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COMPUTATIONAL ANALYSIS OF MISALIGNED HYBRID THRUST BEARINGS FOR 
ADVANCED CRYOGENIC TURBO PUMPS 

 
EXECUTIVE SUMMARY 
The report details an extended computational bulk-flow analysis for prediction of the 
static and dynamic force and moment performance of angled injection, orifice-
compensated hydrostatic / hydrodynamic thrust bearings. The motion of the cryogenic 
fluid within the thin film lands of a thrust bearing is governed by a set of bulk-flow mass 
and momentum conservation and energy transport equations. Mass flow conservation and 
a simple model for momentum transport within the hydrostatic bearing recesses are also 
accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, 
Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The 
cryogenic fluid properties are obtained from realistic thermophysical equations of state.  
 
A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow 
for the thrust bearing operating at a static equilibrium position with misalignment, and 
first-order linear equations describing the perturbed fluid flow for small amplitude shaft 
motions in the axial direction and shaft angulations around two principal axes. Numerical 
solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, 
restoring moments, drag torque and power dissipation. Solution to the first-order 
equations determines 27 force and moment coefficients, i.e. nine stiffness, nine damping 
and nine inertia coefficients due to shaft displacements and angulations. The 
computational method implements established algorithms and generic subprograms 
available from prior developments.  
 
The enhanced Fortran90 program, HYDROTHRUSTM, runs as a console application on 
Windows 95/NT personal computers. The program, help files and examples are available 
through Texas A&M University Technology License Office.  
 
The effects of shaft misalignment on the static and dynamic force and moment 
performance of a refrigerant hybrid thrust bearing are evaluated at an optimal operating 
condition. The results complement earlier predictions advanced in Phase I of the project. 
The axial force/displacement stiffness coefficient and the direct moment/angle stiffness 
coefficients show an optimum value for a certain load (recess pressure ratio) while the 
damping coefficient steadily increases with the applied load. As the misalignment angle 
increases, both moment and force coefficients due to shaft axial displacements and 
angulations also increase. A whirl frequency ratio equal to 0.50 is predicted for most 
operating conditions. That is, thrust hybrid bearings offer the same limited stability 
characteristics as hydrodynamic thrust bearings when undergoing self-excited shaft 
angular motions. 
 
The analysis and computational capability to predict the performance of (flexure pivot) 
tilting pad hybrid bearings were not finalized due to lack of resources and inadequate 
planning. This important objective will be addressed in the near future with the support of 
the TAMU Turbomachinery Laboratory. 
 



 ii 

The lack of experimental data for the performance of hybrid thrust bearings under 
operating conditions similar to those of cryogenic turbo pumps continues to impair the 
validation of the advanced computational model. Rocket engine manufacturers will soon 
advance in the practice and implementation of an “all fluid film bearing technology,” thus 
releasing reliable test data to benchmark the model, and most importantly, demonstrating 
the superior performance of externally pressurized fluid film bearings under stringent and 
realistic operating conditions.     
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NOMENCLATURE  

Ao     (πdo
2/4).  Effective orifice area [m2]. 

AB     ).RR( 2
in

2
out −π Bearing surface area [m2]. 

AR     ( ) RRR
2
Ri

2
RoR lD

2
1

RR
2
1

ΘΘ =− . Recess (pocket) area [m2]. 

2
*RR R/AA =  

bR     recess arc length [m]. *RR R/bb =  

C*     Nominal (minimum) film clearance  [m]. 

Cp     Fluid specific heat [J/kg ⋅ °K]. *ppp C/CC =  

Cd     Orifice discharge coefficient.  

Cαβ    Force and moment damping coefficients, YXZ φφβα ,,, =  

Cd     Orifice discharge empirical coefficient 

Dout    2⋅Rout .  Bearing outer diameter [m]. 

Din     2⋅Rin .  Bearing inner diameter [m]. 

DR     2⋅RR. Recess center diameter [m].  

do     Orifice diameter [m] 
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*p*

*

CT
U

. Eckert (heat transfer) number. 

FZ     Fluid film axial force [N]. ( )[ ]asBZZ PPA/FF −=  

fS,B     
3
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Re
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H
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c + 1a ⋅⋅









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
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




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Turbulent flow Moody’s friction factors at shaft and bearing surfaces. 

H, h    Film thickness [m], H/C* 

Hpad    Pad film thickness including radial (δR) and circumferential (δθ) 

tapers. 

