Lecture 21. MORE PLANAR KINEMATIC EXAMPLES

4.5¢ Another Slider-Crank Mechanism

Figure 4.24 Alternative
slider-crank
mechanism.

D

Engineering-analysis task: For = «© = constant, determine ¢
and S and their first and second derivatives for one cycle of 6.

Geometric Approach. From figure 4.22:

X : [l cos@+Scos@=a

(4.25)
Y : [;sin@=Ssing .

Reordering these equations to
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Scosp=a-1 cosB

(4.27a)
Ssing =/,smb ,

emphasizes that 0 1s the mnput coordinate, with ¢ and S the output
coordinates. These equations are nonlinear but can be solved for
¢ and S in terms of 0, via

S%(cos” @ +sin*@) =(a -1, cos6)* +(/, sin6?)

(4.27b)
S2=a2-2al cos®+I;
and
' [, sinB
sin
tan @ = > =] - (4.27¢)
cos¢ a-I cosH
Differentiating Eqgs.(4.25) nets:
Scos@ -SsinQ =1, sin60
(4.28a)

Ssing +Scospo =1, cos89 ,

or
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COS(Q -—SinQ

{S } {sin@ }
(=l o :
So cos®

Differentiating Eq.(4.28a) w.r.t. time nets:

sINQ COSQ

Scosp -SsinQ@ —Scos<p(i)2 =1, sin®6 +2Spsing

+llcos992

Ssing +ScosQ —Ssin(p(i)2 =1, cos86 -2Spcoso
-1 sin0§” .

Substituting 6 =@, 0 =0,and rearranging gives:

Scos@ -S@sing =, ®?cos6 +2S@sing +ScosQQ

Ssing +Spcos¢ = -1, o*sin® -2S@cosp +SsinQ¢” .

The matrix equation for the unknown S and S is

{‘ZJ

L *cos® + 2S¢sing + S¢ cose

COS(Q -—SInQ

sin@ Cos@

3

-1, 0*sin® - 28 pcosp + S ¢ sing
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(4.28b)

(4.29)

(4.302)

(4.30b)



The engineering-analysis task 1s accomplished by executing the
following sequential steps:

1. Vary 0 over the range [ 0, 2x ], yielding discrete values 0.
2. For each 6, value, solve Eq.(4.25) to determine
corresponding values for ¢.and S..

3. Enter Eqs.(4.28) with known values for 6,, ¢;and S;. to
determine @, and S;.

4 Enter Eqs.(4.30) with known values for 0;, o,, S;, ® ; and
S to determine @, and S§..

5. Plot (i)l., ()i , (pl and S} versus 0, .
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Plate

Figure 4.24 Alternate

version of the mechanism
B in figure 4.22 with S as the
Pivot input.

Hydraulic cylinder
A C

[ T\ [ T\

For S as the input, Eqs.(4.28a) are reordered as:
Sesing +Ilésin8 =ScosQ

SPCcos —llécosG =-Ssino ,

to define @ and 8. Rearranging Eqgs.(4.29) defines ¢ and 8
via:
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-~ SsinQQ -1 sin@0 = - Scoso +Scoscp(i)2 +2S@sing +

3 cosH6’

ScosQQ -1 cos00 = - Ssing +Ssin(p(i)2 ~28¢pcosQ -
/,sin0§” .

The basic geometry of figures 4.22 and 4.24 tends to show up
regularly in planar mechanisms.

Vector, Two-Coordinate-System Approach for Velocity and
Acceleration Relationships

. VAN
I::R0+[.)+(0Xp (4.1)

F=R, +P+20xPp+dxp+ax(exnp)
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Figure 4.26
Two-coordinate arrangement for rod BD of the slider-crank
mechanism in figure 4.22.

The vector m 1s defined as the angular velocity of the X, y system
relative to the X,Y system. From figure 4.26 , using the right-
hand-screw convention,

0=-Ko=-ko .
: . do : ] . .y
Given that @ = — | vy » We obtain by direct differentiation
r - .
o=-Ko=-ko .
From figure 4.26,
p=Jjs .
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Differentiating this vector holding j constant gives

A Lg

p =JjS .
Differentiating again gives

/.\. o

p=js .

Substituting these results into the definitions provided by
Egs.(4.1) gives:

Fo=vp=0+jS-koxjS
Fp=ap=0+jS+2(-ko)xjS-koxjS-kox(-kpxjS)

Carrying through the cross products and completing the algebra
nets:
v, =iSQ +jS
e (4.31)
ag=i(S¢+25¢)+j(S-S¢°)

By comparison to figure 4.25, the unit vectors I and | of the X,y
system coincide with the unit vectors g, and g, used in the
polar-coordinate solution for Vg and ag.

Returning to figure 4.25, we can apply Eq.(4.3) to state the
velocities and accelerations of points A and B as:
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Vp=V, T XF p
Ap=a,+O XT p + O X (@O, X ,p) .

Since point A is fixed, vo,=a,=0. From the right-hand-rule
convention, ®, =K08, @&, =K06. From figure 4.25, ryg =1, (|
cosO + J sinO ). Substituting, we obtain

v,=0+K0x[ (Icos® +JsinB)

a,=0+K08, %I (Icos® +JsinB)
+ K0x [Ké><l1 (IcosB +JsinB)].

