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Lecture 32.  TORSION EXAMPLES  HAVING MORE THAN
ONE DEGREE OF FREEDOM

Torsional Vibration Examples
We worked through a one-degree-of-freedom, torsional-

vibration example in section 5.4, starting with the model of
figure 5.10.  Figure 5.35 illustrates a two-degree-of-freedom
extension to this example.  The upper disk has mass m1 , radius
R1 , and  is connected to “ground” by a circular shaft of radius

 length L1 , and shear modulus G1 .  The lower disk has mass
m2, radius R2 , and  is connected to disk 1 by a circular shaft of
radius , length L2 , and shear modulus G2 .  The rotation
angles  and define the orientations of the two disks.  The
shafts have zero elastic deflections and moments when these
angles are zero.  

Figure 5.40 (a) Two-disk, torsional
vibration example, (b) coordinates
and free-body diagram for 
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(5.144)

(5.145)

As with the example of figure 5.10, twisting the upper disk
through the angle   will develop the reaction moment,

acting on top of the upper disk.  The negative sign in this
equation implies that the moment is acting in a direction
opposite to a positive  rotation direction.  The reaction
moment acting on the bottom of disk 1 and the top of disk 2 is
proportional to the difference between the rotation angles  
and .  Assuming that   is greater than , the reaction
moment acting on disk 1 from the lower shaft is

The positive sign for the moment implies that it is acting in the
+  direction, i.e., acting to rotate disk 1 in a positive  +
direction.  The negative of this moment acts on the top of disk 2. 
In addition, assume that the applied moments M1 ( t ) and M2 ( t )
are acting, respectively, on disks 1 and 2.  Individually summing
moments about the axis of symmetry for the two bodies
including these external moments yields:
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(5.147)

(5.146)

The matrix statement of these equations is

The inertia matrix is diagonal, and the stiffness matrices is
symmetric. 
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(5.152)

(5.151)

Figure 5.36
Unrestrained, two-disk
torsional-vibration
example.

The governing differential equations for the model of figure
5.36 are obtained from Eqs.(5.147) by setting  the upper
stiffness equal  to zero.   Eq.(5.147) becomes

Substituting the assumed solution,  
into the homogeneous version of Eq.(5.151) nets

The characteristic equation is obtained by setting the
determinant equal to zero and is:
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(5.150)

For the numbers in Eq.(5.150), 

the eigenvalues are , and the
natural frequencies are . 
Substituting  into Eq.(5.152), gives

The determinant of the coefficient matrix is clearly zero, and the
first eigenvector can be defined from either scalar equation by
setting , obtaining , and the first eigenvector

 is

The second mode is obtained by substituting the second 



153

eigenvalue into Eq.(5.152), (plus substituting for and 
from Eq.(5.150)) obtaining

Again, the determinant of the coefficient matrix is zero, and the
second eigenvector is

The matrix of eigenvectors is

The first step in obtaining the modal differential equations is
taken by introducing the modal coordinates, via the coordinate
transformation, ,

Substituting   into Eq.(5.151) and then
premultiplying by the transpose matrix gives the
uncoupled modal differential equations:
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Observe that the first modal coordinate  (with the zero
eigenvalue and natural frequency) defines rigid-body rotation of
the rotor with zero relative rotation between and .  The
second modal coordinate   defines relative motion with the
two disks moving in opposite directions.

The complete model is
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(5.153)

Figure 5.37 (a). Two, two-disk rotors in frictionless bearings
with coupled motion.  (b). Kinematic constraint between disks 2
and .  (c). Reaction-force components between disks  2 and

.
Figure 5.37 shows two rotors, each with two disks

connected by a shaft.  The rotations of disks 1 and 2 on rotor 1
are defined by the counter clockwise rotations .  The
rotations of disks   and 3  of rotor 2 are defined by the
clockwise rotations .  The radii of disks 2 and   are,
respectively, .  The two disks are “geared” together with
no relative slipping between their edges; hence, their rotation
variables are related by the kinematic constraint equations:

