Consider the periodic forced response of a primary system (K_p-M_p) defined by

\[K_p := 1 \times 10^5 \frac{\text{lbf}}{\text{in}} \quad M_p := 10^3 \text{lb} \]

Its natural frequency is

\[\omega_{np} := \left(\frac{K_p}{M_p} \right)^{0.5} \]

\[\omega_{np} = 196.491 \text{ rad/sec} \]

The EOM (from SEP) for periodic force excitation with magnitude \(F_0 \) and frequency \(\Omega \) is:

\[M_p \cdot \frac{d^2}{dt^2} X_p + K_p \cdot X_p = F_0 \cdot \cos(\Omega \cdot t) \quad [1] \]

Let:

\[F_0 := 1000 \text{lbf} \]

The solution of [1] is of the form

\[X_p(t) = Z_p \cdot \cos(\Omega \cdot t) \quad [2] \]

\[\left(K_p - \Omega^2 \cdot M_p \right) \cdot Z_p = F_0 \]

or

\[Z_p(r) := \frac{F_0}{K_p} \cdot \frac{1}{\left(1 - r^2 \right)} \quad [3] \]

with:

\[r = \frac{\Omega}{\omega_{np}} \]

as the frequency ratio

Thus, the periodic force response of the system (K_p,M_p) is:

\[X_p(t) = \frac{\delta_s}{\left(1 - r^2 \right)} \cdot \cos(\Omega \cdot t) = \frac{\delta_s}{\left| 1 - r^2 \right|} \cdot \cos(\Omega \cdot t + \phi) \quad [4] \]

with \(\delta_s := \frac{F_0}{K_p} \)

and the phase angle \(\phi \) is zero degrees for excitation frequencies \((\Omega) < \) the natural frequency, \(\phi = -180 \text{ deg for } \Omega > \text{ natural frequency, and } \phi=-90 \text{ degrees for } \Omega = \text{ natural frequency.} \)
The response Z_p (amplitude and phase) as a function of the excitation frequency is:

$$Z_p(\Omega) := \frac{\delta_s}{\left(1 - \frac{\Omega^2}{\omega_{np}^2}\right)^2}$$

$\delta_s = 8.333 \times 10^{-4}$ ft

$\omega_{np} = 196.491 \frac{\text{rad}}{\text{sec}}$

Note the very large amplitude of motions (unbounded) for excitation at the system natural frequency. In the graph above, $Z_p > 0$ means in phase with the external force, $Z_p < 0$ means 180 deg out of phase with external periodic force.

Clearly, the system cannot be operated at frequencies close (or at) the natural frequency. Since there is NO damping, the system will just fail b/c the amplitude of motion is just TOO LARGE!

Now, consider a secondary (Ks-Ms) system attached to the primary system (original).

In this case, the EOMs from the SEP are:

$$\begin{pmatrix} M_p & 0 \\ 0 & M_s \end{pmatrix} \frac{d^2}{dt^2} \begin{pmatrix} X_p \\ X_s \end{pmatrix} + \begin{pmatrix} K_p + K_s & -K_s \\ -K_s & K_s \end{pmatrix} \begin{pmatrix} X_p \\ X_s \end{pmatrix} = \begin{pmatrix} F_0 \\ 0 \end{pmatrix} \cdot \cos(\Omega \cdot t) \quad [5]$$

The system forced response is also periodic, i.e. with identical frequency as that of the periodic excitation force. Thus, let

$$\begin{pmatrix} X_p \\ X_s \end{pmatrix} = \begin{pmatrix} Z_p \\ Z_s \end{pmatrix} \cdot \cos(\Omega \cdot t) \quad [6]$$

The combined system is 2-DOF. Thus, TWO natural frequencies (and natural modes) will appear.

\[
\begin{pmatrix}
K_p + K_s - \Omega^2 \cdot M_p & -K_s \\
-K_s & K_s - \Omega^2 \cdot M_s
\end{pmatrix}
\begin{pmatrix}
Z_p \\
Z_s
\end{pmatrix}
= \begin{pmatrix}
F_o \\
0
\end{pmatrix}
\] [7]

The determinant of the system of equations [7] is

\[
\Delta(\Omega) = (K_p + K_s - \Omega^2 \cdot M_p)(K_s - \Omega^2 \cdot M_s) - K_s^2
\] [8]

