 slider bearing configurations: 

tapered, Rayleigh-step, and tapered-flat. In these configurations, the width (B) >> length (L), and 

thus the hydrodynamic pressure does not vary along the z-axis. The bearing peak pressure and 

maximum load capacity are a function of the ratio between the inlet film thickness (h1) and the 

exit film thickness (h2) and the extent of the step or tapered length (L1). Integration of the 

pressure field over the bearing surface gives the reaction load that opposes the applied load (W)  

   1

0 0
or = 1

L
a

a

W
W B p p dx w P dx

B L p
        (9) 

 

                                                           
4 In this case, the bearing width (B) is much longer than its length (L); and hence the film pressure is only a function 
of the coordinate (x). The analysis calls for P P

z x
 

  . 
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Fig. 3 Schematic view of (simple) one-dimensional slider bearings 

 

For small speed numbers incompressible fluid, Table 2 shows closed-form expressions  

for the peak hydrodynamic pressure and the bearing reaction force (load) as a function of the 

film thickness ratio 1
2

h
h   and the land to length ratio 2L

L  in a Rayleigh step bearing 

[22]. Simple calculations show that the maximum load maxw requires of thickness ratios on the 

order of two, i.e., =2.189 for a tapered bearing ( w  =0.0267), and =1.843 for a step bearing 

with w  =0.034). Hence, the taper height difference or the step height (h1-h2) is of similar 

size as the minimum film thickness (h2). In gas bearings, the smallness of the film thickness 

required to support realistic loads also poses a difficulty in manufacturing mechanical features 

such as ridges and steps. Furthermore, manufacturing processes must ensure a surface roughness 

(RMS value) at least one order of magnitude (~1/10) lower than the minimum film thickness 

[21]. 
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Table 2. Closed form expressions for  peak hydrodynamic pressure and load in one 
dimensional tapered bearing and Rayleigh step bearing. Low speed operation 

(incompressible fluid approximation)  2
26 aU L p h   [22]

 
An example of gas bearing performance follows. Predictions are obtained for a film thickness 

ratio 1
2

h
h  =2.2 and length ratio 2L

L  =0.30 for the Rayleigh-step and tapered flat 

bearings. The parameters used are close to those delivering a maximum reaction force (load 

capacity) in an incompressible lubricant slider bearing.   

For increasing speed numbers (Figure 4 depicts the evolution of the hydrodynamic 

pressure field versus the coordinate (x/L). Note that the peak pressure displaces towards the 

minimum film location as  increases. Most important is to realize that the peak pressure, see 

Fig. 5, is not proportional to the speed, as is the case in incompressible lubricant bearings. The 

largest peak pressure cannot exceed that of the limit at high speeds, i.e., maxp 


 = h1/h2. 

This feature may entice designers to implement or promote high aspect ratios for the film 

thicknesses, However; too large inlet/exit film ratios (>>1) will cause the gas flow to 

choke at the bearing exit plane. This is an undesirable operating condition that produces noise 

and shock wave instabilities and could cause severe mechanical damage [2].     

Figure 6 depicts the (dimensionless) load (w=W/BLpa) versus speed number () for the three 

slider bearings. Note that at low speeds, typicallythe load capacity is proportional to the 

speed number. However, as increases, the load reaches an asymptotic value. It is important to 
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note that knowledge derived from incompressible lubrication theory does not extend to gas 

lubrication theory. For example, the selected Rayleigh-step configuration offers the largest load 

at small speed numbers, i.e. in the incompressible fluid flow region. However, as evidenced in 

the predictions, at the highest speed numbers (), the Rayleigh-step bearing produces the 

smallest load albeit it shows the largest peak pressure. Note that, see Fig. 4, in the step bearing 

the region of pressure generation is confined to the film land with small thickness (h2); while the 

rest of the bearing is basically at ambient pressure. 
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Fig. 4 Pressure field in one-dimensional slider bearings (tapered, Rayleigh step 
and tapered-flat) for increasing speed numbers (=2.2, =0.3)  
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Fig. 5 Maximum film pressure in one-dimensional slider gas bearings versus 
speed number ( (= 2.2, = 0.3)  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10 100 1000

Speed number ()

N
o

rm
al

iz
ed

 l
o

ad
 c

ap
ac

it
y 

[-
]

tapered bearing

step bearing L2/L=0.3

tapered flat L2/L=0.3

h2

U

h1

h2

h1

U

L2/L=0.3

h2
h1

U

L2/L=0.3

 

Fig. 6 Load capacity (w) in one-dimensional slider gas bearings versus speed 
number ( (= 2.2, = 0.3)  
 

Dynamic force coefficients for slider gas bearings 

Fluid film bearings support both static and dynamic loads. Thus far, the analysis has focused 

on the static load capacity. Consider a bearing that undergoes motions of small amplitude (y) 

and frequency () about an equilibrium condition with film thickness ho(x). This equilibrium 
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film thickness renders a static reaction load balancing the external applied load (Wo). The 

(dimensionless) film thickness adds the static and dynamic components as5 

*
;i

o
yH H H e H h

         (10) 

and the film pressure equals the superposition of the equilibrium pressure (Po) and a perturbed, 

dynamic or first-order pressure field (P1),  

 1
i

oP P P H e          (11) 

Substitution of Eqs. (10-11) into Reynolds equation (3) gives, to first-order effects6, 
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   23 2
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 (13) 

The bearing reaction force equals 

 1 1
1 10 0

1 i i
o ow P dx H P dx e w w H e              (14) 

The real and imaginary parts of w1 give raise to the bearing stiffness (K) and damping (C) force 

coefficients, i.e. 

1
10

aB L p
Z K i C P dx

y
  

      (15) 

In dimensionless form, the stiffness and damping coefficients become 

1 1
1 130 0

*
* *

1
Re ; Im

12
a

K C
K P dx C P dx

B L p LBh h




         
     

 

    (16) 

Unlike bearings lubricated with incompressible fluids, the stiffness (K) and damping (C) 

force coefficients of gas bearings are strong functions of frequency [2, 4, 23]. In particular, for 

high speeds and high frequency operation ( ,  ) 0C  ; i.e., damping is lost. Thus, 

                                                           
5 See Lund [23] for the original and most elegant description of the analytical perturbation method for calculation of 
dynamic force coefficients in gas bearings. 
6 Products of first order terms are neglected, i.e. P1 H2 ~ 0 for example. 
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gas bearings need to be used with great caution in applications that require mechanical energy 

dissipation  to ameliorate or reduce vibrations of the mechanical system.  

For the tapered-flat slider with 1
2

h
h  =2.2 and length ratio 2L

L  =0.30, Figs. 7 and 8 

depict the stiffness  K and damping  C coefficients versus increasing frequency numbers () 

and various speed parameters () . Note two important dynamic force performance features: (a) 

the bearing stiffness rises rapidly with frequency, a typical hardening effect of gas bearings, and 

(b) damping decreases quickly, as expected7. It is also important to realize that, at low 

frequencies ( the (nearly static) stiffness reaches a maximum at a certain speed (), 

not increasing further with sliding speed. This is also expected since, as shown in Fig. 6, the load 

capacity also reaches its ultimate limit for operation at     
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Fig. 7 Stiffness coefficient for 1D tapered-flat gas bearing versus frequency 
number ( and increasing speed numbers () (= 2.2, = 0.3)  

                                                           
7 Negative damping coefficients are not unusual in stepped gas bearings such as in spiral grooved or herringbone 
grooved configurations, see Ref. [7]. 
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Fig. 8  Damping coefficient for 1D tapered-flat gas bearing versus frequency 
number ( and increasing speed numbers () (= 2.2, = 0.3)  
 

Cylindrical gas journal bearings 

Cylindrical hydrodynamic bearings support radial (or lateral) loads in rotating machinery. 