Figure 5.37C illustrates the reaction force acting between
disks 2 and .   Stating the equations of motion for the disks of
the two rotors gives:

Rotor 1 ( + counter clockwise rotations and moments)
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(5.154a)

(5.154b)

Rotor 2 (+ clockwise rotations and moments)

Eqs.(5.153) and (5.154) comprise five equations in the five
unknowns . Equating  in the second of
Eqs.(5.154a) and the first of Eqs.(5.154b) eliminates this
variable.  Also, Eq.(5.153) can be used to eliminate

yielding the following three coupled differential
equations:

These equations define a three-degree-of-freedom problem with
the matrix statement
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(5.155)

Because neither of the component rotors are connected to
ground, one of the eigenvalues is zero, and the remaining two
roots  (and their associated eigenvectors) can be determined
analytically.  
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Lecture 33.  BEAMS AS SPRINGS VIBRATION EXAMPLES

Unlike linear extension/compression springs that deliver a
reaction force opposing the direction of displacement, or
torsional springs that produces a reaction torque to oppose
twisting, deflecting or rotating the end of a beam normally
produce both a reaction moment and a reaction force.  The
coupling of displacements and rotations and reaction forces and
moments can be confusing, and we will start with a simple
example of a cantilevered beam with an attached weight. 
Displacement of the beam’s end creates a reaction force but no
reaction moment.

Figure 5.38 Lumped-parameter rotor
model including two disks.
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Example A.  Cantilever Beam supporting a disk that does not
rotate.  Zero moments about the right end.  The bar has mass m. 
The beam has length l and section modulus EI.  

If it is pulled down and then released (the cable remains in
tension), what is the natural frequency of free motion for the
disk? 

Figure XP 5.2b
Cantilever beam
with the disk
hanging from its
end.

From strength of materials, a beam with a zero moment at its free
end and a lateral load  f  will deflect a distance δ.  δ and f are
related by 

In this equation,  defines the displacement

“flexibility coefficient” for the beam’s end.  We want the
displacement stiffness coefficient (for zero moment at the beam’s
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end)

For motion about the equilibrium position, the free-body diagram
for the disk (massless beam) is shown below. ( δ remains small
enough that the cord remains in tension.)

     Free-body diagram.

From the free-body diagram, the equation of motion is,

and the natural frequency is
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Suppose the beam has length  and a circular cross
section with diameter .  It is made from steel with

modulus of elasticity .  The disk has 
radius , thickness  and is also made from

steel (density ).  As a first step, the bending
section modulus is

The mass is

Substituting, the natural frequency is
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where the dimensions of a kg are .

Figure 5.39a represents the more general situation with a disk
rigidly attached to the end of a cantilevered beam.  If the disk is
displaced from its equilibrium position, the disk will rotate in the
Y-Z plane through the angle  Because of the disk’s moment of

inertia, a moment will now result at the beam’s end due to disk
rotation.  Figure 5.39b provides the free-body diagram for the
displaced and rotated disk, including the applied force and
moment pair  and reaction force and moment pair 

.  

Figure 5.39 

Cantilevered beam
supporting a thin circular
disk at its right end.  

Free-body diagram for the
disk.

The equations of motion are easily stated from figure 5.39b . 
Applying and , the disk’s equations of

motion are:
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(5.156)

(5.157a)

Defining the reaction force  and moment  in terms of the

displacement and rotation coordinates  is the principal

difficulty in completing these equations. 

Figure 5.40 (a). Cantilevered
beam with an applied end force. 
(b).  Applied moment

Figure 5.40a illustrates the beam with a concentrated load 
applied at its end, yielding (from strength of materials) the
displacement and rotation.  

