33rd Turbomachinery Research Consortium Meeting

Predictions vs. Test Results for Leakage and Force Coefficients of a Fully Partitioned Pocket Damper Seal and a Labyrinth Seal -**Limitations of the Current Computational** Model

TRC-SEAL-02-2013

May 2013

Luis San Andrés

Weilian Shan

Mast-Childs Professor

Graduate Research Assistant

TRC Project 32514/15196PD Year

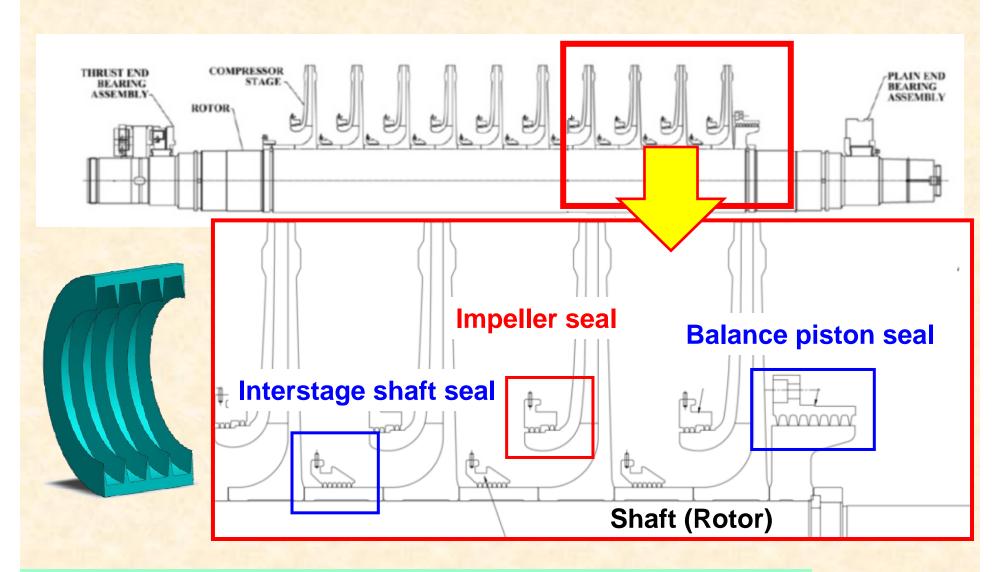
Analyses of Pocket Damper Seals and Combined Labyrinth-Brush Seals

Justification

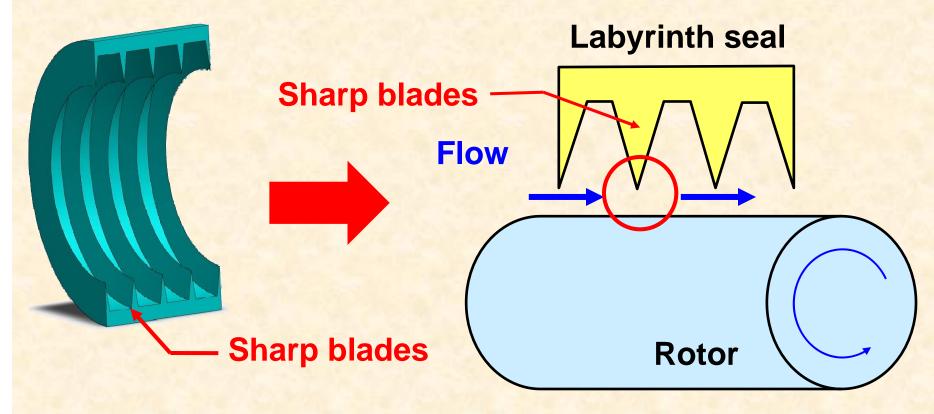
Trends in High Performance Turbomachinery

- Higher speeds & more compact units
- Extreme operating temperatures and pressures
- More efficient & reliable

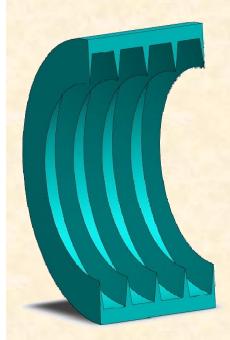
Issues of Importance


- Reduce secondary flows (parasitic leakage)
- Reduce specific fuel consumption
- Increase power delivery
- Eliminate potential for rotordynamic instability

