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Lecture 28.  MORE COMPOUND-PENDULUM
EXAMPLES

Spring-Connection Vibration Examples

Nonlinear-Linear Spring relationships

We considered linearization of the pendulum equation earlier in
this section.  Linearization of connecting spring and damper
forces for small motion of a pendulum is the subject of this
lecture.

Figure 5.18 Compound pendulum with spring attachment to
ground. (a) At rest in equilibrium, (b) General position, (c)
Small-angle free-body diagram
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(5.56)

(5.57)

The spring has length  and  is undeflected at .  The
following engineering-analysis tasks apply:

a.  Draw free-body diagrams and derive the EOM

b.  For small θ develop the linearized EOM.

Figure 5.18B provides the free-body diagram illustrating the
stretched spring.  The deflected spring length is

Hence, the spring force is 

and it acts at the angle β from the horizontal defined by
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(5.58)

       The pendulum equation of motion is obtained by a moment
equation about the pivot point, yielding

Substituting for  ( plus a considerable amount of
algebra) yields  

This is a “geometric” nonlinearity.  The spring is linear, but the
finite θ rotation causes a  nonlinearity.  

For small θ, expanding  with  defined by
Eq.(5.56) in a Taylor’s series expansion gives .  Also, for
small θ, a Taylor series expansion gives ;
hence, for small θ,  the spring force acts
perpendicular to the pendulum axis.  For small θ, the moment
equation reduces to
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(5.59)

For small θ, the spring deflection is , the spring force,
, acts perpendicular to the pendulum, and the

moment of the spring force about o is .   Also, note that the
spring force is independent of its initial spring length.  Figure
5.18c provides the small-angle free body diagram  From
Eq.(5.59), the natural frequency is 

showing (as expected) an increase in the pendulum natural
frequency  due to the spring’s stiffness.
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Figure 5.19  Compound pendulum.  (a) At rest in
equilibrium, (b) General-position free-body diagram, (c)
Small rotation free-body diagram 

Nonlinear-Linear Damper forces

For  large θ  the damper reaction force, , acts at the
angle β from the horizontal.  From Eq.(5.56),

For small θ, , and the damping force acts perpendicular to
the pendulum axis and reduces to , where  is the
pendulum’s circumferential velocity  at the attachment point. 
Figure 5.19c provides a “small θ ” free-body diagram, yielding
the following equation of motion,
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with  defined in Appendix C.  The natural frequency
and damping factor are:

As with the spring, for small θ the damping force  is
independent of the initial damper length.  
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Figure XP5.3a shows a pendulum with mass  and length
  supported by a pivot point located  from the

pendulum’s end.  Two linear spring with stiffness coefficient
 are attached to the pendulum a distance  down

from the pivot point, and a linear damper with damping
coefficient  is attached to the pendulum’s end.  The
spring is undeflected when the pendulum is vertical.  The
following engineering analysis tasks apply to this system: 

Figure XP5.3 (a) Pendulum attached to
ground by two linear springs and a viscous
damper, (b) Coordinate and free-body
diagram
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a.  Draw a free-body diagram and derive the differential
equation of motion.

b.  Determine the natural frequency and damping factor.

A “small θ” free-body diagram is given in figure 5.22B. 

Taking moments about the pivot point gives

From Appendix C and the parallel-axis formula,
 .  For , the linearized
EOM is 

The natural frequency and damping factor are:
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EOM from Energy, neglecting damping

Select datum through pivot point; hence, .

Differentiating w.r.t. θ gives

, and for small θ, 



84

Spring Supported Bar — Preload and Equilibrium

Bar of mass m and length l in equilibrium at  with linear
springs having stiffness coefficients  counteracting the
weight w.  The springs act at a distance 2l / 3 from the pivot
support point and have been preloaded (stretched or compressed)
to maintain the bar in its equilibrium position.  

Draw a free-body diagram, derive the EOM, and determine the
natural frequency.

Figure 5.20 Uniform bar, (a) In equilibrium at the angle ,
(b) Equilibrium free-body diagram, (c) Displaced position
free-body diagram
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(5.84)

Equilibrium Conditions.  Taking moments about O in Figure
5.20b  gives

Non-equilibrium reaction forces. 