Using gas as the lubricant in the fluid film bearing offers distinct advantages such as lesser 

number of parts, avoidance of mineral oils8 with lesser contamination; and most importantly, 

little drag friction (minute power losses) and the ability to operate at extreme conditions in 

temperature, high or low, since gases are more chemically stable than liquids. On the other hand, 

gas bearings suffer from chronic problems including difficulties in their design and analysis, cost 

in manufacturing, and issues with installation and operation since bearing clearances are by 

necessity rather small.  

Figure 9 shows three typical radial bearings of increasing mechanical complexity. The 

bearings portrayed are a cylindrical bearing (an idealized configuration), a multiple-pad bearing 

with hydrostatic pressurization, and a flexure-pivot bearing with hydrostatic pressurization. The 

external supply of pressure extends bearing life by aiding to promote an early lift off journal 

speed and reducing “hard landings” or transient rubs that lead to early wear of surfaces. In 

addition, hydrostatic pressurization enables the design and operation of gas bearings with 

                                                           
8 Recall that liquid lubricated bearings may show cavitation, i.e. the hydrodynamic pressure cannot be lower than the 
liquid saturation pressure or that of the dissolved gases in the liquid. Gas bearings obviously do not show cavitation.  
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relatively large clearances, hence reducing their manufacturing costs and difficulties associated 

with their installation [10].  
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Fig. 9 Cylindrical gas bearings – some typical configurations 
 

External pressurization through restrictor ports also creates a centering stiffness and thus 

decreases the journal eccentricity needed for the bearing to support a load. A hybrid mode 

operation (combining hydrostatic and hydrodynamic effects) ultimately results in reduced power 

consumption. Disadvantages in gas bearings stem from two types of instabilities [2]: pneumatic 

hammer controlled by the flow versus pressure lag in the pressurized gas feeding system, and 

hydrodynamic instability, a self-excited motion characterized by sub synchronous (forward) 

whirl motions. Proper design of a hybrid bearing system minimizes these two kinds of 

instabilities9.  Gas bearing design guidelines available since 1967 [24] dictate that, to avoid or 

delay a pneumatic hammer instability, externally pressurized gas bearings have restrictors 

impinging directly into the film lands, i.e. without any (deep) pockets or recesses. 

The analysis herein does not discuss textured or etched bearings, i.e. ones with herringbone 

grooves, for example. See Ref. [7] for the appropriate analyses and predictions. The textured 

                                                           
9 A self-excited instability means that a change in the equilibrium or initial state (position and/or velocity) of the 
RBS leads to a permanent departure with increasing amplitudes of motion at a certain frequency, usually a natural 
frequency. A self-excited instability does not rely on external forces (load condition), including mass imbalance, for 
its manifestation.  
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bearings are still costly to manufacture, offer little improvements in load capacity, and have 

severe limitations in terms of rotordynamic stability [12]. 

For certain static load dispositions, tilting pad bearings can eliminate the typically harmful 

hydrodynamic instability by not generating cross-coupled stiffness coefficients. Critical 

turbomachinery operating well above its critical speeds is customarily implemented with tilting 

pad bearings. The multiplicity of parameters associated with a tilting pad bearing demands 

complex analytical methods for predictions of force coefficients and stability calculations [10]. 

Incidentally, conventional (commercial) tilting pad bearings cannot be easily modified to add 

external pressurization (holes through pivots and pads) without constraining severely the pads’ 

motion and adding sealing issues.  

The flexure pivot – tilting pad bearing (FPTPB), see Fig. 9, offers a marked improvement 

over the conventional design since its wire discharge machining (EDM) construction renders an 

integral pads-bearing configuration, thus eliminating pivot wear and stack up of tolerances on 

assembly [13]. Each pad connects to the bearing through a thin flexural web, which provides a 

low rotational stiffness, thus ensuring small cross-coupled stiffness coefficients and avoiding 

subsynchronous instabilities into very high speed operation.  

Thin film flow analysis for cylindrical bearings [10] 

Figure 10 depicts the ideal cylindrical bearing with relevant nomenclature. The journal 

rotates at speed () and  YX e,e  denote the journal displacements within the bearing clearance 

(c). The film thickness (h) around the bearing circumference is just 

cos sinX Yh c e e        (17) 

Figure 11 depicts a schematic view of a flexure pivot tilting pad bearing. For operation with 

external pressurization, a feed orifice is machined through the thin web. A pad extends from l to 

t (leading and trailing edge angular coordinates) with three degrees of freedom corresponding 

to angular (tilt) rotation (p), radial (p) and transverse displacements (p). The gas film thickness 

(h) in a pad is  

cos sin ( )cos( ) ( )sin ( )p X Y p p p p p ph c e e r R                          (18a) 

where cP and rp are the nominal machined clearance and pad preload at the offset P angle where 

the web is attached. 
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Fig. 11 Geometry of a flexure pivot pad bearing, coordinate system and 
nomenclature 

 

Note that for a rigid pad with offset angle offset P and preload rp , the film thickness simplifies 

to  
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      cos cos sinp p X Yh c r e e                       (18b) 

In a radial bearing, Reynolds equation for the laminar flow of an ideal gas and under 

isothermal conditions governs the generation of hydrodynamic pressure within the thin film 

region, i.e., [2] 

     
3

12 2 OR g
h p

p p h p h m T
t

    
           


 

   (19) 

where ORm  denotes mass flow through a supply port at pressure pS . The pressure is ambient (pa) 

on the sides (z=0, L) of a bearing pad.   

For an inherent restrictor, the flow rate is a function of the pressure ratio or
S

pP p  , the 

orifice diameter (d) and the local film thickness (h), i.e. from [24], 

( )S
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g

p
m d h P
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      (20) 
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  (21) 

 

where κ is the gas specific heats ratio. The orifice restriction is of inherent type10 whose flow is 

strongly affected by the local film thickness.  

An applied external static load (Wo) determines the journal center to displace eccentrically to 

the equilibrium position  YX e,e o with steady pressure field po and film thickness ho, and 

corresponding pad deflections (P, P, P)o, p=1,…Npad.  

As shown schematically in Fig. 12, let the journal center whirl with frequency  and small 

amplitude motions  ,X Ye e   about the equilibrium position, The general motion of the journal 

center and the bearing pads11 is expressed as, 

                                                           
10 Externally pressurized gas bearings should not be manufactured with pockets or recesses to avoid pneumatic 
hammer effects, i.e. a self-excited instability characterized by sudden loss of damping even under static conditions 
(low frequencies) [24 ].   
11 For rigid cylindrical or multiple-pad bearings, the only displacements kept are those of the journal center 

 ,X Ye e  ; hence, the analysis is much simpler and straightforward.  
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,i t
X Xo Xe e e e    ,i t

Y Yo Ye e e e       

,i t
p po p e     ,i t

p po p e        i t
p po p e         p = 1,2,...,Npad (22)   

with 1i . The film thickness and hydrodynamic pressure are also given by the superposition 

of equilibrium (zeroth order) and perturbed (first-order) fields, i.e. 

i t
oh h h e    ;        i t

op p pe                        (23) 

where  

      cos sin cos( ) sin ( )X Y P P P P Ph e e R              (24) 

and              X X Y Y P P Pp p e p e p p p                               (25) 
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Fig. 12 Depiction of small amplitude journal motions about an equilibrium 
position 
 

Substitution of Eqs. (24) and (25) into the Reynolds equation leads to a nonlinear PDE for 

the equilibrium pressure (po) and five linear PDEs for the first-order fields. For the equilibrium 

pressure po,  

 
3 3

2
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12 12 2
o o o o o o

o o
p h p p h p

p h
z zR     

       
              

        (26) 
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See Ref. [10 ] for details on the first-order equations. 