HB, HS    convection heat flow coefficients on bearing and shaft surfaces 

[watt/m2°K]. *SSS*BBB H/HH;H/HH ==  

HR                Recess depth [m]. C/Hh RR =  
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YX

hhhZ φφ ,,   =1, -r sinθ, r cosθ. Film perturbations in axial and angular directions.   

Kαβ    Force and moment stiffness coefficients, YXZ φφβα ,,, =   

Keq     Equivalent moment coefficient for stability prediction [Nm/rad]. 

L            (Rout - Rin). Bearing radial length [m]. 

lR     (RRo - RRi). Recess radial length [m]. 

M     Bearing mass flow rate [kg/s]. 

MRin, MRout  Mass flow rates through inner and outer diameters of bearing [kg/s]. 

MR     Mass flow through recess orifice [kg/s]. ( )***RR RCU/MM ρ=  

MX, MY    Restoring moments on thrust collar [N.m] 

MΓ     ∫ ⋅Γ Γηρ dUH
rr

. Mass flow from recess boundary into to film lands 

[kg/s]. ( )*** RCU/MM ρΓΓ =  

Mαβ    Force and moment inertia coefficients, YXZ φφβα ,,, =  

Nrec    Number of hydrostatic recesses (pockets) on bearing pad. 

Npad    Number of pads on bearing. 

P, P     Fluid pressure [N/m2], (P-Pa)/(Ps-Pa).   

PR, Ps         Recess pressure, supply pressure [N/m2]. 

+−
ReRe P,P    Edge recess pressures [N/m2]. 

PDin , PDout  Fluid pressures at inner and outer bearing diameters [N/m2]. 

Pa     Characteristic pressure, MIN[PDin , PDout] [N/m2]. 

Pdyn    ½ ρ(Ω RR)2. Pressure due to centrifugal inertia effect at pocket radius  

QBS     QB +  QS. Radial heat flow through bearing, QB= HB(T-TB), and shaft, 

QS=HS(T-TS), surfaces [watt/m2]. 

R, r                        Radial coordinate [m], *R/R .  

*R      Rout. Characteristic bearing radius [m]. 

Re     ( )./CR *** µΩρ  Nominal circumferential flow Reynolds number. 

Rep     ( )./CU *** µρ  Nominal pressure flow Reynolds number. 

*pRe      ( )*p R/CRe . Nominal modified pressure flow Reynolds number. 

Res      ( )*p*
2

* Re/C σµωρ =  . Squeeze film Reynolds number. 
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ReB, ReS   (ρH/µ) [UR
2 + Uθ

2 ]1/2, (ρH/µ) [UR
2 + (Uθ -ΩR)2 ]1/2 

Flow Reynolds numbers relative to bearing and shaft surfaces. 

rS, rB    Roughness depths of shaft and bearing surfaces [m]. 

s     R/RR. Local radial coordinate from pocket radius. 

t     Time [s]. 

T, T     Temperature, sT/TT =  

Ts     Fluid supply temperature [K]. 

TB, TS    bearing and shaft surface temperatures [K]. 

To     Shear induced torque on bearing surface [Nm]. ( )3
***oo RU/CTT µ=   

*U      ( ) **as
2 R/PPC µ− . Characteristic fluid flow velocity [m/s]. 

Ur, ur    Bulk-flow radial velocity [m/s], *r U/U  . 

Uθ, uθ    Bulk-flow circumferential velocity [m/s], *U/Uθ .  

VR     [AR(H+HR)+Vsupply] . Recess volume including supply line volume 

[m3]. CR/VV 2
*RR =  

WZ     External axial load on bearing [N]. ( )[ ]asBZZ PPA/WW −=  

WFR    Whirl frequency ratio for shaft angular motions. 

Zαβ     (Kαβ  -ω2 Mαβ +i ω Cαβ). Force and moment impedance coefficients, 

YXZ φφβα ,,, =  

α     Fluid inlet swirl ratio at recess. 

βP     +(1/ρ)(∂ρ/∂P). Fluid compressibility coefficient [m2/N]. PsaP P β∆β =  

βT     -(1/ρ)(∂ρ/∂T). Fluid volumetric expansion coefficient [1/K]. 

T*T T ββ =  

∆Psa    (Ps-Pa). Characteristic differential pressure [N/m2].  