S E A L S

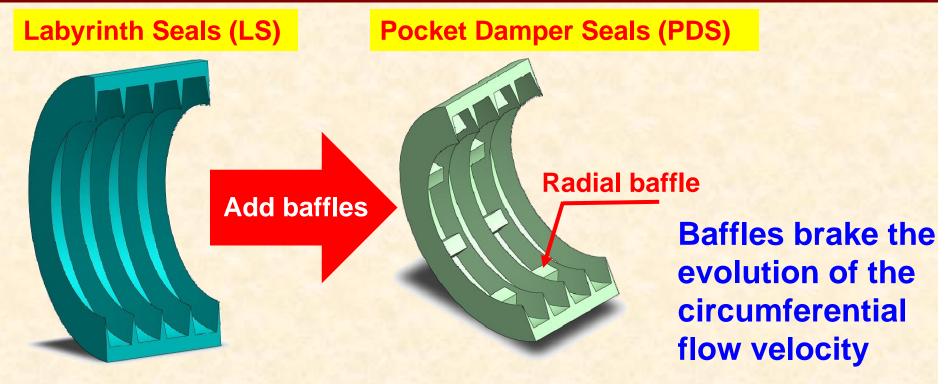

Background Labyrinth seals (LS) in a straightthrough compressor

Labyrinth seals reduce leakage



Leakage model between sharp blade and rotor treated as an orifice.

Disadvantages of labyrinth seals


- Direct damping coefficient is usually small, even negative.
- Large cross coupled stiffness drives rotor-bearing system instability.

$$C_{eff} = C - \frac{k}{\omega}$$

LSs provide limited effective damping and could even destabilize a whole rotor-bearing system.

About pocket damper seals

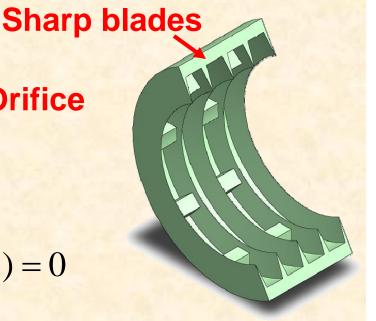
- PDS leaks more than LS.
- PDS provides ++ more effective damping and reduces rotor vibration amplitudes more effectively than a LS.

TAMU PDSeal© code (1999)

Neumman leakage model

$$\dot{m}_i = \frac{(C_k C_f H)_i}{R_g T} \sqrt{P_{i-1}^2 - P_i^2}$$

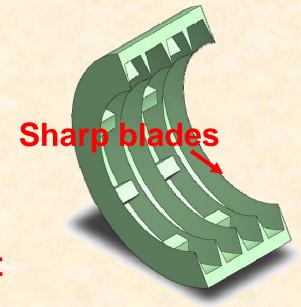
Main flow equation


$$\frac{1}{R_{g}T} \left[\frac{\partial (PA)_{i}}{\partial t} + \frac{\partial (PAU)_{i}}{R_{a}\partial \Theta} \right] + \zeta_{r} (\dot{m}_{i+1} - \dot{m}_{i}) = 0$$

Circumferential momentum equation

$$\frac{1}{R_{g}T}\left[\frac{\partial(PAU)_{i}}{\partial t} + \frac{\partial(PAU^{2})_{i}}{R_{a}\partial\Theta}\right] + \zeta_{r}(\dot{m}_{i+1}U_{i} - \dot{m}_{i}U_{i-1}) = -\frac{A_{i}}{R_{a}}\frac{\partial P_{i}}{\partial\Theta} + \Delta\tau_{xi}$$

Wall shear stress difference (Moody's friction factor)


Li, J., San Andrés, L., and Vance, J., 1999

TAMU PDSeal© code (1999)

 PDSeal over predicts leakage (4-10%) compared to test results.

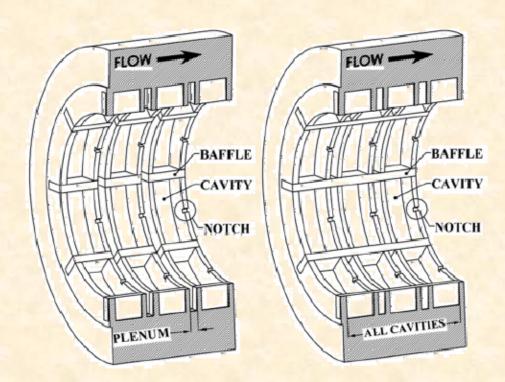
- PDSeal predicts direct damping coefficients in agreement with test data.
- Direct stiffness & damping coefficients and leakage are weak functions of rotor speed.
 Cross-stiffnesses are typically small.