The external load vector with components  ,X YW W acts on the journal. This load has a static 

part  ,0oW and dynamic components  , i t
X YW W e   . The hydrodynamic pressure fields act 

on the rotor surface to produce reaction forces  ,
X YP PF F ,  

  cos

sin
X

Y

P
a

P

F
p p R d dz

F

   
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      (27) 

which balance the applied load, i.e.  
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W W e F





  

  




    (28) 

The film forces (with opposite sign) also act on each pad to induce a pitching moment (MP), 

 [ sin cos ]
X YP p P p PM R F F         (29)  

Substitution of the pressure fields, zeroth and first order, into the pad force and moment 

equations leads to 

     

  

                                                                                                  (30) 

                                                                                                

where       ,,,},{ YXCiKZ      (31) 

represent the gas film impedances acting on each pad, i.e. 25 stiffness (K) and damping (C) 

coefficients. The equations of motion for a pad with angular (P), radial (P) and transverse (P) 

displacements are: 
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                    p=1,….Npad   (32) 
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are matrices representing the pad inertias, and the structural web stiffness and viscous damping 

coefficients, respectively.  

Frequency reduced force coefficients for tilting pad bearings 

Most analyses consider bearings as two degrees of freedom mechanical elements with lateral 

forces reacting to radial displacements (x, y). Bearing rotordynamic force coefficients are, by 

definition, changes in reaction forces due to small amplitude motions about an equilibrium 

position. The linearized model for a gas bearing is 

X XX XY XX XY

Y YX YY YX YY

F K K C Cx x

F K K C Cy y

        
         

        


  = F = -K z -Cz  (34) 

where F={FX, FY}T
 and z={x(t) ,y(t)}

T are vectors of lateral reaction forces and displacements, 

respectively. Figure 13 shows a schematic idealized representation of the force coefficients as 

mechanical spring and viscous dashpot connections between the rotating journal and its bearing. 

Recall that gas bearings due to the fluid compressibility will show force coefficients that are 

strong functions of the excitation frequency. In tilting pad bearings, the complicated behavior is 

further compounded by the pads’ radial and tilting motions. 
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Fig. 13 Idealization of bearing force coefficients as viscous damping and stiffness 
elements   
 

 

Clearly, in a tilting pad bearing the number of degrees of freedom equals = 2 (x, y) + 3 x Npad. 

Hence, for example, a five pad bearing has 17 degrees of freedom. Clearly, the overabundance of 

degrees of freedom complicates the integration of bearing predictive tools into existing 

rotordynamic analyses. Hence, it is customary to reduce the bearing force coefficients by 

assuming that the pad motions are at the same frequency as the journal center lateral motions 

(X,Y). The set of frequency reduced impedance coefficients is [10] 

           1R R

R R

XX XY
XY a p f bR R R P P P

YX YY P

Z Z
Z K i C Z Z Z Z

Z Z





               
   (35) 

The matrix [Z]R contains the frequency reduced stiffness and damping coefficients for rotor 

lateral motions (X,Y),  

   ;R R R R

R R R R

XX XY XX XY

R R
YX YY YX YY

K K C C
K C

K K C C

   
    
      

    (36) 
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In the equation above,    

       
   
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  (37a)    

and              Pc
S
P

S
PfP MZCiKZ 2        (37b) 

 

is the composite (pad plus film) impedance matrix at frequency . For prediction of RBS 

imbalance responses, synchronous force coefficients are calculated with    . For eigenvalue 

RBS analysis, i.e. prediction of damped natural frequencies and damping ratios, iterative 

methods allow the determination of the coefficients at frequencies coinciding with the RBS 

natural frequencies.  

As emphasized earlier, gas bearings (rigid surfaces, tilting pads and foil types) have 

frequency dependent force coefficients because of the fluid compressibility and the compliance 

of the bearing par surfaces. The dependency on frequency cannot be overlooked! 

 

Some considerations on the solution of Reynolds equation for gas films 

Most often the numerical solution of Reynolds equations (equilibrium and its variations for 

the dynamic first order pressure fields) is performed using algorithms suited for elliptical-type 

differential equations. Note also that Reynolds equation for the generation of gas film pressure is 

nonlinear due to the density varying with the pressure. In the case of a hydrostatic bearing 

carrying a static load, the equation becomes linear, i.e., Eq. (19) reduces to 

3
2 0

24

h
p



 
    

 

 
     (38) 

This equation can be solved efficiently for (p2) as the independent variable with either central 

finite differences or finite element methods. 

However, the more general bearing case that includes both hydrodynamic and hydrostatic 

effects remains nonlinear. In particular, one must realize that for large rotor speeds 

  and/or large whirl frequencies    , the character of the Reynolds equation 
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changes from elliptical to parabolic. Recall, in dimensionless form, that the compressible fluid 

film Reynolds equation is 

   3 3P P
P H P H P H P H

z z



        

              
  (39) 

 where    
2 2

1
2

6 12
and

a a

R R

p c p c

                
   (4) 

are the well-known speed and frequency numbers, respectively. At large speed numbers or 

frequency numbers  1, 1  , the first order terms on the right hand side dominate the 

generation of the hydrodynamic pressure in the gas film region. For low rotational speeds () 

and low frequencies, i.e.,  , 0  , the expansion 1P P  gives the linearized Reynolds 

equation 

3 3
1
2

P P H H
H H

z z




        
             

   (40) 

which is elliptical in character and formally identical to the Reynolds equation for an 

incompressible fluid.  The numerical solution of the linear equation above can be easily 

performed using (central) finite differences, for example. More importantly, any predictive 

computational tool predicting pressure fields for bearings lubricated with incompressible fluids 

(oils) can also be used for gas films operating at low rotational speeds and/or low whirl 

frequencies. See Lecture Notes 7 for details on the numerical solution of Eq. (40) 

For operation with large speeds, the infinite speed     equation for pressure generation 

is  

   
0 a

a
h

p h p p
h


  
 

    (41) 

  

which12 establishes a limit on the generation of hydrodynamic pressure in a radial bearing. 

Consequently, the bearing reaction load will also reach a definite limit. The ultimate load 

capacity (wu) of the cylindrical gas bearing is, as  , [3] 

                                                           
12 This solution is to be taken with caution since it does not satisfy all the boundary conditions, in particular at the 
bearing axial edges, i.e., 

2
at L

ap p z    
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     
   
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 

   (42) 

with the journal static eccentricity (=e/c) is along the direction of the applied load. Figure 14 

shows that the ultimate load (wu) grows modestly with journal eccentricity. Most importantly, the 

ultimate load is independent of the bearing clearance (c). The prospective user must realize that 

gas bearings, unlike liquid lubricated journal bearings, are not able to support heavy loads, as 

those typical in large rotating machinery13.  The graph shows a recommended safe upper bound 

for load capacity selection at wu=2 which renders an eccentricity () 0.60. Note that operation 

at any finite rotational speed will produce a higher shaft eccentricity. Furthermore, safe operation 

should avoid too large journal eccentricities that can provoke transient rubs and impacts that 

could quickly destroy the rotor bearing system. 
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Fig 14. Ultimate load capacity (W/paLD) of cylindrical journal bearing. Infinite speed 

solution     

 
                                                           
13 Specific load capacities  a

W
p L D  in oil bearings easily exceed 20 (bar) or more.  