YXZ φφ ∆∆∆ ,,   Shaft axial displacement and angular rotations about the X and Y axes. 

δRο     
[ ]( )

( )*

2/1
as*od

RCU

PP2AC

ρ

ρ −
. Dimensionless feed orifice coefficient. 

YX ,φφ     Shaft angular displacements (misalignments) about the X and Y axes. 

γ     First order shear coefficients [see Reference 2]. 
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κr = κθ    ½(κS + κB).  Turbulence shear factors in (r, θ) flow directions. 

κS, κB    fS ⋅ ReS, fB ⋅ ReB .  Turbulent shear parameters at shaft and bearing. 

ρ     Fluid density [kg/m3], */ ρρρ = . 

µ     Fluid viscosity [Ns/m2], */ µµµ =  

θ     Circumferential coordinate [rad].  

ΘP     Angular extent of a bearing pad [rad]. 

Θl_pad    Leading edge of a bearing pad [rad]. 

ΘR     angular extent of hydrostatic recess (pocket) [rad]. 

ξθu, ξθd   Empirical recess-edge entrance loss coefficients in circumferential 

(upstream, downstream) direction. 

ξri,  ξro    Empirical recess-edge entrance loss coefficients in radial direction, 

inner and outer radii boundaries.  

τ      ω t. Dimensionless time.  

Λ, σ    **** U/R;U/R ωΩ . Circumferential speed and whirl frequency 

numbers 

Ω, ω    shaft rotational speed, excitation or whirl frequency [rad/s] 

 

Subscripts refer to: 

o     Orifice in recess feed. 

s, a     Refer to pressure supply and ambient conditions. 

0     Zeroth-order variables. 

α,β    {Z, φX, φY}. First-order variables or perturbations.   

R, e    Bearing recesses and edges (entrance). 

u,d     Upstream and downstream of recess.  

B, S    Refer to bearing and shaft (collar) surfaces. 

 

Overbar denotes dimensionless variables. 
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COMPUTATIONAL ANALYSIS OF MISALIGNED HYBRID THRUST BEARINGS FOR 
ADVANCED CRYOGENIC TURBO PUMPS 
 
INTRODUCTION 
Hybrid (combination hydrostatic and hydrodynamic) journal and thrust bearings and 
damping seal bearings are currently used as radial support elements in state of the art 
cryogenic turbo pumps. These compact - low count part turbo pumps operate sub 
critically at exceedingly high shaft speeds (180 krpm) with pressure differentials as large 
as 550 bars (8,000 psi). Externally pressurized fluid film bearings and seals enable to 
carry safely large thrust and lateral loads with virtually no DN life limit, little friction and 
wear, provide accuracy of positioning, and render large direct stiffness and damping force 
coefficients for control of critical speeds and attenuation of undesirable vibrations. These 
features even allow unshrouded impellers, thus significantly increasing turbo pump 
reliability. 
 
The development of analytical models and design tools and the testing of components 
address to the mandates of an "all-fluid-film- bearing" technology for advanced and less 
costly (per launching cost) turbo pumps. San Andrés (1990-1996) performed the 
thermohydrodynamic analyses and developed computer programs for prediction of the 
static and dynamic force response of radial fluid film bearings. The research addressed 
effectively the theoretical and practical issues related to the operation and dynamic 
performance of cryogenic fluid film bearings; namely high speeds and pressures, flow 
turbulence, fluid inertia, fluid compressibility, thermal effects, and two-phase flow 
phenomena. The computational predictions have been validated with test data from 
process fluid film bearings with mineral oils, water and air in regimes of operation 
ranging from laminar flow to turbulent flows, and including the transition zone to fully 
developed turbulence.  

 
San Andrés (1998, 2000) advanced the original bulk-flow analysis of hybrid thrust 
bearings for cryogenic fluid applications. The model and computational program include 
the most important physical aspects paramount to the performance of turbulent flow fluid 
film bearings dominated by fluid inertia effects on the film lands and bearing recesses, 
and including a realistic thermo physical model and fluid properties. At high surface 
speeds, centrifugal forces could lead to sub ambient film pressures, induce lubricant 
cavitation or denude of fluid large areas of the bearing surface, thus significantly 
reducing the thrust bearing load capacity. Furthermore, large circumferential fluid speeds 
greatly affect the inertial pressure drop at the edges of the bearing recesses. 
 