We used the displacement result in the first example.  Similarly,
figure 5.40b illustrates a moment M  applied  to the beam’s end,
yielding
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Combining these results as  and 

gives

In matrix format, these equations are

This coefficient matrix is a “flexibility” matrix .  An 

flexibility-matrix entry  is the displacement (or rotation) at point
i due to a unit load (or moment) at point j .  Multiplying through
by gives
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(5.158)

(5.159)

(5.160)

This coefficient matrix is the stiffness matrix .  The
form of this equation tends to be confusing if we think of it as
defining the applied loads  as the output due to input
displacements and rotations .  However, the following

statement makes sense when defining the reaction force and
moment of figure 5.39b due to displacements and rotations

Substituting this result into Eqs.(5.156) gives the matrix equation
of motion,

or
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(5.160)

An entry  for the stiffness matrix is the negative reaction force

(or moment) at point i due to a displacement (or rotation) at
station j , with all other displacements and rotations equal to
zero. 

Example Problem 5.1  The cantilevered beam of figure 5.39 has
length , a circular cross section with diameter

.  It  is made from steel with modulus of elasticity

.  The disk has  radius ,
thickness  and is also made from steel (density =

).  The following engineering-analysis tasks
apply:

a.  Determine the inertia and stiffness matrices and  state the
matrix equation of motion.
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b.  Determine the eigenvalues, natural frequencies, and
eigenvectors.

Solution.  As a first step, the bending section modulus is

Continuing, the stiffness coefficients are:

The inertia-matrix entries are:
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(i)

(ii)

Substituting these results into Eq.(5.160) defines the model as

Substituting the solution  into the

homogeneous version of Eq.(i) nets

The characteristic equation is

The eigenvalues and natural frequencies defined by the roots of
this equation are:
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(iii)

(iv)

The first natural frequency  is slightly lower than

the initial example result 

Substituting  and  into Eq.(ii), the corresponding

eigenvectors are:

As illustrated in figure XP 5.1a, the displacement and rotation
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(5.160)

are in phase for the first mode and out of phase for the second.
Figure XP 5.2a Calculated mode shapes of Eq.(iv); not to scale.

Figure XP 5.2c Cantilever beam with the end disk forced to
move up and down but prevented from rotating. .

The disk in Figure XP 5.2c is constrained by rollers that prevent
rotation.  For , the example has only one degree of freedom

, and Eq.(5.160) 

gives:
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The first equation is the equation of motion for .  The second

equation defines the reaction moment that the constraint rollers
must provide to keep the disk from rotating.  The natural
frequency is defined by

The moment restraint on the disk has doubled the lowest natural
frequency. 

Note that we have determined the displacement stiffness for a
cantilever beam whose end is deflected with zero rotation to be 
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Example Problem 5.5.  The framed structure has two square
floors.  The first floor has mass  and is supported to

the foundation by four solid columns with square cross sections. 
These columns are cantilevered from the foundation and are
welded to the bottom of the first floor. The second  floor has
mass  and is supported from the first floor by four

solid columns with square cross sections.  These columns are
welded to the top of the first floor and are hinged to the  second
floor.  The bottom and top columns have length  and

.  The top and bottom beams’ cross-sectional dimensions

are   and .  They are made from steel with

a modulus of elasticity .  A model is required
to account for motion of the foundation due to earthquake
excitation defined by .

Tasks: 
a.  Select coordinates, draw a free-body diagram, derive the

equations of motion.

b.  State the equations of motion in matrix format and solve
for the eigenvalues and eigenvectors.  Draw the
eigenvectors.
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Figure XP5.5 (a) Front view of a two-story
framed structure excited by base excitation,
(b) Coordinates, (c) Free-body diagram for

, (d) Eigenvectors
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Solution.  Figure XP5.5 b illustrates the coordinates 

selected to locate the first and second floors with respect to
ground.  All beams connecting the foundation and the first floor
are cantilevered at both ends, similar to the beam in figure 5.47
with a stiffness .  The free-body diagram of figure

XP5.5c was drawn assuming that the first floor has moved
further than the ground  and defines the reaction force

due to all four cantilevered beams acting at the bottom of floor 1. 