NOTES 15. GAS FILM LUBRICATION – Dr. Luis San Andrés © 2010 29

Incidentally, for operation with infinite frequency    , and for simplicity not 

accounting for shear flow effects  0  , the squeeze film pressure is just  

   
0

,
a

a
h

p h p p
h 


  
 

    (43) 

Thus, the pressure is in-phase with the film thickness, i.e., solely determined by the 

displacements  YX e,e  and not its time variations, i.e., not a function of the velocity at which the 

film thickness changes. These operating conditions thus lead to a stiffening or hardening of the 

gas film and absence of squeeze film damping effects. Examples showing this behavior were 

introduced for one-dimensional slider bearings. 

Importantly enough, high frequency motions of a squeeze gas film can generate a mean 

pressure above ambient; and hence the ability to carry a static load (albeit small). See Ref. [2] for 

details on this rectification phenomenon.  

   

Example of performance for a plain cylindrical journal bearing  

Table 3 shows the geometry and operating conditions of a cylindrical journal bearing 

operating with air at ambient condition. The bearing application is typical for a miniature high 

speed spindle.   

Table 3. Geometry and operating conditions of cylindrical gas bearing 

Journal diameter, D 0.0285 m L/D=1 

Length, L 0.0285 m  

Clearance, c 0.020 mm R/c=712 

Lubricant: Air at 26.7 C   

Ambient pressure, pa 1.01 bar  

Viscosity,  0.0185 c-Poise  

Density,  1.16 kg/m3  

Specific load, paLD 82 N  

Journal speed 10-100 krpm RPM /30 

Load  W 10 -100 N  

 

To show the bearing performance, define the following parameters: 
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R L

p c


      (44) 

which represent the dimensionless load, Sommerfeld number and speed (or compressibility) 

number, respectively. Above N is the rotational speed in rev/s. Note that in the design (and 

selection) of a gas bearing the Sommerfeld number is (usually) known or serves to size the 

bearing clearance14. 

Figures 15 and 16 show the static (equilibrium) eccentricity () and attitude angle () versus 

Sommerfeld number (S). This angle is between the load vector and the ensuing journal 

eccentricity vector. Each graph includes the (unique) curve representative of the operation for the 

journal bearing with an incompressible lubricant.  With an incompressible lubricant, large 

Sommerfeld numbers S , denoted by either a small load W, a high rotor speed , or large 

lubricant viscosity , determine small operating journal eccentricities or nearly a centered 

operation, i.e.  0 and  ½ (90). That is, the journal eccentricity vector e is nearly 

orthogonal or perpendicular to the applied load vector W. 

A  cylindrical (plain) gas bearing does not offer a unique performance curve; albeit the 

maximum journal eccentricity is bounded by the solution for the incompressible lubricant. The 

specific loads in a gas bearing are, by necessity, rather small. That is, even w=1.50 (see Fig. 15a) 

determines large operating eccentricities, in particular when the speed number () is also low.  

As per the attitude angle ( , gas bearings show a smaller angle than with incompressible 

lubricants, in particular at high speeds, as evidenced by the predictions in Fig. 17 depicting 

versus the journal eccentricity.    

 

                                                           
14 Even to this day, turbomachinery is designed (and built) with little attention to the needs of bearings and adequate 
lubrication for cooling and load support, static and dynamic. That is, thermo fluidic and aerodynamic considerations 
dictate the speed and size of the rotating elements. Fixed diameter and length for a bearing and the lubricant to be 
used, as well as the load to be supported, severely constrain the design space.   The bearing designer has only the 
bearing clearance (c) to play with. 
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Fig. 15(a) Journal eccentricity vs. Sommerfeld # for cylindrical gas journal bearing. Load 

(w) increases 
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Fig. 15(b) Journal eccentricity vs. Sommerfeld # for cylindrical gas journal bearing. 

Speed # () increases 
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Fig. 16(a) Journal attitude angle vs. Sommerfeld # for cylindrical gas journal bearing. 

Load (w) increases 
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Fig. 16(b) Journal attitude angle vs. Sommerfeld # for cylindrical gas journal bearing. 

Speed # () increases 
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Fig. 17 Journal attitude angle vs. eccentricity for cylindrical gas journal bearing. Load (w) 

increases 

Figure 18 shows the drag friction coefficient, orqueT
f cW , is indistinguishable between 

incompressible fluid and gas film journal bearings. This is so since the shear stress model is 

viscous in character, i.e., not affected by fluid compressibility. The result does not mean a gas 

bearing has the same drag torque (and power loss orqueT  ) as a mineral oil bearing. The 

difference in viscosities causes the gas bearing to have a much lower drag coefficient;  f is quite 

small, two orders of magnitude at least. 
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Fig. 18 Drag friction coefficient (f) vs. Sommerfeld number for cylindrical gas journal 

bearing. Load (w) increases 
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Bearing force coefficients and dynamic stability 

Figure 19 depicts the bearing stiffness and damping force coefficients evaluated at a 

frequency coinciding with the journal rotational speed (). In the example, the dimensionless 

load w=0.488 while the journal speed increases from 10 krpm to 100 krpm. Hence, the bearing 

Speed number 1.17 to 11.7, and the Sommerfeld number S=0.032 to 0.318. The 

dimensionless force coefficients are  
3

*
**

, ; where
4

D LCKK C CCC c
        

.  See Fig. 

15(a) for the relation between the journal eccentricity and the Sommerfeld number. Note that the 

direct stiffnesses (KXX, KYY) and damping (CXX, CYY) coefficients increase with the journal 

eccentricity (). At low eccentricities  0  or high speeds    , i.e., 1S  , then KXY=-

KYX and CXY=-CYX. 

The stability of the rotor-bearing system is of interest. In general, this is an elaborate 

procedure that requires the integration of the fluid film bearing reaction forces into a 

rotordynamics model. Simple analyses consider a point mass (M) rigid rotor supported on a gas 

bearing. The (linearized) equations of motion of the system about an equilibrium conditions 

(W=F) are 

e

e

XXX XY XX XY

YX YY YX YY Y

e

FK K C Cx x x
M

K K C Cy y y F

                       
           

M z + K z +Cz = F

 
 

 
  (45) 

where z={x(t) ,y(t)}
T is the vector of dynamic displacements of the journal center. Above, 

Fe={FX,FY}T is the external dynamic force vector acting on the system, for example due to mass 

imbalance. The stability of the system considers the homogeneous form of Eq. (45) and assumes 

an initial state  i iz , z away from the equilibrium condition (x=y=0).  
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Fig. 19 Synchronous frequency stiffness and damping force coefficients vs. journal 

eccentricity for cylindrical gas bearing. Load w=0.488 

 

The solution of the homogeneous form of Eq. (45) is straightforward. Let  z=zo e
st, hence Eq. 