The performance of thrust bearing for a refrigerant (dual use) application was evaluated 
at two operating speeds and pressure drops. The computed results, presented in 
dimensionless form, evidenced consistent trends in the bearing performance 
characteristics. As the applied axial load increases, the bearing operating clearance and 
flow rate decrease while the recess pressures increase. The axial stiffness coefficient 
shows a maximum for a certain intermediate load (recess pressure ratio) while the 
damping coefficient steadily increases. The predictions show at low recess pressures (i.e. 
low loads) fluid inflow through the bearing inner diameter and sub ambient pressures just 
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downstream of the bearing recess edges. These effects are solely due to centrifugal and 
Coriolis fluid inertia forces at sufficiently large surface speeds. 
 
The present analysis advances the original work to include the effects of static shaft 
misalignments and dynamic shaft angulations on the static and dynamic force and 
moment performance of hybrid thrust bearings. Mass flow conservation, momentum and 
transport bulk flow equations are presented and numerically solved for hybrid thrust 
bearings, pressurized face seals and hydrodynamic thrust bearings. A perturbation 
analysis of the flow equations renders first-order (linearized) flow equations for 
determination of the dynamic force and moment coefficients due to shaft axial motions 
and angulations about two orthogonal axes. The analysis renders nine stiffness, nine 
damping and nine inertia force/moment coefficients for routine engineering analysis and 
prediction using commercial rotordynamics computational programs. Formulae for the 
threshold speed of instability and whirl frequency ratio in aligned hybrid thrust bearings 
are advanced with important implications for the critical mass moment of inertia in 
compact rotors.  
 
The numerical method of solution implemented follows well-known CFD – control 
volume procedures for staggered meshes. The features of the computer program 
developed are also detailed.  
 
 
BULK FLOW ANALYSIS 
Figure 1 shows the geometry of a hybrid (hydrostatic/hydrodynamic) thrust bearing. The 
thrust bearing maybe composed of a single continuous (360°) pad with (Nrec) recesses 
distributed around the bearing area, or a number of pads (Npad) separated by radial 
grooves. Each pad contains one or more recesses.  
 
Figure 2 displays a runner (shaft) surface with angular static misalignment angles {φX, φY} 
about the lateral axes (X,Y), respectively. In general, the bearing film thickness is written 
as 
 

θφθφθθ sinRcosR),R(HCh)t,,R(H XYpad* −+==    (1) 
 
where C* is a characteristic clearance, and Hpad is the pad clearance including 
circumferential (δθ) and radial (δr) tapers [1, 2].  
 
Consider the turbulent flow within the film lands of a hybrid (hydrostatic/hydrodynamic) 
thrust fluid film bearing. The bulk-flow equations of motion within the thin film lands 
and the perturbation analysis for description of the equilibrium flow (zeroth-order) and 
perturbed flow (first-order) due to small amplitude axial and angular motions of the shaft 
collar follow. 
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Figure 1. Geometry of a hydrostatic / hydrodynamic thrust bearing

 
 

 
 
 

Figure 2. Depiction of bearing with shaft angular misalignments 
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The equations of mass, radial and circumferential momentum, and energy transport for 
the bulk-flow velocities, pressure and temperature on the bearing film lands are given in 
dimensionless form as [2,3]: 
 
continuity: 
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energy transport: 
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Refer to the Nomenclature for a definition of all dimensionless variables. In the equations 

above,
*

*

U
RΩ

Λ =  and 
*

*
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Rω

σ =  are characteristic surface rotational speed and frequency 

numbers, respectively; 
*

*

*

***
*P R
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µ
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pressure induced flow, and 









==

*

2
***

*P
C

ReRe
µ
ωρ

σσ  is the squeeze film Reynolds 

number. 
*p*

2
*

c
CT

U
E =  is the Eckert heat transfer number, and ( )SB H,H  are 

dimensionless convection heat transfer coefficients. The ratio 








c

*p

E

Re
refers to the effect 

of heat convection relative to mechanical shear dissipation. 
 
The turbulent flow shear factors (κr=κθ, κS) are defined in terms of the friction factors (f) 
and Reynolds numbers (Re) relative to the stationary bearing (B) surface and shaft (S) 
rotating surface. The Benedict-Web-Rubin equation of state is used to obtain cryogenic 
liquid properties (ρ,µ,,Cp) [4]. 
 
