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(4.25)

Lecture 21. MORE PLANAR KINEMATIC EXAMPLES

4.5c  Another Slider-Crank Mechanism

Figure 4.24 Alternative
slider-crank
mechanism.

Engineering-analysis task:  For = ω = constant, determine φ
and S and their first and second derivatives for one cycle of θ.  

Geometric Approach.  From figure 4.22:

Reordering these equations to
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(4.27a)

(4.28a)

(4.27b)

(4.27c)

emphasizes that θ is the input coordinate, with φ and S the output
coordinates.  These equations are nonlinear but can be solved for
φ and S in terms of  θ, via

and

Differentiating Eqs.(4.25) nets:

or
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(4.28b)

(4.29)

(4.30a)

(4.30b)

Differentiating Eq.(4.28a) w.r.t. time nets:

Substituting , ,and rearranging gives:

The matrix equation for the unknown  and  is 



77

The engineering-analysis task is accomplished by executing the
following sequential steps:

1.  Vary θ over the range [ 0, 2π ], yielding discrete values θi

.

2.  For each θi value, solve Eq.(4.25) to determine
corresponding values for φi and Si.

3.  Enter Eqs.(4.28) with known values for  θi ,  φi and Si. to
determine  and .

4   Enter Eqs.(4.30) with known values for θi ,  φi , Si ,  and
 to determine  and .

5.  Plot ,  ,  and  versus θi  .
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Figure 4.24 Alternate
version of the mechanism
in figure 4.22 with S as the
input.

For S as the input, Eqs.(4.28a) are reordered as: 

to define  and .   Rearranging Eqs.(4.29) defines  and
via:
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(4.1)

The basic geometry of figures 4.22 and 4.24 tends to show up
regularly in planar mechanisms.

Vector, Two-Coordinate-System Approach for Velocity and
Acceleration Relationships
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Figure 4.26 
Two-coordinate arrangement for rod BD of the slider-crank
mechanism in figure 4.22.

The vector ω is defined as the angular velocity of the x, y system
relative to the X,Y system.  From figure 4.26 , using the right-
hand-screw convention, 

Given that  , we obtain by direct differentiation

From figure 4.26, 
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(4.31)

Differentiating this vector holding  j constant gives 

Differentiating again gives

Substituting these results into the definitions provided by
Eqs.(4.1) gives:

Carrying through the cross products and completing the algebra
nets:

By comparison to figure 4.25, the unit vectors i and  j of the x,y
system coincide with the unit vectors εφ  and  εr2    used in the
polar-coordinate solution for vB and aB .

Returning to figure 4.25, we can apply Eq.(4.3) to state the
velocities and accelerations of points A and B as:



82

(4.32)

Since point A is fixed, vA = aA = 0.   From the right-hand-rule
convention, , .  From figure 4.25, rAB = l1 ( I
cosθ + J sinθ ).  Substituting, we obtain

Carrying out the cross products and algebra gives:

The results in Eqs.(4.32) are given in terms of  I and J unit
vectors, versus i and j  for Eq.(4.31).  
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(4.33)

Figure 4.27  Velocity and acceleration definitions for the
velocity  point B in the x, y system.

From figure 4.27:

Equating these definition with the result from Eqs.(4.32) gives:



84

and

which repeats our earlier results.

Solution for the Velocity and Acceleration of Point D

The simplest approach ( given that we now know and ) is
the direct vector formulation.  Applying Eqs.(4.3) to points A and
B gives:

We have already worked through these equations, obtaining
solutions for vB and aB in Eqs.(4.32).  We can also apply
Eqs.(4.3) to points B and D, since they are points on a rigid body



85

(unlike point C ), obtaining:

Substituting from Eq.(4.34) for vB and aB plus  ,
, and into these equation

gives:

Carrying out the cross products and gathering terms yields:

These are general equations for vD and aD .  Substituting 
and  completes the present effort, with , and defined,
respectively, by Eqs.(4.28), (4.29), and (4.30).



86

Lesson: The “best” method for finding the velocity and
acceleration of a specific point is frequently not the “best”
method for finding kinematic relationships.
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Example Problem 4.6  Figure XP4.6a provides a top view of a
power-gate actuator.  An electric motor drives a lead screw
mounted in the arm connecting points C and D.  Lengthening
arm CD closes the gate; shortening it opens the gate. During
closing action, arm CD extends from a length of 3.3 ft to 4.3 ft   
in about 17 seconds to proceed from a fully open to fully closed
positions.  The gate reaches its steady extension rate quickly at
the outset and decelerates rapidly when the gate nears the closed
position.
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Tasks: 
a. Draw the gate actuator in a general position and derive
governing equations that define the orientations of bars CD
and BC as a function of the length of arm CD.

b. Assume that arm CD extends at a constant rate (gate is
closing) and determine a relationship for the angular
velocities of arms CD and BE. 

c.  Continuing to assume that bar CD extends at a constant
rate, determine a relationship for the angular accelerations of
arms CD and BE. 

Solution From figure XP4.6b:

S is the input and  are the unknown output variables.  
Differentiating Eq.(i) with respect to time gives:

(i)

(ii)
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(iii)

(v)

Rearranging Eq.(ii) and putting them in matrix format gives

 Differentiating Eq.(ii) gives:

Rearranging the equations gives:

In matrix format, Eq.(iv) becomes

(iv)
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Figure XP4.6c illustrates the solution for , , and  
versus S. 

Figure XP4.6c Angular positions,
velocity, and accelerations versus S