The solution to the algebraic system of equations [7] is simple, - use Cramer's rule, for example. The response amplitudes for the primary and secondary masses are:

\[
Z_p(\Omega) = \frac{F_o \cdot (K_s - \Omega^2 \cdot M_s)}{\Delta(\Omega)}
\]

\[
Z_s(\Omega) = \frac{F_o \cdot K_s}{\Delta(\Omega)}
\] [9]

Note from Eq. [9] that if

\[
(K_s - \Omega^2 \cdot M_s) = 0
\] [10] at a certain frequency \(\Omega = \Omega_X\)

then

\[
Z_p(\Omega_X) = 0
\]

That is, the motion of the primary system is zero (NULL)!

A simple and practical SOLUTION:

A vibration absorber is a mechanical device which permits to reduce (even eliminate) amplitudes of vibration at certain excitation frequencies, in particular those at which the original system showed a highly undesirable response.

For example, if zero amplitude vibration is desired for excitations at the natural frequency of the original system, the designer selects

\[
\Omega_X = \omega_{np}
\]

also known as a **TUNED ABSORBER**

Which then determines that the stiffness and mass of the secondary system should be such that:

\[
(K_s - \Omega_X^2 \cdot M_s) = 0 \quad \frac{K_s}{M_s} = \omega_{np}^2
\] [11]

i.e, the natural frequency of the secondary system MUST coincide with that of the original system.
The components of the vibration absorber (secondary system) need NOT be the same size as the original system. In practice, the magnitude of K_s and M_s are substantially smaller.

Say for

\[a := 10 \quad K_s := \frac{K_p}{a} \quad M_s := \frac{M_p}{a} \]

then

\[\left(\frac{K_s}{M_s} \right)^{0.5} = 196.491 \ \frac{\text{rad}}{\text{sec}} \quad \text{equals} \quad \left(\frac{K_p}{M_p} \right)^{0.5} = 196.491 \ \frac{\text{rad}}{\text{sec}} \]

and the system responses are

\[\Delta(\Omega) := \left(K_p + K_s - \Omega^2 M_p \right) \left(K_s - \Omega^2 M_s \right) - K_s^2 \]

\[Z_p(\Omega) := \frac{F_0 (K_s - \Omega^2 M_s)}{\Delta(\Omega)} \quad Z_s(\Omega) := \frac{F_0 K_s}{\Delta(\Omega)} \]

thus, for operation with excitation frequency

\[\Omega := \omega_{np} \quad \omega_{np} = 196.491 \ \frac{\text{rad}}{\text{sec}} \]

\[Z_p(\Omega) = 0 \ \text{ft} \quad Z_s(\omega_{np}) = -8.333 \times 10^{-3} \ \text{ft} = \frac{-F_o}{K_s} \]

Note

\[a = 10 \quad \frac{Z_s(\omega_{np})}{\delta_s} = -10 \]

The SOFTER the secondary system is ($K_s \ll K_p$), the largest the motion of the secondary system at the desired frequency.
The graph below shows the **FRF (amplitude and phase)** of the vibration absorber:

![Graph of FRF](image)

\[
\frac{K_p}{K_s} = a = 10
\]

Note the null amplitude of motion for primary system excited at the ORIGINAL system natural frequency. In the graph, \(Z_p, Z_s > 0\) means in phase with the external force, \(Z_p, Z_s < 0\) means 180 deg out of phase with external periodic force.

The graph below shows the **amplitude (absolute)** of the vibration absorber:

![Graph of Amplitudes](image)

\[
\frac{K_p}{K_s} = a = 10
\]

\[
\frac{-F_o}{K_s} = -8.333 \times 10^{-3} \text{ ft}
\]

\[
\omega_{np} = 196.491 \text{ rad/sec}
\]

Note that the addition of the secondary (K-M) system renders a 2-DOF system with two natural frequencies, one above and one below the original natural frequency.

In general, the smaller the magnitude of the secondary stiffness and mass, the larger the amplitude of motion for the secondary system since it is extremely flexible. The system natural frequencies (1 and also tend to approach that of the original natural frequency.
The graph below shows the FRF (amplitude and phase) of the vibration absorber:

Note the null amplitude of motion for primary system excited at the ORIGINAL system natural frequency. In the graph, Zp,Zs >0 means in phase with the external force, Zp, Zs <0 means 180 deg out of phase with external periodic force.