In a hydrostatic bearing, the fluid at pressure (Ps) and temperature (Ts) is supplied 
through orifice restrictors into the bearing pockets or recesses. The continuity equation at 
a hydrostatic recess establishes a balance among the mass flow through the feed orifice 
(MR), the flow through the boundaries of the recess into the film lands (MΓ), and the 
accumulation of fluid mass within the recess volume, VR=[AR (H+HR)+Vsupply]. The 
conservation of mass flows at a bearing recess is given in dimensionless form as, 
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iB ii duhM ΓηρΓ
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   (3.b) 

 
and δRi as the orifice parameter. The energy transport balance within a bearing hydrostatic 
recess accounts for the mechanical energy dissipated by viscous shear, the heat-carry 
over (advection) from upstream conditions and the thermal mixing effects, i.e. 
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where R)T,P(  are the averaged pressure and temperature within the recess, and 

RTP ),,( ββρ are the dimensionless fluid density, fluid compressibility and thermal 
expansion coefficients,  respectively.   
 
The circumferential and radial pressure rises within the hydrostatic recesses are given, 
respectively, by 
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Equation (4.a) shows the circumferential increase in pressure downstream of a recess 
orifice as in a Rayleigh step bearing. Equation (4.b) shows the radial variation of recess 
pressure due to  
a) the viscous shear decreasing the pressure as the radius grows, i.e. towards the outer 

side of the bearing,  
b) centrifugal forces due to fluid rotation rising the pressure towards the outer radius of 

the recess; and,  
c) advection of fluid momentum in the radial direction reducing the pressure as the 

radius within the recess grows.  
 
The entrance pressures to the film lands bounding the ith-hydrostatic recess are expressed 
as, 
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where { }duoi ,,, θθ ξξξξξ =  are empirical entrance loss coefficients for the recess edges at 
its inner radius, outer radius, upstream and downstream circumferential directions, 
respectively. The sudden pressure drop is accounted for only if the fluid flow effectively 
enters the thin film lands. 
  
The pressures at the inner and outer bearing radii are specified as, 
 

outDoutinDin P)r(P;P)r(P ==     (6) 

 
These pressures are regarded as uniform or constant, and consequently, their variation 
under dynamic shaft motions is null.  
 
In a 360° continuous film bearing or flat seal, the fluid pressure, temperature and 
velocities are singled valued in the circumferential direction, i.e. 
 

( ) ( )t,2,ru,u,T,Pt,,ru,u,T,P rr πθθ θθ +=    (7) 
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In a bearing pad, on the other hand, the pressures at the leading and trailing edges are 
specified radial function of the inner and outer radii pressures )P,P(

outDinD .  

 
Note that the momentum and energy flow equations applicable to the film lands are of 
hyperbolic character, and consequently, no exit conditions are required for the discharge 
temperature and fluid velocities at the bearing inner and outer radii. The balance of flow 
leaving the bearing recesses and entering the film lands provides the (inner) boundary 
conditions for the velocity fields within the thin film flow region, see equations (3). 
  
Perturbation analysis of the flow field 
A perturbation analysis of the flow field for small amplitude axial and angular motions of 
the shaft collar about an equilibrium position follows. The analytical procedure renders 
sets of zeroth- and first-order flow equations for evaluation of the bearing static load 
capacity, drag torque, bearing and recess flow rates, and dynamic force and moment 
coefficients. 
  
Consider the thrust collar to undergo small amplitude axial (∆Z) and angular rotations 
(∆φX, ∆φY) at a frequency (ω) about an equilibrium position (h0). The film thickness is 
written as [5], 
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with i=(-1)1/2. 

0padh and { }
00

, YX φφ correspond to the pad film thickness and shaft static 
misalignment angles at the equilibrium condition1. Note that only the real part of the 
expression above is of importance in the analysis.  
 
Using linear superposition, the equilibrium and perturbed films represented by zeroth- 
and first-order variables give,   
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where τ=ω t,  
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C
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and      θθ φφ sinrh;cosrh;1h

XYZ −===                                      (9.c) 
 

                                                 
1 This equilibrium condition arises from the balance of the fluid film bearing reaction thrust (axial) force 
and restoring moments with the externally load and misalignment moments applied on the bearing. 
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Note that 
YXZ

iehi
d

hd

φφα

τ
α

α

τ ,,=







= . The flow pressure, temperature, bulk-flow velocities 

and shear factors are also expressed as the superposition of zeroth-order { }0ψ and first-
order { }

YXZ φφααψ ,,=  flow fields describing the equilibrium and the perturbed fields, 

respectively, i.e., 
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where { }.,,,,,,,,, etcTPuu Srr κκκµρψ θθ= . Substitution of definitions (9) and (10) 
into the thin film land equations (2) leads to the zeroth- and first-order governing 
equations for the fluid bulk-flow. 
 