(45) turns into the algebraic form 

 2
os s  K M +C z = 0     (46) 

The roots of the characteristic equation  2 0s sK M +C =  are 1,2s i   . If the real 

part < 0, then the rotor bearing system (RBS) is stable; that is, a system that returns its 

equilibrium position, as t z 0 . If, on the other hand, > 0, then the RBS is unstable and z 
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grows without bound15.  At the threshold of instability, when = 0, the system will perform self-

excited motions with whirl frequency i.e. z=zo e
t. Hence, Eq. (46) becomes 

 2 whereo i     Z M z = 0 Z K C    (47) 

Solution of Eq. (47) is straightforward for incompressible fluid, rigid surface, journal 

bearings since their force coefficients are frequency independent. The analysis leads to the 

estimation of the system critical mass (MC) and the whirl frequency ratio (WFR) [25]  

2 XX YY YY XX YX XY XY YX
C S eq

XX YY

K C K C C K C K
M K

C C
   

 


 

  2
2 eq XX eq YY XY YXs

XX YY XY YX

K K K K K K
WFR

C C C C

        
   (48) 

On the other hand, gas bearings have frequency dependent force coefficients, K() and C(). 

As an example, for the particular operating conditions noted, Fig. 20 depicts the dimensionless 

stiffness (Kij)ij=X,Y and damping (Cij)ij=X,Y coefficients versus frequency ratio (where  is 

the rotational speed; denotes whirl frequency excitation synchronous with the rotational 

speed. Note that the direct stiffnesses increase with whirl frequency, a typical hardening effect 

due to fluid compressibility. On the other hand, the damping coefficients at high frequencies are 

zero, 0asijC   , also due to fluid compressibility. An iterative method is required to solve 

for the characteristic Eq. (47),  
2 0 Z M = . Lund [24] restated Eq. (47) as  

2
 Z = M , 

and hence the instability threshold occurs at frequency s where the imaginary part of the 

complex impedance Ze is zero while its real part must be greater than zero. The equivalent 

impedance is 

             ( )

22
1

4

1

2e XX YY XX YY XY YXZ Z Z Z Z Z Z
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       
  (49) 

     Im 0 and Re 0
s s

e eZ Z
 

      (50) 

The first statement above implies the effective damping is nil. For the data shown in Fig. 20, 

the RBS critical mass is just Mc=0.968 kg and the WFR=0.48. That is, for operation with journal 

                                                           
15 It is a common misconception that the “no bound” statement implies system destruction. In actuality, the journal 
will whirl with a large amplitude whirl orbit bounded by the bearing clearance. As the motion amplitude grows, the 
bearing nonlinearity determines the size of the limit cycle. Of course, sustained operating under this condition is not 
recommended. 
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rotation at 50 krpm (833 Hz), the RBS becomes unstable if is physical mass is greater than Mc. If 

the actual system mass M > Mc, the RBS will begin self-excited motions at a frequency equaling 

48% of the running speed, i.e. s=400 Hz. This whirl frequency is also the natural frequency of 

the RBS for the noted operating condition.  Czolczynski .  For cylindrical gas bearings of various 

types Czolczynski [4] lists tables of rotordynamic force coefficients, critical mass and whirl 

ratios. 
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Fig. 19 Bearing stiffness and damping force coefficients versus whirl frequency ratio 

(). Cylindrical gas bearing. Load w=0.488, speed = 50 krpm (5.843), S=0.158 

(e/c=0.485) 

 

Performance of a flexure pivot – tilting pad hydrostatic gas bearing  

Cylindrical hydrodynamic journal bearings are notoriously limited in its load capacity as well 

as its dynamic stability. Hence, practice dictates the use of bearing configurations with multiple 

pads with a mechanical preload and, if possible, implementing hydrostatic pressurization to aid  

early rotor lift off as well as to reduce wear during start up and shut down events. As is well 

known in the rotating machinery industry, tilting pad bearings are preferred for high speed 

applications because of their excellent rotordynamic stability characteristics.  
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Figure 21 depicts a flexure pivot – tilting pad hydrostatic bearing that has undergone 

exhaustive investigation, analytical and experimental [13]. The test set up consists of a 190 mm 

rotor, weighing 0.827 kg, supported on a pair of gas bearings. Table 4 lists the geometry and 

operating conditions of the gas bearing installed for a load on pad condition. Note that the 

bearing pads have no pockets or recesses to eliminate pneumatic hammer effects. The gas feed 

orifices impinge directly on the rotor surface.  In the application, the DN value= 2.9 million, 

where D and N = (journal diameter in mm) × (rotating speed in rpm). Note that the static load 

(W) on each bearing is low, typical of a high speed spindle motor or a small turbocharger, for 

example. Furthermore, compared to the journal bearing analyzed earlier, the current bearing 

clearance is larger for easiness in installation.  

 

Table 4. Geometry and operating conditions of four pad flexure pivot, tilting pad 

hydrostatic bearing [13] 

Journal diameter, D 0.0285 m L/D=1.165 

Length, L 0.0332 m  

Clearance, c 0.0375 mm R/c=380 

Preload, r/c 0.0071 mm r/c=0.20 

Pad arc length and pivot offset 72 60% 

Orifice diameter 0.62 mm  

Pad inertia and stiffness, IP and K 0.253 g-mm2 20 Nm/rad 

Lubricant: Air at 26.7 C 1.01 bar Ambient pressure, pa 

Viscosity,  0.0185 c-Poise  

Density,  1.16 kg/m3  

Supply pressure, pS 2.39, 3.77, 5.15 bar  

Load, W along X 4.05 N w=W/paLD=0.042 

Journal speed,  10-100 krpm RPM /30 
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Fig. 21 Dimensions of flexure pivot hydrostatic gas bearing (units: mm) [13] 

 

Figure 22 shows the bearing static eccentricity (), attitude angle () and friction coefficient 

(f) versus speed number (). The predictions are for speeds from 10 to 100 krpm, 

with S=0.234-2.346, with hydrodynamic operation (no external pressurization) and 

hydrostatic pressurization with pressure supplies, pS= 2.39, 3.77 and 5.15 bar (absolute) [20, 40, 

60 psig]. External pressurization leads to small journal eccentricities () and attitude angle (), 

with a minor reduction in friction coefficient (f). In particular, the highest supply pressure gives a 

nearly centered journal operation. Figure 23 shows the flow rate (g/s) versus pressure and 

comparisons with experimental data. The supplied flow is quite small (max. 14.7 LPM), easily 

bleed off from a compressor in an actual RBS without significant penalty in its efficiency.     
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Fig. 22 Static performance of flexure pivot hydrostatic gas bearing versus speed (): 

journal eccentricity (e/c), attitude angle (),  journal center locus eY vs. eX, and friction 

coefficient (f) vs. Load (w) fixed 
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Fig. 23 Predicted and measured flow rate for flexure pivot hydrostatic gas bearing versus 

supply/ambient pressure ratio 

 

Figure 24 depicts the (dimensionless) bearing force coefficients, synchronous speed reduced 

(), versus speed for increasing magnitudes of external pressurization. Note that the cross-

coupled stiffnesses (KXY, KYX ) are a small fraction of the direct stiffnesses (KXX, KYY ), these 

growing with the level of supply pressure. The direct damping coefficients (CXX, CYY ), on the 
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other hand, decrease rapidly with an increasing pressure supply and less steeply with journal 

speed.  