Figure 5.20c provides a free-body diagram for a general
displaced position defined by the rotation angle .  For
small  the spring-support point moves the perpendicular
distance .  Hence, the stretch of the upper spring
decreases from  δ1 to , and the compression of the
lower spring decreases from  δ2  to .  The spring
reaction forces are:
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(5.85)

Moment Equation  about O 

after dropping second-order terms in . Rearranging provides
the EOM ,

The right-hand side of Eq.(5.85) is zero from the equilibrium
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(5.87)

(5.86)

result of Eq.(5.84).  If the bar is in equilibrium in a vertical
position , the weight contribution to the EOM
reverts to the compound pendulum results of Eq.(3.60).   For a
horizontal equilibrium position, , and the
weight term is eliminated.  The natural frequency is 

Alternative Equilibrium Condition In figure 5.21a, the lower
spring is also assumed to be in tension with a static stretch  δ2 ,
developing the tension force  at equilibrium.  Taking
moments about O gives the static equilibrium  requirement

The  rotation increases the stretch in the lower spring from  δ2 
to , decreases the stretch in the upper spring from

 to , and the reaction forces are:
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Figure 5.21 Uniform bar: (a) Alternative static
equilibrium free-body diagram, (b) Displaced-
position free-body diagram

From figure 5.21b, 
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(5.88)

and the EOM  is (again)

The right-hand side is zero from the equilibrium requirement of
Eq.(5.87), and Eq.(5.88) repeats the EOM of  Eq.(5.85).  
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The lesson from this second development is: For small
motion about equilibrium, the same EOM is obtained
irrespective of the initial equilibrium forces in the (linear)
springs.  The spring-force contributions to the differential
equation arise from the change in the equilibrium forces due to a
change in position.  This is the same basic outcome that  we
obtained for a mass m supported by linear springs in figure 3.7. 
The change in equilibrium angle  changes w’s contribution to
the EOM , because , the moment due to w,  is a
nonlinear function of  θ.
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(5.24)

(5.26)

Prescribed acceleration of a Pivot Support Point
 Moment equations for the fixed-axis rotation problems of

the preceding section were taken about a fixed pivot point,
employing the moment equation

where o identifies the axis of rotation.    The problems involved
in this short section concerns situations where the pivot point is
accelerating, and the general moment equation,

is required.  In applying Eq.(5.24), recall the following points:
a.  Moments are being taken about the body-fixed axis o ,
and Io is the moment of inertia through axis o .

b. The vector bog goes from a  z axis through o to a z axis
through the mass center at g.

c. The positive rotation and moment sense in Eq.(5.24)
correspond to a counter clockwise rotation for θ.  

The last term in the moment equation is positive because the
positive right-hand-rule convention for the cross-product in this
term coincides with the +θ sense.  For a rigid body with a
positive clockwise rotation angle this last term requires a
negative sign.
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Figure 5.24   (a). An accelerating pickup truck with a loose tail
gate.  (b). Free-body diagram for the tail gate.

The pickup has a constant acceleration of g /3.  Neglecting
friction at the pivot and assuming that the tailgate can be
modeled as a uniform plate of mass m, carry out the following
engineering tasks:

a. Derive the governing equation of motion.

b. Assuming that the tailgate starts from rest at θ = 0, what
will  be at ?

c. Determine the reactions at pivot point o as a function of  θ
(only).

In applying Eq.(5.24) for  moments about axis  o, we can observe
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(5.61)

(5.62)

Hence, Eq.(5.24) gives

We have now completed Task a. We can use the energy-integral
substitution to integrate this nonlinear equation of motion as 

Multiplying by dθ reduces both sides of this equation to exact
differentials. Integrating both sides with the initial condition

 gives
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(5.63)

(5.64)

Hence, at θ = π / 2 , and we have completed
Task b.  We used the energy-integral substitution,  but note that
the tail gate’s mechanical energy energy is not conserved. The
truck’s acceleration is adding energy to the tail gate. 

Moving on to Task c, stating   for the mass center
gives:

We need to determine  in these equations.  From figure
5.19B,

Differentiating twice with respect to time gives:
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(5.65)

Substituting into Eqs.(5.64) gives:

where   has been replaced with , the pick-up truck’s
acceleration.  Substituting from Eqs.(5.62) and (5.63) for  and

, respectively, (and some algebra) gives:

and completes Task c. 
The decision to use the general moment Eq.(5.24) and sum

moments about the pivot point o instead of the mass center g
saves a great deal of effort in arriving at the differential equation
of motion.  To confirm this statement, consider the following
moment equation about g 
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Substituting from Eq.(5.65) for  gives

Gathering like terms gives

Simplifying these equations gives Eq.(5.62) ,the original
differential equation of motion.

The lesson from this short section is: In problems where a
pivot support point has a prescribed acceleration, stating the
moment equation (correctly) about the pivot point will lead to
the governing equation of motion much more quickly and easily
than taking moments about the mass center. 

Note: Energy is not conserved with base acceleration! 


