Proceedings of ASME Turbo Expo 2016: Turbine Technical Conference and Exposition, June 13-17, 2016, Seoul, South Korea

Paper GT2016-56349

A WATER LUBRICATED HYBRID THRUST BEARING: MEASUREMENTS AND PREDICTIONS OF STATIC LOAD PERFORMANCE

Luis San Andrés

Mast-Childs Chair Professor

Stephen Phillips Research Engineer

Dara Childs L.T. Jordan Chair Professor

TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

Texas A&M University College Station, TX 77843-3123

Supported by USRL Upper Stage Technology Program

Hybrid bearings for cryogenic turbopumps

Low cost primary power cryogenic turbo-pumps (TP) are compact, operate at high speeds, and require of externally pressurized fluid film bearings to support radial and thrust loads.

Hybrid thrust & radial bearings enable smaller and lighter turbopumps with no DN life limitations

Large stiffness (accuracy of positioning) and damping force coefficients allow for unshrouded impellers with increased TP efficiency

Hybrid Bearings: Model Validation

Radial hybrid bearings: Tool XLHYDROJET®

- **Tests at TAMU (1992-1996) with water (1000 psi (70 bar) max, 25 krpm max).**
- *** +20 bearings x 3 clearances & 2 pocket depths, different pocket shapes, macro-roughness (surface textured) bearings, angled injection.**
- **Gas Honeycomb seals**
- **Water Lomakin Bearings (Snecma-SEP, 2000-2002)**
- **Oil tilting and flexure pivot journal bearings (TRC, 2002 – 2015)**

Thrust hybrid bearings: Tool XLHYDROTHRUST®

Until 2008: NONE available for high speed, high pressure (turbulent flow) bearings

Concerns: centrifugal and advection fluid inertia cause severe fluid starvation in bearing

USET program OBJECTIVE

USET: Upper Stage Technology Program (AFRL)

Objective USET (Upper Stage Technology Program)

To verify that predictive methods and tools used to design and manufacture cryogenic turbopumps are valid and accurate.

Tasks (Outline)

- **Design & construction of thrust bearing test rig.**
- **Operation and troubleshooting of test apparatus.**
- **Measurements of axial clearance, load, pocket pressures, and flow rates in a water hybrid thrust bearing.**
- **Prediction of performance from tool XLHYDROTHRUST and comparisons to test data.**

Description of test rig

load shaft & test thrust bearing Radial bearings

Rotor &

Test Rig Features

Test Fluid: **WATER**

0-25 krpm,

(3.4 to 17 bar) 50-250 psi supply pressure, Range of static + dynamic axial load: 1000 lbf, frequency range: 0-600 Hz

Hybrid Thrust Bearing Rig – Cross Section

Hybrid Thrust Bearing Test Rig – Exploded View

Schematic representation of test rig: thrust and radial bearings as mechanical elements with stiffness and damping coeffs.

Radial Support: Flexure Pivot Tilting Pad Hybrid Bearings

Material: 330 Bearing Bronze Wire-EDM manufacturing **Modeled using XLHYDROJET**

Test Rotor: shaft & thrust collar disks

Slave Bearing Thrust Disk

> **Materials Shaft:** 304 SS **Disks:**718 Inconel **Slave Thrust Disk:** Width: 0.75 inch OD: 4.20 inch **Test Thrust Disk**: Width: 0.50 inch OD: 4.00 inch

Thrust Hybrid Bearings: Test & Slave

Thrust bearings

Material 660 Bearing bronze

Inner diameter: 1.60 inch Outer diameter: 3.00 inch Axial clearance 0.5-5.5 mil

EIGHT (8) Pockets:

Axial injection at r=1.08 inch

Orifice discharge coefficients determined empirically from test data (~0.60)

Slave Thrust Bearing Housing : Assembly

TEST THRUST BEARING and load support

Gas Bearings Support Axial Load Shaft

Gas Bearings:

Diameter: 1.00 inch Radial clearance: 0.50 mil Length: 0.625 inch 2 rows x 6 orifices (60 deg apart) Orifice size: 0.010 inch **660 Bronze Bearing**

Test Rig Operation

STATIC LOAD TESTS

Thrust and radial bearings lubricated with water at 91F (~32 C)

- Open water lines and SET supply pressure into radial bearings (100 psig)
- Supply pressure to gas bearings supporting axial load arm (100 psig)
- **SET supply pressure into thrust bearings:** 50 psi (3.4 bar) \rightarrow 250 psig (17.2 bar)

• SET rotor speed (max 25 krpm): **7.5, 10.5, 17.5 krpm**

Circ. flow Reynolds number $Re_c = \frac{1}{2}$ ($vW c_0 D_{OD}$) = 18,040 to 4,370. Radial flow Reynolds number Re_r= ν Q_{OD}/(πD_{OD}) = 1,145

- **Shaker applies axial load** increasing & decreasing
- **MEASURE** rotor axial displacements (clearances) at test & slave bearings, **RECORD** flow rates (in & out), pocket pressures, supply and discharge P&T's

Loading action and thrust face misalignment

Chronic thrust bearing face misalignment minimized with careful alignment of load shaft support with shims. Measurements fully assess clearance variations with load.