Each beam connecting the floors has a cantilevered end
attached to floor 1 and a pinned end attached to floor 2, similar to
the pinned-end beam of figure 5.44, with a stiffness coefficient

.  The free-body diagram in figure XP5.5c was

developed assuming that the second floor has moved further than
the first floor  and provides 

The negative of this force is acting at the top of floor 1. 
Summing forces for the two floors gives:
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(i)

Putting these equations in matrix form gives

This outcome is similar to Eq.(3.126) for two masses connected
by springs.

Filling in the numbers gives:
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(iii)

(ii)

Continuing, the stiffness coefficients are:

Plugging these results into Eq.(i) gives

Substituting the assumed solution  into

the homogeneous version of this equation gives

Since, , and and are also not zero, a nontrivial

solution, for Eq.(ii) requires that the determinant of the
coefficient matrix must equal zero, producing
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This characteristic equation defines the two eigenvalues and
natural frequencies:

Alternately substituting  and

 into Eq.(iii) gives the eigenvectors

Figure XP5.5d illustrates these two eigenvectors, showing the
relative motion of the two floors somewhat better that the two-
mass eigenvectors of figure 3.53.
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Lecture 34.  2DOF EXAMPLES

Example 1

The cylinders roll without slipping.  Select coordinates, draw
free-body diagrams, and derive the equations of motion.

 

Coordinates and free-body diagram for  

k1 
k2 

k3 A 

m, R

B 

m, R 
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Equations of motion, cylinder 1

Equations of motion cylinder 2

Four equations, 6 unknowns 

Rolling-without slipping kinematic constraints:

Eliminate  in (1), and  in (2)

(2)

(3)

(3)
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Use (3) to eliminate , and rearrange

For  and  the matrix form is
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Alternative development: Take moments about C  the point
of contact

General moment equation for clockwise moments

However,

Hence,
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Similarly for cylinder 2

Matrix Format

This is the same equation
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Example 2

Assume small rotations, select coordinates, draw free-body
diagrams, and derive the equations of motion.  Gravity is
vertically down, and the body is in equilibrium.

d1 

D1 

kA 

L1 L2

D2

kB

d2 

D3 D3 

P 

 
Y
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Coordinates:  is the vertical mass-center displacement from

equilibrium. θ is the rotation angle for the body from the
horizontal.

Free-body diagram for motion about equilibrium

Equations of motion:
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Small-angle kinematics:

Substituting,

Gathering terms,

Matrix Format

A good deal of effort is required on the homework problem to
get  and .
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Lagrange’s Equations

Example 1 

Coordinates

Kinetic Energy

Potential Energy

k1 
k2 

k3 A 

m, R 

B 

m, R
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Lagrangian

EOM  

Result from 

Example 2
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Kinematics: 

Proceeding
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EOMs from 
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Lecture 35.  More 2DOF EXAMPLES
A Translating Mass with an Attached Compound Pendulum

Figure 5.53 Translating cart of mass M
supported by frictionless rollers and
supporting a compound pendulum of
length l and mass m . (a) Equilibrium
position, (b) General position  (c) Cart
free-body diagram, (d)  Pendulum free-
body diagram.
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(5.201)

(5.202)

Cart EOM

Pendulum Moment Equation

Moment about g:              

will draw the unknown and unwanted reaction components
 into the moment equation.  

Moment about o using      

is quicker.  An inspection of the pendulum in figure 5.53c gives:

Hence, stating the moment equation about the pivot point o
gives
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(5.203)

where  We now have two equations (the first of
Eq.(5.201) and Eq.(5.202)) for the three unknowns: .  