Progress in 2013

XLPDS© GUI created to interface with PDSEAL©

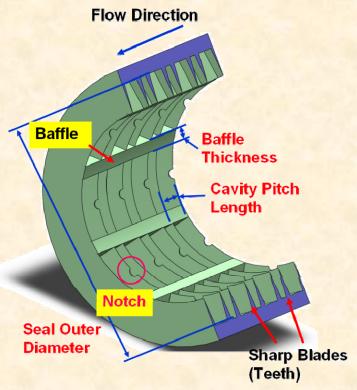
GUI linked to XLTRC² suite to predict performance of pocket damper seals (sharp blades)

- (a) Leakage
- (b) Stiffness and damping coefficients


vs. pressure difference, rotor speed and excitation frequency.

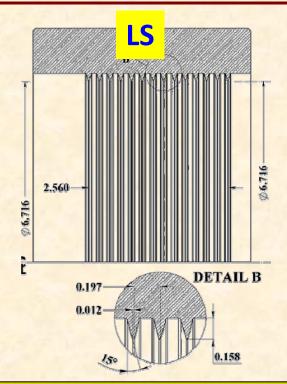
Contact me for a demonstration on the use of the GUI.

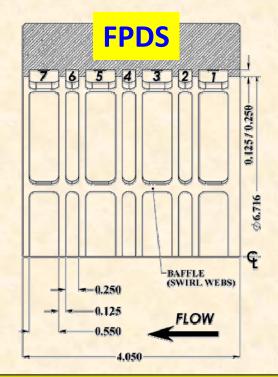
Commercial PDS & FPDS


Commercial PDS and FPDS have thick walls

Pocket damper seal (PDS)

Fully partitioned pocket damper seal (FPDS)


Original PDS had sharp blades



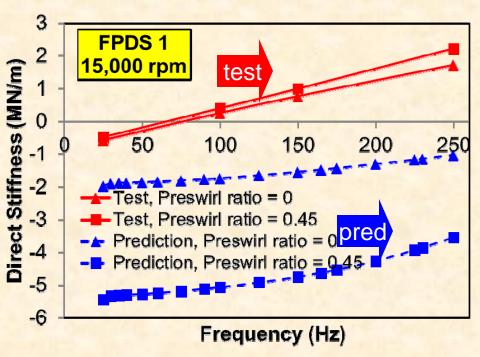
Examples – seals geometry

Ertas, B.H., Delgado, A., Vannini, G., 2012

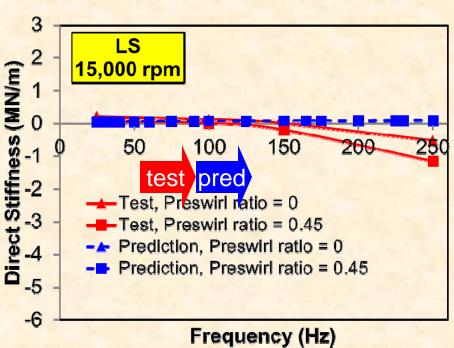
	14 bladed LS	8 bladed, 8 pocket FPDS
Blades properties	All active	Active / Inactive (without notch / with notch)
Cavity depth	4 mm	3.175 mm
Cavity axial length	5 mm	14 mm / 6.35 mm
Blade thickness (tip)	~ 0	6.35 mm / 3.175 mm
Radial clearance	0.3 mm	0.3 mm
Seal overall length	65 mm	103 mm
Rotor diameter	170 mm	170 mm

Inlet pressure 6.9 bar (Absolute pressure)						
Back pressure (Atmosphere)	1 bar (r (Absolute pressure)				
Excitation frequency	0 - 250 Hz					
Inlet temperature	286 K (13	°C)				
Rotor speed	7 krpm	15 krpm	7 krpm	15 krpm		
Rotor surface velocity	62 m/s	133 m/s	62 m/s	133 m/s		
Inlet preswirl velocity	0	0	60 m/s	60 m/s		
Preswirl ratio	0	0	0.96	0.45		

Inlet preswirl ratio =inlet circumferential flow speed / rotor surface velocity

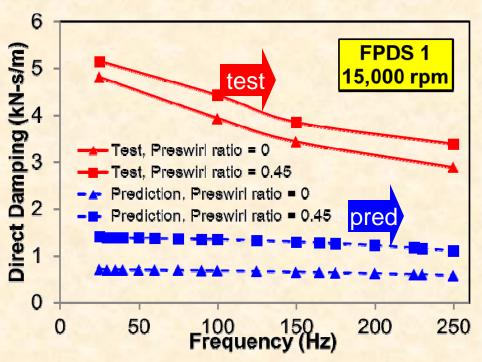

Gas	Air
Molecular weight	28.97
Gas compressibility factor	1
Specific heat ratio	1.4
Viscosity	18 μPa⋅s at 13° C