Carrying out the cross products and algebra gives:

vp=1,0(-1Isin® +JcosB)
) . (4.32)
ap=1,06(-Isn®+JcosB) -/, Gz(IcosG +JsinB) .

The results in Eqgs.(4.32) are given in terms of | and J unit
vectors, versus | and | for Eq.(4.31).
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Figure 4.27 Velocity and acceleration definitions for the
velocity point B in the X, Y system.

From figure 4.27:

Vg :S(i)(ISin(p +JCcoso) +S( ~Icos@ +Jsing)
“B:(S('I')—S(i)z)(lsin(p +JcosQ) (4.33)

+(S+2850)(-Icoso +Jsino)
Equating these definition with the result from Eqs.(4.32) gives:
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I: —Zlésin6=—Scosq)—S(bsin(p
J : llécose=Ssin(p+S(bCOS(p ,
and
I : —llésin9—11920039=—(§—S(b2) cos@ +(Sp +2S0)sing
J : llécos()—l1 ézsin6=(§—S(i>2)sin(p +(SP+280)coso ,
which repeats our earlier results.

Solution for the Velocity and Acceleration of Point D

The simplest approach ( given that we now know @,¢, and @) is
the direct vector formulation. Applying Egs.(4.3) to points A and
B gives:

V=V, T O XT p

Ap=Q,+ DX, p+ O, X (O, X7 ,p) .

We have already worked through these equations, obtaining
solutions for Vg and ag in Eqgs.(4.32). We can also apply
Eqgs.(4.3) to points B and D, since they are points on a rigid body
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(unlike point C ), obtaining:

Vp = Vg T, Xy,

Ap=Qg+ @, XFp, + 0, X (0, XFp,) .

Substituting from Eq.(4.34) for vg and ag plus @, =-K 0,
®,=-K¢,and rg, =1,(Icos ¢ - Jsing)into these equation
gives:

vD=llé(—IsinG +JcosG)—K(bXIz(ICOS(p—Jsin(p)
a,=108(-Isin®+JcosB) -1, 0> (Icos® +Jsinb)
—K(I)Xlz(lcoscp ~JsinQ) —K(bX[—K(bXZZ(ICOS(p ~-Jsing)] .
Carrying out the cross products and gathering terms yields:
v,=-I(1,08sin®+1 ¢sing) +J(I,6co8-1,¢cosp)
ay=1I( —llésinG -1 §° cos® —lzi[}sin(p —lz(i)ZCOS(p)

+J(llécos9 -1 §°sin® —lzibcoscp +12(i)zsin(p) :

These are general equations for Vp and &, . Substituting 0=m
and 0 =0 completes the present effort, with ¢@,¢ , and ¢defined,
respectively, by Egs.(4.28), (4.29), and (4.30).
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Lesson: The “best” method for finding the velocity and
acceleration of a specific point 1s frequently not the “best”
method for finding kinematic relationships.
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(b)
0.416 fi

S B
0.546 ft
C|
875 ft
20 ft
0.3 f1

Example Problem 4.6 Figure XP4.6a provides a top view of a
power-gate actuator. An electric motor drives a lead screw
mounted in the arm connecting points C and D. Lengthening
arm CD closes the gate; shortening it opens the gate. During
closing action, arm CD extends from a length of 3.3 ft to 4.3 ft
in about 17 seconds to proceed from a fully open to fully closed
positions. The gate reaches its steady extension rate quickly at
the outset and decelerates rapidly when the gate nears the closed
position.
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Tasks:
a. Draw the gate actuator in a general position and derive
governing equations that define the orientations of bars CD
and BC as a function of the length of arm CD.

b. Assume that arm CD extends at a constant rate (gate is
closing) and determine a relationship for the angular
velocities of arms CD and BE.

c. Continuing to assume that bar CD extends at a constant
rate, determine a relationship for the angular accelerations of

arms CD and BE.

Solution From figure XP4.6b:

horizontal :
S'sin@ =.416 +3.886 sing ; 3.886=1/3.8752 +.32

vertical :
S cosB =3.886 cosp-.546

(1)

S is the input and 6, are the unknown output variables.
Differentiating Eq.(1) with respect to time gives:

S sin® +S cos80 =4.92 coso o , S cosd - Ssinf0=-4.92 sinp ¢
(i1)
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Rearranging Eq.(11) and putting them in matrix format gives
4.92 cos -ScosB [ . | sinB
® (P =S : (iii)
9 cosB
Differentiating Eq.(11) gives:

-4.92sinp SsinB
S sind +2.56 cos 0 +S cosdf - S sin 6’
=3.886 cosQ ¢ - 3.886 coscp(p2

S cos® -2.50 sin® - Ssin8 - S cos§6”
- ~3.886 sing ¢-3.886 cos 0@

Rearranging the equations gives:

3.886 cos@ @ +S cosH
=§sind +256 cosO - S sinO8°+3.886 coscp(i)2 =81

-3.886 sing ¢ +Ssin6 0
=$ cos® -250sin6 - S cos06” +3.886 coscp(i)2 =g,

(iv)
. g
AR
3 &>

In matrix format, Eq.(1v) becomes

3.886¢cosp -ScosH
3.886sing Ssin6
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Figure XP4.6c¢ illustrates the solution for 8,9, 8,¢, and 8,¢
versus S.
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Figure XP4.6¢ Angular positions,
velocity, and accelerations versus S
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