The X component of the  equation of the pendulum
gives the last required EOM as 

However, this equation introduces the new unknown , which
can be eliminated, starting from the geometric relationship

Differentiating this equation twice with respect to time gives

Substituting for   into Eq.(5.203) gives

Now, substituting this  definition into the first of Eq.(5.201)
gives
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(5.204)

(5.205)

Eqs.(5.202) and (5.204) comprise the two governing equations
in .  Their matrix statement is:

We have now completed Task a. 
Assuming “small” motion for this system means that second

order terms in X and θ  are dropped.  Introducing the small angle
approximations ; , and dropping second order
and higher terms in θ and  yields:
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(5.206)

which concludes Task b.  
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APPLYING LAGRANGE’S EQUATION OF MOTION TO
EXAMPLES WITH GENERALIZED COORDINATES (NO
KINEMATIC CONSTRAINTS).

Coupled Cart/Pendulum

Figure 6.3 Translating cart with
an attached pendulum (no external
force)

This system has the two coordinates  X ,θ and two degrees of
freedom.  Hence, the two coordinates  X ,θ are the generalized
coordinates , and their derivatives   are the generalized
velocities of Lagrange’s equations.  The following
engineering task applies: Use Lagrange’s equations to derive
the equations of motion.
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(5.183)

The kinetic energy of the cart is easily calculated as
.  

The kinetic energy of the pendulum follows from the general
kinetic energy for planar motion of a rigid body 

where is the velocity of the body’s mass center with respect
to an inertial coordinate system.  The pendulum’s mass center is
located by

Hence

and

Hence, the system kinetic energy is
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  Using a plane through the pivot point as datum for the
gravity potential energy function gives .  The
potential energy of the spring is ; hence, the system
potential energy is

and 

Proceeding with the Lagrange equations developments, the
partial derivatives with respect to generalized velocities are:

and the derivatives of these terms with respect to time are:
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(6.29)

Once again, note the last terms in these derivatives. 
 The partial   derivatives of L with respect to the generalized

coordinates are

By substitution, the governing equations of motion are:

The right-hand terms are zero, because there are no
nonconservative forces.  Eqs.(6.29) are stated in matrix notation
as
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(6.30)

which coincides with Eq.(5.160) ( without the external force of
figure 5.38) that we derived earlier from a free-body
diagram/Newtonian approach.  Again, the results are obtained
without recourse to free-body diagrams, and only velocities are
required for the kinematics.
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A Swinging Bar Supported at its End by a Cord
Figure 5.54a shows a swinging bar AB, supported by a cord

connecting end A to the support point O  The cord has length l1 ;
the bar has length l2 and mass m.  This system has the two
degrees of freedom φ and θ.  The engineering tasks for this
system is:  Derive the governing differential equations of
motion.

Figure 5.54 Swinging bar supported at its end by a cord. (a)
Equilibrium, (b) Coordinate choices, (c) Free-body diagram

From , the force component equations are:
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(5.163)

The acceleration components can be obtained by stating the
components of Rg as:

Differentiating these equations twice with respect to time gives

Substitution gives 
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(5.165)

(5.164)

Eliminate Tc  from these equations by: (i) multiply the first by
, (ii) multiply the second by , and (iii) add the

results to obtain

This is the first of our required differential equations.
One could reasonably state a moment equation about either

g , the mass center, or the end A.  Stating the moment about A
has the advantage of eliminating the reaction force , and we
will use the following version of the moment Eq.(5.24)
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(5.166b)

(5.166a)

The moment due to the weight is negative because it acts
opposite to the positive counterclockwise direction of θ.   The
vector  goes from A  to g and is defined by 

To complete Eq.(5.165), we need to define .  The cord length
is constant; hence, the radial acceleration component consists of
the centrifugal-acceleration term .  Similarly, the
circumferential acceleration term reduces to .  Resolving
these terms into their components along the X and Y axes gives

Figure 5.55  Polar kinematics
for the cord to determine .
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(5.167)

Eqs.(5.166) give

Substituting this result into Eq.(5.165) gives

This is the desired moment equation for the bar and is the second
and last equation of motion with . Eqs.(5.164) and
(5.167) can be combined into the following matrix equation. 
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The inertia-coupling matrix can be made symmetric by
multiplying the top row by l1 .  Eliminating second-order terms
in θ and φ in this equation gives the linear vibration equations