Direct Stiffness

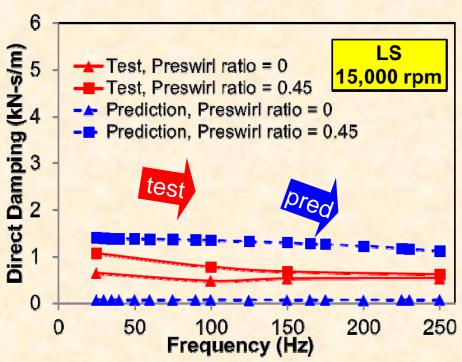

rotor speed 15 kpm preswirl ratios=0 & 0.45

Fully partitioned pocket damper seal

Labyrinth seal

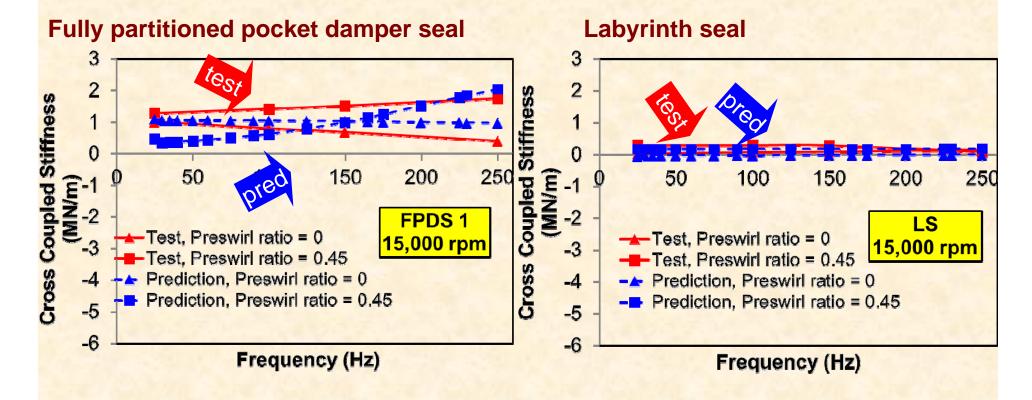

PDSeal© predicts well LS stiffness & misses stiffness for FPDS

Direct Damping


rotor speed 15 kpm preswirl ratios=0 & 0.45

Fully partitioned pocket damper seal

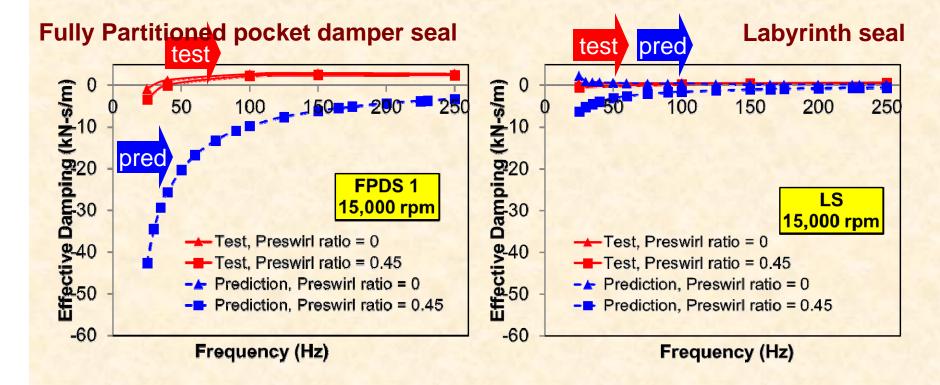
Labyrinth seal



PDSeal© predicts well LS damping & gives too little damping for FPDS

Cross Coupled Stiffness

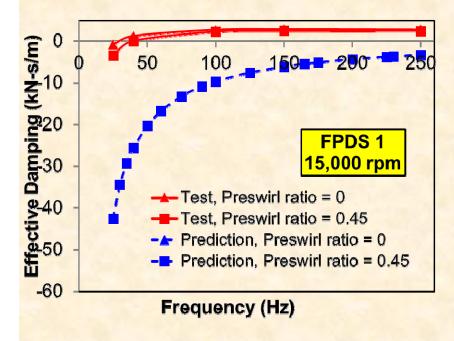
rotor speed 15 kpm preswirl ratios=0 & 0.45