TB clearance *(c)* **and tilt angles (**d**)**

Axial clearance measured at three angular locations $→$ **estimate center clearance and tilts (rotations).**

TB clearances vs. axial load - 0 rpm

TB clearance vs. axial load - 0 rpm

Water at 93^oF (34^oC) and supply pressure at 3.42, 10.34 & 17.2 bar (250 psig)

Axial clearance decreases exponentially with load. Predictions agree well with test data

TB flow rate (supply and ID) vs. axial load – 0 rpm

Water at 93^oF (34^oC) & supply pressure at 17.2 bar (250 psig). No shaft rotation

Flow rate decreases as load increases since axial clearance becomes small. ID flow is NOT 50% of supplied flow Predictions agree well with test data

TB clearance vs. axial load: 7.5, 12.5 & 17.5 krpm

Water at 93^oF (34^oC) and supply pressure at 17.2 bar (250 psig)

Axial clearances is not a strong functions of rotor speed – hydrostatic effect mainly Predictions agree well with test data; best at highest load (1.6 kN)

TEST RESULTS & PREDICTIONS – high pressure

TB clearance vs. axial load: 7.5, 12.5 & 17.5 krpm

Water at 93^oF (34^oC) and supply pressure at 3.45 bar (50 psig)

Tests show axial clearance is a function of rotor speed – hydrodynamic effect. Predictions agree with tests at highest load (0.46 kN)

TEST RESULTS & PREDICTIONS – low pressure

Compare test and slave thrust bearings

Water at 93^oF (34^oC) and supply pressure at 3.45 bar (50 psig)

Slave TB has different orifice diameter → gives lesser clearance. Both TBs perform similarly.

TB flow rates (supply and ID)

TB flow rate (supply and ID) vs. load – 7.5 krpm

shaft speed = 7.5 krpm. Water supply pressure= 250 psig (17.2 bar)

Flow rate decreases with load and rotor speed. ID flow is less than 50% of supplied flow. Predictions match well with test data

TEST RESULTS & PREDICTIONS – high pressure

TB flow rate (supply & ID) vs. load – 17.5 krpm

shaft speed = 17.5 krpm. Supply pressure= 50 psig (3.4 bar)

At low supply pressure and high rotor speed, inner side of bearing starves! ID flow << 0.5 x supply flow. Predictions agree with

test data - demonstrate

importance of

centrifugal flow effects.

TEST RESULTS & PREDICTIONS – low pressure

Recess pressure vs. axial load: 7.5, 12.5 & 17.5 krpm

Water at 93^oF (34^oC) and supply pressure at 17.2 bar (250 psig)

Pocket pressure approaches supply pressure as load increases. Predictions agree at highest load (1.6 kN)

Orifice discharge coef. vs. clearance: 7.5, 12.5 & 17.5 krpm

Water at 93oF (34oC) and supply pressure at 17.2 bar (250 psig)

Derived fr

Cd **varies from 0.58 for small clearance (large load) to 0.60 for the largest clearance (lowest load).** *C^d* **used for prediction of bearing performance.**

$$
\text{rom test results} \quad \frac{C_d}{A_o} = \frac{Q_o}{A_o} \frac{1}{\sqrt{\frac{2}{\rho}(P_S - P_R)}}
$$

TB stiffness *K^z* **vs. clearance: 7.5, 12.5 & 17.5 krpm**

Water at 93^oF (34^oC) and supply pressure at 17.2 bar (250 psig)

TEST RESULTS & PREDICTIONS

Test static *K* **derived from (curve fit) of load vs clearance.**

Predictions over estimate stiffness. Worse at highest load (1.6 kN) : smallest clearance

Dynamic force coefficients not obtained- program lost funding.

Conclusion

Measurements of hybrid thrust bearing static load performance obtained with water at 50 to 250 psig (3.4 to 17.2 bar) supply pressure and rotor speed to 17.5 krpm.