The graph below shows the amplitude (absolute) of the vibration absorber:

\[
\frac{K_p}{K_s} = a = 5
\]

\[
\frac{-F_o}{K_s} = -4.167 \times 10^{-3} \text{ ft}
\]

\[
\omega_{np} = 196.491 \frac{\text{rad}}{\text{sec}}
\]
The graph below shows the **FRF (amplitude and phase)** of the vibration absorber:

\[
\frac{K_p}{K_s} = a = 2.5
\]

Note the null amplitude of motion for primary system excited at the ORIGINAL system natural frequency. In the graph, \(Z_p, Z_s > 0\) means in phase with the external force, \(Z_p, Z_s < 0\) means 180 deg out of phase with external periodic force.

The graph below shows the **amplitude (absolute)** of the vibration absorber:

\[
\frac{K_p}{K_s} = a = 2.5
\]

\[
-\frac{F_0}{K_s} = -2.083 \times 10^{-3} \text{ ft}
\]

\[
\omega_{np} = 196.491 \text{ rad/sec}
\]
Design of vibration absorber

The equations of motion for the 2-DOF system are:

\[
\begin{pmatrix}
K_p & K_s \\
K_s & M_s
\end{pmatrix}
\begin{pmatrix}
\ddot{X}_p \\
\ddot{X}_s
\end{pmatrix}
+ \begin{pmatrix}
K_p + K_s & -K_s \\
-K_s & K_s + M_s
\end{pmatrix}
\begin{pmatrix}
X_p \\
X_s
\end{pmatrix}
= \begin{pmatrix}
F \\
0
\end{pmatrix}
\sin(\Omega \cdot t)
\]

[1]

where primary system has:

\[
\begin{align*}
M_p & := 50 \text{ kg} \\
K_p & := 20000 \frac{N}{m} \\
F & := 1000 \text{ N}
\end{align*}
\]

Ranges of excitation frequency:

\[
\begin{align*}
\omega_{\text{min}} & := 16 \frac{\text{rad}}{s} \\
\omega_{\text{max}} & := 24 \frac{\text{rad}}{s}
\end{align*}
\]

The system response is of the form:

\[
\begin{pmatrix}
X_p \\
X_s
\end{pmatrix}
= \begin{pmatrix}
Z_p \\
Z_s
\end{pmatrix}
\sin(\Omega \cdot t)
\]

[2]

Substitution of Eq. [2] into [1] leads to:

\[
\begin{pmatrix}
K_p + K_s - \Omega^2 \cdot M_p & -K_s \\
-K_s & K_s + M_s
\end{pmatrix}
\begin{pmatrix}
Z_p \\
Z_s
\end{pmatrix}
= \begin{pmatrix}
F \\
0
\end{pmatrix}
\]

[3]

1) A tuned absorber is designed so that \(Z_p = 0 \) i.e. no motion of the primary mass.

for operation at \(\Omega = \omega_n \)

\[
\begin{align*}
\Omega & = \left(\frac{K_p}{M_p} \right)^5 = \left(\frac{K_s}{M_s} \right)^5 \\
\omega_n & := \frac{\omega_n}{M_p}
\end{align*}
\]

Thus, from the first of eqns (3)

\[
Z_s = -\frac{F}{K_s}
\]

[4]

Design absorber (select \(K_s \) & \(M_s \)) that satisfy operation within range of excitation frequencies:

The determinat of the system of equations [3] is

\[
\Delta(\Omega) = \left(K_p + K_s - \Omega^2 \cdot M_p \right) \left(K_s - \Omega^2 \cdot M_s \right) - K_s^2
\]

[5]
Let:
\[\lambda = \frac{\Omega^2}{K_p} \]
\[a = \frac{K_s}{K_p} = \frac{M_s}{M_p} \]

stiffness ratio = mass ratio for tuned absorber

Expand Eq. (5), i.e. the characteristic equation:

\[\Delta(\lambda) = \left(1 + a - \lambda^1\right)\left(1 - \lambda\right) a - a^2 = a \left[\left(1 + a - \lambda^1\right)\left(1 - \lambda\right) - a\right] \]
\[\Delta(\lambda) = a \left[1 + a - \lambda - \lambda a + \lambda^2 - a\right] = a \left(1 - 2\lambda - \lambda a + \lambda^2\right) \]
\[\Delta(\lambda) = \lambda^2 - \lambda(2 + a) + 1 = 0 \] \[6\]