The drop in damping as speed increases is a typical effect of fluid compressibility. The sharp 

reduction in damping with pressurization is problematic since, with the increase in bearing direct 

stiffness, it will produce a significant reduction in system damping ratio. Nonetheless, the model 

predicts the bearing will have a low whirl frequency ratio (WFR)~0.15, a significant 

improvement over the conventional cylindrical journal bearing.   
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Fig. 24 Stiffness (K) and damping (C) coefficients of flexure pivot hydrostatic gas bearing 

versus speed (). Synchronous speed force coefficients. Load (w) fixed 

 

Figure 25 shows the predicted and measured synchronous rotor imbalance response for 

operation with 2.36 bar and 5.08 bar (ab) feed pressure into the bearings. Note the effect of 
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supply pressure on increasing the system critical speed as well as in reducing the damping ratio. 

See Refs. [26,27] for further details on the experimental investigation which includes tests with 

external loads to determine the reliability of the gas bearings under intermittent shocks and 

periodic forces simulating maneuver loads and uneven road conditions. Furthermore, the test 

data in the figure suggests the possibility of controlling the supply pressure to move critical 

speeds and avoid the passage through resonances. Ref. [13] discusses and implements a simple 

and inexpensive control strategy that demonstrated remarkable results. In brief, external 

pressurization is only needed at low rotor speeds, while at high rotor speeds it can be safely 

dispensed with.    
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Fig. 25 Comparison of predicted and measured imbalance response of rotor 

supported on flexure pivot hydrostatic gas bearings. Operation with pS= 2.36 bar 

and 5.08 bar (abs) supply pressure [26].  

 
An introduction to gas foil bearings 

Oil-free systems have a reduced part count, footprint and weight and are environmentally 

friendly with demonstrated savings in long-interval maintenance expenses. Until recently, gas 

bearings were constructed with hard or rigid surfaces to reduce friction during start up or shut 

down events. However, bearing types such as herringbone groove bearings require tight 
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clearances (film thicknesses), and with their hard surfaces offer few advantages for use in high 

speed MTM.  

Gas foil bearings (GFBs) have emerged as a most efficient alternative for load support in 

high speed machinery. These bearings are compliant surface hydrodynamic bearings using 

ambient air as the working fluid media. Recall Fig. 1 showing two typical GFB configurations, 

one is a multiple overleaf bearing and the other is a corrugated bump bearing. Both bearing types 

are used in commercial rotating machinery, yet the open literature presents more details on 

bump-GFBs, along with measurements and analyses. The corrugated bump foil bearing is 

constructed from one or more layers of corrugated thin metal strips and a top foil. In operation, a 

minute gas film wedge develops between the spinning rotor and top foil. The bump-strip layers 

are an elastic support with engineered stiffness and damping characteristics [5,18]. 

GFBs offer distinct advantages over rolling elements bearings including no DN16 value limit, 

reliable high temperature operation, and large tolerance to debris and rotor motions, including 

temporary rubbing and misalignment, Current commercial applications include auxiliary power 

units, cryogenic turbo expanders and micro gas turbines. Envisioned or under development 

applications include automotive turbocharger and aircraft gas turbine engines for regional jets 

and helicopter rotorcraft systems [5]. Alas, GFBs have demerits of excessive power losses and 

wear of protective coatings during rotor startup and shutdown events. In addition, expensive 

developmental costs and, until recently, inadequate predictive tools limited the widespread 

deployment of GFBs into mid size gas turbines. In particular, at high temperature conditions, 

reliable operation of GFB supported rotor systems depends on adequate engineered thermal 

management and proven solid lubricants (coatings).  

Successful implementation of GFBs in commercial rotating machinery involves a two-tier 

effort; that of developing bearing structural components and solid lubricant coatings to increase 

the bearing load capacity while reducing friction, and that of developing accurate performance 

prediction models anchored to  dependable (non commercial) test data.  Chen et al. [18] and 

DellaCorte et al. [5,28] publicize details on the design and construction of first generation foil 

bearings, radial and thrust types, aiming towards their wide adoption in industry.  

 

                                                           
16 DN, the product of journal diameter (mm) times rotational speed [RPM], is a limiting factor for operation of 
rolling element bearings (DN= 2 Million in specialized bearings with ceramic balls, for example) 
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Performance of a simple one dimensional foil slider bearing 

Figure 26 depicts a one dimensional tapered foil (bump strip) bearing. The dimensionless 

film thickness (H) and Reynolds equation for the hydrodynamic pressure (P) are:   

( ) ( 1)RH H x S P    ;    

      3 0H P P P H P H
x


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 
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Fig. 26 Schematic view of tapered foil-bump strip bearing (width B) 
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hR
 is the film thickness for a rigid surface bearing and 

 
1

1b

s
k i




 is the foil support 

compliance or flexibility coefficient17, also accounting for material damping with a loss factor 

(). In most applications reported in the literature, the parameter (S) does not exceed a magnitude 

equal to 5. Indeed, typical bump foil stiffnesses range from kB = 5 to 100 (MN/m2)/mm [18], and 

thus, operation at ambient conditions (pa= 1 bar) with a film thickness of 5 micrometer leads to S 

varying from 0.2 to 4 for fixed end and free end bump-foil strips, respectively. Compliance (S) 

magnitudes below 0.1 imply an almost rigid surface bearing; while S> 5 correspond to a bearing 

too soft to support any practical load.  

                                                           
17 The description is rather simplistic, it neglects the elastic forces of the top foil and assumes that only the local 
pressure deforms a bump. Realistic physical models are available, see Ref. [16] for example. 
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The most difficult issue in foil bearing design relates to the estimation of the actual film 

thickness separating the foil from the moving surface. The operating thickness is unknown since 

all foil bearings have zero clearance at the stationary condition, i.e. without surface speed. The 

issue is resolved in a simple and ingenious manner.  

The applied (dimensionless) load on the bearing is 
a

Ww p L B , where B is the bearing width. 

At static conditions, the surface speed is U=0  0 , and the bearing supports the load through 

the elastic deformation of the bump foil strip along the length (L-LT). The contact pressure is 

simply 
   

;
1c c

T T

W w
p P

L L B l

 
     

, which determines the largest deflection on the foil bump 

structure,  0 /U c a bp p k    . Clearly, () should be within the elastic region of the elastic sub-

structure (bump strip)18. Note that this simple condition dictates the choice of the foil stiffness 

within acceptable engineering practice. 

Now consider the bearing operates at an exceedingly large surface speed,  ΛU   . 

This condition reduces Reynolds Eq. (51) to the (PH) limit, i.e. 

    0 1 1i o R o o oP H P H H P H S P P H
x


      


  (53) 

where (Po, Ho) denotes the gas pressure and film thickness in the downstream section of the foil, 

and Hi=HT+Ho is the film thickness at the inlet section. This last equation is easily solved with 

the load constraint
1

0

( 1)w p dx  , to determine the film thickness Ho. Note that this ultimate film 

thickness is the largest ever to occur. Thus, actual operating conditions (with finite speed) must 

render a smaller film thickness.  