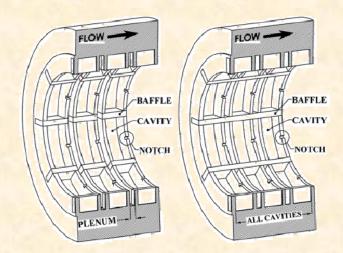
PDSeal© predicts well cross stiffness for both seals

Effective Damping

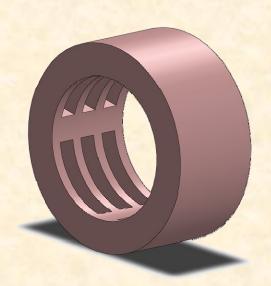
rotor speed 15 kpm preswirl ratios=0 & 0.45


$$C_{eff} = C - \frac{k}{\omega}$$

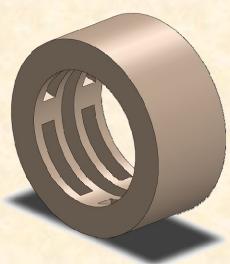
PDSeal© does a poor job in predicting the effective damping of a FPDS


Conclusions

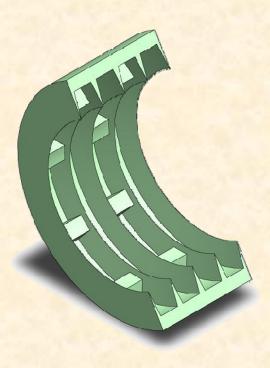
Predicted effective damping for FPDS is distinct from test data.



PDSeal© needs to be improved for better prediction for FPDS with thick walls.



Why the differences?



FPDS with 4 pockets and 3cavities

PDS with 4 pockets and 3cavities

Original model of PDS with sharp teeth in TAMU PDS code

PDSeal© does not consider axial thickness of the partition walls

2013 Continuation Proposal to TRC

Engineering Analyses for Pocket Damper Seals and Combined Labyrinth-Brush Seals

Luis San Andrés

Weilian Shan

Mast-Childs Professor

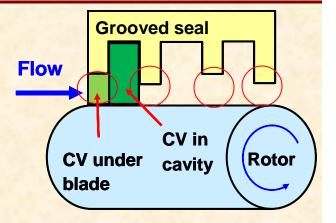
Graduate Research Assistant

May 2013

Proposed work

2013-2014 Year II

- Update bulk-flow flow model for PDS and FPDS.
- Model will include real gas properties including supercritical CO2 and steam.
- Perform more code calibrations: compare predictions to test data for leakage and force coefficients.
- Begin extensions of the model to include twocomponent mixtures (liquid and gas).


Model PDS as a grooved seal

Continuity equation leakage equation

Replaces empirical

$$\frac{L}{\xi_r} \frac{\partial (dP)_i}{\partial t} + \frac{\partial (HPV)_i}{\partial z} + \frac{\partial (dPU)_i}{R_r \partial \theta} = 0$$

Circumferential momentum equation

$$-\frac{1}{R_{r}}\tau_{\theta,i} - \frac{\partial(dLP)_{i}}{R_{r}\partial\theta} = \frac{1}{ZR_{g}T} \left[\frac{1}{\xi_{r}} \frac{\partial(dLPU)_{i}}{\partial t} + \frac{\partial(dLPU^{2})_{i}}{R_{r}\partial\theta} + \frac{\partial(HLPUV)_{i}}{\partial z} \right]$$

Axial momentum equation Considers blade thickness

$$-\left[\frac{1}{R_{r}}\tau_{z,i} + \frac{\partial(HLP)_{i}}{\partial z}\right] = \frac{1}{ZR_{g}T}\left[\frac{1}{\xi_{r}}\frac{\partial(dLPV)_{i}}{\partial t} + \frac{\partial(HLPV^{2})_{i}}{\partial z} + \frac{\partial(dLPUV)_{i}}{R_{r}\partial\theta}\right]$$

TRC Budget 2013-2014 Year II

		Year II	
Support for graduate student (20 h/week) x \$ 1,950 x 12 months	\$	23,400	
Fringe benefits (0.6%) and medical insurance (\$185/month)	\$	2,360	
Travel to (US) technical conference	\$	1,200	
Tuition & fees three semesters (\$362/credit hour x 24)	\$	8,686	
Others (Mathcad® and portable data storage)	\$	220	
Total Cost:	\$ 3	35,866	

Year 2: Develop computational models for predictions of leakage, drag power and force coefficients of FPDS, and combined labyrinth-bush seals for gas and steam turbines

Thank you!

More information at:

http://rotorlab.tamu.edu