The roots of the characteristic equations are:

lowest:
\[\lambda_1(a) := \frac{(2 + a) - \left(4a + a^2\right)^{5/2}}{2} \]

highest
\[\lambda_2(a) := \frac{(2 + a) + \left(4a + a^2\right)^{5/2}}{2} \]

Let
\[\lambda_{\text{min}} := \left(\frac{\omega_{\text{min}}}{\omega_n}\right)^2 \quad \lambda_{\text{max}} := \left(\frac{\omega_{\text{max}}}{\omega_n}\right)^2 \]

Given the max and min values then, from eqn. (6)

\[a_-(\lambda) := \frac{(1 + \lambda)^2}{\lambda} - 2 \]

\[a_{\text{max}} := a_-(\lambda_{\text{min}}) \quad a_{\text{max}} = 0.202 \]

\[a_{\text{min}} := a_-(\lambda_{\text{max}}) \quad a_{\text{min}} = 0.134 \]

for
\[a := a_{\text{min}} \]
\[Z_s := \frac{-F}{a \cdot K_p} \]
\[Z_p := 0 \cdot m \]

\[Z_s = -0.372 \text{ m} \]

\[\omega_1 := \left(\frac{\lambda_1(a) \cdot K_p}{M_p}\right)^{5} \quad \omega_1 = 16.667 \frac{\text{rad}}{\text{s}} \]

\[\omega_2 := \left(\frac{\lambda_2(a) \cdot K_p}{M_p}\right)^{5} \quad \omega_2 = 24 \frac{\text{rad}}{\text{s}} \]

\[\omega_{\text{min}} = 16 \frac{\text{rad}}{\text{s}} \]

\[\omega_{\text{max}} = 24 \frac{\text{rad}}{\text{s}} \]
$K_{\text{min}} := a \cdot K_p \quad M_{\text{min}} := a \cdot M_p$

for

$a := a_{\text{max}}$

$Z_s := \frac{-F}{a \cdot K_p}$

$Z_p := 0 \cdot m$

$Z_s = -0.247 \text{ m}$

$K_{\text{max}} := a \cdot K_p \quad M_{\text{max}} := a \cdot M_p$

$K_{\text{min}} = 2.689 \times 10^3 \frac{N}{m} \quad M_{\text{min}} = 6.722 \text{ kg}$

$\omega_1 := \left(\frac{\lambda_1(a) \cdot K_p}{M_p}\right)^5 \quad \omega_2 := \left(\frac{\lambda_2(a) \cdot K_p}{M_p}\right)^5$

$\omega_1 = 16 \text{ rad/s} \quad \omega_2 = 25 \text{ rad/s}$

$\lambda_1(a) := \frac{(2 + a) - \left(4 \cdot a + a^2\right)^{\frac{5}{2}}}{2} \quad \lambda_2(a) := \frac{(2 + a) + \left(4 \cdot a + a^2\right)^{\frac{5}{2}}}{2}$

$\omega_{\text{min}} = 16 \frac{\text{rad}}{s}$

$\omega_{\text{max}} = 24 \frac{\text{rad}}{s}$

DESIGNER selects secondary system with since natural frequencies are outside operating range

$a_{\text{max}} = 0.202$

$K_{\text{max}} = 4.05 \times 10^3 \frac{N}{m}$

$M_{\text{max}} = 10.125 \text{ kg}$
Now let's graph the amplitude and phase lag of frequency response function for both absorbers (primary and secondary mass motions):
Values >0 mean phase lag of 0 degrees, values <0 mean phase lag of -180 degrees with respect to forcing function. Passing through the natural frequencies gives a phase lag of -90 degrees. Amplitudes become unbounded while crossing the system natural frequencies.

$$\omega_{nP} = 20 \text{ rad/s}$$

$$a := a_{\text{max}}$$

$$a = 0.202$$

$$\omega_1(a) = 16 \text{ rad/s}$$

$$\omega_2(a) = 25 \text{ rad/s}$$

$$\omega_{\text{min}} = 16 \text{ rad/s}$$

$$\omega_{\text{max}} = 24 \text{ rad/s}$$