Figure 27 shows the foil bearing ultimate load (w) decreases rapidly as the bearing 

compliance (S) increases for two inlet film thickness (Hi=3, 6)19. Figure 28 displays the bump 

strip elastic deflection, and contact and lift pressures versus the bearing compliance (S). Note that 

for operation at “infinite” speed the foil elastic deflection and lift pressure are smaller than for 

the contact condition since the hydrodynamic pressure distributes more evenly over the whole 

                                                           
18 Other constraints also apply. Most notably those related to tip clearances on rotating wheels and on inter-stage 
seals within a typical turbomachinery.  
19 Even a rigid bearing (S=0) does have an ultimate (speed limited) load capacity due to the gas compressibility. See 
prior sections. 
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bearing surface (see Fig. 29). At U=0, the contact zone conforms to the non-tapered portion of 

the bearing.  
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Fig. 27 Ultimate load capacity versus compliance (S) for two inlet films. Tapered length 
L1/L=0.5 
 

The results demonstrate the ultimate load capacity of a (simple) compliant gas bearing with 

non-zero film thickness. Unlike incompressible fluid (liquid) bearings, gas bearings do have a 

limited load capacity solely determined by the bearing geometry, the inlet and outlet film 

thicknesses, and the compliance parameter. The results in Figs. 27 and 28 are then used to 

estimate the operating film thickness since for a desired S parameter, and given the bump strip 

stiffness, then *
a

b

ph k S . 
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Fig. 28 Foil elastic deformation and maximum (contact and lift) pressures versus 
compliance parameter (S) for two inlet film conditions 
 

Figure 29 shows the predicted pressure field on the bearing surface for rigid (S=0) and 

compliant (S=3) surface bearings at a finite speed condition (=50). The figure also contains the 

contact pressure for operation without a hydrodynamic film (=0). The predicted gas pressures 

correspond to numerical solutions of Eq. (51) using a fast, accurate and stable algorithm for thin 

gas films [8]. The predictions correspond to a load w=0.25, just 20 % below the ultimate load for 

the compliant surface bearing. Note the more uniform pressure distribution for the foil gas 

bearing on the non-tapered portion of the bump foil strip layer. 

Figure 30 displays the predictions of load capacity (w) and minimum film thickness versus 

speed number () for a rigid (S=0) and compliant surface bearings (S=3, 6). At low speeds, the 

load is nearly proportional to surface speed, though it soon levels off and reaches the ultimate20 

load capacity for >100. Note that the predictions based on the simple design formulae, Figs. 27 

and 28, match perfectly those of the numerical predictions at high speed numbers.  

 

                                                           
20 Some foil bearing providers erroneously claim ever increasing load capacities as (surface speed) increases. The 
claim has no scientific grounds and merely reflects the commercial aspect of an emerging technology.    
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Fig. 29 Pressure field on bearing surface for speed number =50. Rigid and compliant  
(S=3) surface bearings with Hi =3, w=0.25, and contact pressure at =0 
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Fig. 30 Load capacity (w) and minimum film thickness versus speed number () for rigid 
(S=0) and compliant surface bearings (S=3, 6). Hi =3. 
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Dynamic force coefficients representative of small amplitude motions about an equilibrium 

condition are of importance to determine the dynamic forced response and stability of a 

mechanical system. Figure 31 depicts the predicted (dimensionless) stiffness and damping 

coefficients for rigid (S=0) and compliant surface (S=3) bearings at =50, with film inlet Hi=3 

and load w=0.25. The force coefficients are displayed as functions of increasing frequency 

numbers (), i.e. as the excitation frequency grows, and two loss factors, = 0 and 1, 

representative of low and high values of material damping within a foil bump strip, respectively.  
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Fig. 31. Stiffness and damping force coefficients for rigid and compliant surface bearings 
versus frequency number (). Effect of loss factor () on dynamic force coefficients. Hi=3, 
=50, w=0.25 
 

The stiffness coefficient (KB) shows a typical hardening effect as the frequency of excitation 

grows, while the damping coefficient (CB) decreases rapidly. However, the compliant surface 

bearing with a large loss factor (=1) has more damping capability than the rigid surface bearing. 

The results demonstrate that foil bearings may be tuned (designed) to give desirable dynamic 

force characteristics to control the placement of critical speeds and enhanced damping in 

operating regions of interest.  

Ref. [14] shows a similar (simple) analysis giving the limit or ultimate load capacity of radial 

foil bearings. 

 

Considerations on foil bearings for oil-free turbomachinery 

 Until recently GFB design was largely empirical, each foil bearing being a custom piece of 

hardware, with resulting variability even in identical units, and limited scalability.  At present, 



NOTES 15. GAS FILM LUBRICATION – Dr. Luis San Andrés © 2010 50

the advances in radial GFB technology (design, construction and predictability) permit OEMs 

and end users to implement radial GFBs for deployment into novel MTM or to upgrade and 

improve outdated rotating machinery. That is, there is enough published know-how on materials, 

guidelines for design and construction of radial GFBS including engineered coatings for high 

temperature applications, a reliable data base of GFB forced performance (static and dynamic), 

and computational tools benchmarked to test data.  

Research on radial GFBs for lateral support of oil-free rotating machinery has steadily 

progressed with comprehensive analyses accounting for most relevant physical aspects to 

accurately predict GFB static and dynamic load performance, power loss, and the management 

of thermal energy in high temperature applications. Empirical research has gone beyond showing 

a few instances of acceptable mechanical performance, to demonstrate GFB multiple-cycle 

repeatable performance in spite of persistent large amplitude whirl motions at low frequencies, 

typically coinciding with the system natural frequencies.  Many developmental efforts have 

attempted to fix or suppress these undesirable motions. One could hastily attribute the sub 

harmonic whirl motions to a typical rotordynamic instability induced by hydrodynamic effects of 

the gas film, i.e. generation of too large cross-coupled stiffness coefficients that destabilize the 

rotor-bearing system. However, as learned from the measurements [29], rotor imbalance triggers 

and exacerbates the severity of subsynchronous motions. The subsynchronous behavior is a 

forced nonlinearity due to the foil bearing strong nonlinear (hardening) stiffness characteristics, 

as is demonstrated in Ref. [30]. The predictions and measurements validate the simple FB model, 

i.e. a minute gas film with effective infinite stiffness, with applicability to large amplitude 

rotordynamic motions. 

Challenges for gas FBs include intermittent contact and wear at startup and shut down, and 

potential for large amplitude rotor whirl at high speeds. Subsynchronous motions are common in 

FBs due to their strong structural hardening nonlinearity. Incidentally, the ultimate load capacity 

of a gas foil bearing depends mainly on its support structure. Hence, engineers must pay close 

attention to the bearing structural components (design, fabrication and assembly). 
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Nomenclature 
B  Bearing width [m] 
c  Radial clearance in journal bearing [m] 
cP  Machined clearance in a tilting pad bearing [m] 
C  Damping coefficients [Ns/m]; X,Y. C C/C* 

C*  

3

4

D L

c
  

 
 

. Factor for damping coefficient in radial bearing 

C   
3

*
*

12

C

LB h   
 

Dimensionless damping coefficient (slider bearing)   

d  Orifice diameter in externally pressurized bearing [m] 
D  Journal or rotor diameter [m] 
eX, eY  Components of journal eccentricity vector [m]. =e/c 
FX, FY  Components of bearing reaction force [N].  
f  Torque/cW. Drag friction coefficient in journal bearing 
h  Film thickness [m].  
H  h/h*, h/c. Dimensionless film thickness 
K  Damping coefficients [Ns/m]; X,Y. K K/K* 
K*  C*. Factor for stiffness coefficient in radial bearing 