> Circ. flow Reynolds number $\text{Re}_c = \frac{1}{2}$ ($v \text{W}$ c_o D_{OD}) = 18,040 to 4,370. Radial flow Reynolds number $Re_{r} = v Q_{OD}/(\pi D_{OD}) = 1,145$

Chronic TB face misalignment issues minimized. Predictive tool accounts for effect. The measurements show:

• **Centrifugal flow effects due to rotation cause fluid starvation on the inner side of hybrid thrust bearing. Effect is worst at lowest pressure and highest rotor speed.**

• **Predictive tool reproduces recorded bearing static performance, i.e. operating clearance decreasing exponentially with applied load and lubricant starvation.**

- **Research products satisfy:**
- **a) verification of hybrid thrust bearing performance,**
- **b) experimentally validation of predictive tool.**

Paper GT2016-56349

Thanks AFRL-USET Program & Northrop Grumman Space Technology

- **Mr. Alan Sutton (AFRL),**
- **Mr. Chuck Papesh and Mr. Gordon Dressler (Northrop Grumman)**
- **Mr. Tim Miller and Mr. Dave Lowe (Barber-Nichols Inc.)**
- **Graduate MEEN students: Mr. Michael Forsberg, Mr. Fernando Ramirez**
- **Undergraduate MEEN students: Ms. April Acosta, Mr. Scott Wilson**

Questions (?)

Learn more at http://rotorlab.tamu.edu

Backup slides

Test Rig – Components Isometric View

Test Rig Instrumentation

Rotor lateral radial motions: 2 x 2 (X,Y) eddy current sensors:

Rotor collar axial and tilt motions at test & slave thrust bearings 2 x 3 (120 deg) (Z) eddy current sensors:

Thrust Force with strain gauge **load cell** & stinger connected to shaker. Torque mechanism not active.

Turbine flow meters in supply lines to water radial \int_{0}^{6} $\frac{1}{2}$ inch bearings, and **test thrust bearing INLET and OUTLET at ID**

Three (3) strain-gauge pressure sensors for measurement of **(2) pocket and (1) land pressures in test thrust bearing.**

Thermocouples: **water inlet & outlet of test thrust bearing** Pressure gauges: **supply and discharge of test thrust bearing**

Tachometer: **rotor speed**

LABVIEW® DAQ system and control

Bearing & seals: TYPES

The predictive tools include full fluid inertia, turbulence flow and thermohydrodynamic models for high-speed, high-pressure, hot/cold cryogenic and process fluid operating conditions. Cryogenic fluids: O2, H2, N2 (liquid or gas)

HYDROJET - models

hydrostatic/hydrodynamic radial bearings, angled injection, roughened surfaces

Honeycomb seals and annular damper seals

tilting and flexure pivot journal bearings, simple foil bearings,

HYDROTHRUST - models

hydrostatic/hydrodynamic thrust bearings Inner pressurized face seals with angular misalignment

2002/5: Excel® graphical user interfaces linking Hydro codes (Fortran DOS applications) to modern Windows based rotordynamics analysis software.

Hybrid Bearings: Bulk Flow Models

At Texas A&M Turbomachinery Laboratory: **Hydrojet® & Hydrothrust®**

INPUT Hydrostatic Bearings: XLHYDROTHRUST®

Predictions THRUST Hybrid Bearings

Learn more:

- **Forsberg, M.,** "**Comparison Between Predictions and Experimental Measurements for an Eight Pocket Annular Hydrostatic Thrust Bearing**," **M.S. thesis, Texas A&M University, College Station, TX, May 2008.**
- **Ramirez, F., "Comparison Between Predictions and Measurements of Performance Characteristics for an Eight Pocket Hybrid (Combination Hydrostatic/Hydrodynamic) Thrust Bearing," M.S. thesis, Texas A&M University, College Station, TX, December 2008**

Funding for HB Tool development

Rocketdyne (1988-1991), Pratt & Whitney (1991-92), NASA GRC (1993-1996), NASA MSFC (1998/99-2001/2) Norhtop Grumman (2005-2007) - (USET Program)

All US turbo pump manufacturers and NASA, including SNECMA-SEP, use Hydrojet® and Hydrothrust® to model cryogenic fluid film bearings and seals. Other industries and Universities have benefited from technology.

USET Program

CLIN 4.2.1.3.2 (a) Non-linear forced response of fluid film bearing CLIN 4.2.1.3.2 (b) Mixed flow regime – lift off response CLIN 4.2.1.3.7 Experimental Study of Hydrostatic / Hydrodynamic Thrust Bearings