K   

*
a

K
B L p

h

Dimensionless stiffness coefficient (slider bearing) 

kb  Foil bearing stiffness/unit area [N/m/m2] 
Kn  (/h). Knudsen number. > 15 for continuum flow. 
L  Length of bearing [m] 
MP  Pad moment [Nm] 

ORm   Orifice mass flow rate [kg/s] 

M  Rigid rotor mass [kg] 
Mc  Critical mass of rigid rotor-bearing system [kg] 
N  Rotational speed [rev/s] 
npe  Number of nodes in finite element 
p  Pressure [Pa]. P=p/pa 
pa, pS  Ambient and supply pressures [Pa] 
p0, p1  Zeroth and first order pressure fields. [Pa], [Pa/m] 
q  Flow normal to an element 
rP  Machined preload in a multiple pad and tilting pad bearings [m] 
R  ½ D. Journal radius 
Re  Uh/Shear flow Reynolds number 
g  Gas constant [J/kgK] 

S  Sommerfeld number. 
2

N L D R
S

W c

    
 

 

S  (s pa/h*). Foil bearing compliance number 
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s  
 

1

1bk i
Foil bearing compliance parameter [m3/N] 

s  s i   . Eigenvalue of characteristic equation 
t  Time [s] 
T  Temperature [K] 
Torque  Drag torque [Nm] 
U  Surface speed [m/s]. R in journal bearing 
W  Load [N]. w= W/(BLpa), W/(LDpa) 
WX, WY  Components of load acting on bearing [N].  
WFR  (). Whirl frequency ratio 
X,Y  Inertial coordinate system for journal bearing analysis 
x, y, z  Coordinate system in plane of bearing 
 
z  {x(t) ,y(t)}

T . Vector of journal center dynamic displacements [m]  

Z  Complex impedance [N/m]; Z = (K + i  C), 1i  


y  Small amplitude motion [m] 
eX, eY Small amplitude journal center motions [m] 
 
   (h1/h2). Ratio of inlet to outlet film thickness in slider bearing 
   (L2/L). Ratio of lengths in Rayleigh step and tapered-flat slider bearings 
   Material loss coefficient in foil bearing 
  Gas specific heats ratio 
e  Element boundary 
  ngle between load vector and journal eccentricity vector [deg]  
  t. Dimensionless time 
  Coordinates for pad tilt, radial and transverse displacements 
  (e/c). Journal eccentricity ratio  
  x/R. Circumferential coordinate fixed to stationary 
P  Angular location of pad pivot 
  Gas molecular free path [m]

  Speed number. *
2
*

6

a

U L

p h


  , 

26

a

R

p c

      
 

 

  Gas viscosity [Pas]  
  Gas density [kg/m3] 

  Frequency number. 
2
*

2
*

12

a

L

p h

 
1
2





 

 i

npe

1
 Shape functions within the finite element 

  Frequency of dynamic motions [rad/s] 
  Whirl frequency of unstable dynamic motions [rad/s] 
  (2N). Rotor or journal speed [rad/s]  
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e  Finite element sub-domain 
 
Subscripts 
o  Zeroth-order 
1  First-order 
*  Characteristic value 
P  Pad 
u  Ultimate limit at   
 
Acronyms 
FPTPB  Flexure pivot tilting pad bearing 
GFB  Gas foil bearing 
RBS  Rotor-bearing system 
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Appendix Numerical solution of Reynolds equation for gas films 

There are numerous methods for the numerical solution of the gas film Reynolds equation, 

including finite differences, finite elements, control-volume methods and boundary element 

methods. Prior to 1990, finite difference methods were favored. However, into the present day, 

the finite element method has gained in popularity because of its ability to seamlessly tackle 

complex configurations, including textured (spiral groove) geometries, and including supply 

ports. However, recall that the compressible fluid Reynolds equation is non linear, hence 

requiring of iterative methods – Newton-Raphson like- to achieve convergence to a unique 

solution. Moreover, the character of the equation changes from elliptical to hyperbolic as the 

speed or frequency (numbers) increase. As the literature extensively reports, predictions under 

these conditions using central difference schemes of finite elements with linear interpolation 

functions show numerical oscillations and eventually numerical instability. 

Fortunately, nowadays there is a method that avoids such difficulties by using interpolation 

or shape (analytical) functions that seamlessly transition from elliptic to parabolic flow 

conditions as the speed increases. See Ref. [8] for this important development that allows 

prediction of gas film static and dynamic force characteristics for arbitrarily high-speed gas 

bearing numbers. 

The flow domain in a pad is divided into four-noded rectangular finite elements 
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1 where  yx N,N  is the global number of elements in the circumferential 

and axial directions, respectively.  Within an element the zeroth- and first-order pressures are 

functions of the nodal pressures and shape functions 41..i
e
i }{  , i.e.,  

   

4 4

0 0 ,
1 1

, ;
i i

e e e e e e
i i X Y

i i

P P P P    
 

        (A.1)  

These equations are substituted into the Reynolds equation, which is further multiplied by an 

identical set of weight functions and integrated over an element domain. The Petrov-Galerkin 

method leads to the following set of zeroth- and first-order finite element equations (not 

including a source of external pressurization) 

     ;e e e e
ji oi j jk P r q         

    , 1..4; ,;
ji i j j

e e e e
i j X Yk P r q            (A.2) 
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where   3
, , , , ,

e

e e e e e e e e
ji o o i x j x i z j z o i j x ek P H H d     
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       , 
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e

e e e
j j eq m d



         (A.3) 
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ke represents the element fluidity matrix, and re and qe denote the vectors of shear and squeeze 

flows, and nodal mass fluxes ( em ) through the element boundary e , respectively.  

Within a finite element 
   1 1

Ω : , ,
2 2

e e e e
e x yx l y l

   
  

 
and natural coordinates 

   11 ,, , the advanced shape functions are [8] 
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where 
2

e
x

e e
o e

l

P H
 

  is a local Peclet number showing the ratio of convection (shear) flow to 

diffusion (Poiseuille) flow. At low bearing speed numbers ( 0e ), the novel shape functions 

reduce to the well known bilinear interpolation functions. For high speed numbers where fluid 

convection dominates the film flow, e , the shape functions produce a full upwinding 

fluidity matrix with negligible diffusive terms (artificial viscosity) 
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Eq. (A.2) are constructed for each element, assembled over the flow domain, and then 

condensed by enforcing appropriate boundary conditions, including the source terms arising 

from any external (orifice) pressurization.  The resultant global set of equations is  

     
G G GG o o ok P =Q + R      (A.6) 

where
1 1 1

; ;
Nem Nem Nem

e e e  

  
G

e e e sources
G G ok k R r Q q + q   for the equilibrium pressure field. A similar 

equation set follows for the first-order pressure fields. The asymmetric global fluidity matrix kG 

is nonlinear since its elements depend on the zeroth-order pressure field (
GoP ). 

Earlier developments relied on the continuous evaluation, assembly and decomposition of the 

global fluidity matrix. Presently, a line solver with successive under-relaxation is used. The 

procedure assembles the finite element equations along a line (constant axial coordinate) and 

solves them using the TDMA algorithm. The method is faster than the full matrix decomposition 

procedure since new pressures are immediately updated in the iterative procedure. Good 

convergence rates are found by selecting appropriate under relaxation factors (0.7 typically). 

See Refs. [8-10] for further details on the method implementation, including external 

pressurization (supply ports) and tilting pad bearings.  

 