Zeroth-order bulk-flow equations on the film lands 
continuity: 
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radial momentum: 
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circumferential momentum: 
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energy transport: 
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 9 

 
First-order bulk-flow equations on the film lands 
With αh :{ θθ φφ sinrh;cosrh;1h

XYZ −=== } for dynamic shaft axial motions and 
angulations about the (Y) and (X) axis, respectively. the perturbed flow equations are: 
continuity: 
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radial momentum:  
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circumferential momentum: 
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energy transport: 
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α=Z,φY,φX 
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San Andrés [2] lists the formulae for the first-order wall shear stress coefficients (γ‘s). 

 
Zeroth- and first-order flow equations at a bearing recess 
Perturbation of the recess mass flow and energy transport equations proceeds in the same 
manner. For the recess flows the linear combination of equilibrium and dynamic fields 
gives  
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The zeroth- and first-order equations for mass flow conservation at each recess are 
respectively, 
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with ( )∫ =⋅++=

i recN,..,1ii000000i
;duhuhuhM
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α

rrrr
  α=Z,φY,φX (16.b) 

 
as the first-order mass flow rates through the recess boundaries into the film lands.  
 
The first-order energy transport equation at the recess and the pressure rise/drop 
equations at the recess edges are omitted for brevity.  
 
Fluid film axial force and restoring moments 
Integration of the pressure field on the thrust collar surface (shaft) renders the axial force 
(FZ) reacting to an applied external load (WZ) and the restoring moments (MY, MX), i.e. 
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Recall that the pressure field is the superposition of zeroth- and first-order fields 
 

τ
φφ φ∆φ∆

∆ i
X

*

*
Y

*

*
z

*
0

as

a eP
C
R

P
C
R

P
C

Z
P

PP
PP

P
XY

















+








+








+=

−
−

=  (18) 

 
due to the axial and angular changes in film thickness defined by 
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Substitution of the pressure field, equation (18), into the force and moment equations (17) 
gives, 
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where ∆Psa=(Ps-Pa) . 
 
Fluid film dynamic axial force and moment coefficients 
The bearing thrust force (FZ) and restoring moments (MX, MY) are also expressed as the 
superposition of equilibrium and dynamic forces and moments, i.e. 
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where the { }

YXZ
Z

φφβαβα ,,, =
correspond  to bearing impedances arising from the dynamic 

shaft motions. The dynamic stiffness (static stiffness and inertia) and damping 
coefficients are obtained from the real and imaginary parts of the impedance coefficients, 
i.e. 
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and the dynamic bearing impedances are determined from 
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Force and moment coefficients at the statically aligned condition 
At the statically aligned shaft and bearing condition, 0

00
== YX φφ , the force coefficients 

due to dynamic angulations and the moment coefficients due to axial displacements are 
null, i.e. 
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,,;00 ====== φφφφ    (24) 

 
A simple dynamic analysis for the stability of a rotating inertia determines the equivalent 
angular stiffness and whirl frequency ratio for shaft angulations as, 
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The equations above may be used to determine the threshold speed of instability for shaft 
angular motions in a simple system. 
 
Furthermore, at the aligned shaft condition, the following conditions also follow due to 
the rotational symmetry of the thrust bearing, 
 

{ }MCKZZZZZ
YXXYYYXX

,,;; =−== φφφφφφφφ    (26) 
 
That is, the direct moment coefficients are symmetric and the cross-coefficients are anti-
symmetric (due to the characteristic hydrodynamic effect). In this case, the matrix of 
dynamic impedances reduces to 
 

[ ]
















−=

XXYX

YXXX

ZZ
ZZ

Z
Z

ZZ

φφφφ

φφφφ

0
0

00
   (27) 

 
demonstrating the uncoupling between axial and angular shaft motions. The equivalent 
moment coefficient and whirl frequency ratio then reduce to 
 

XX

YX

XX

YX

YXXX C

K
WFR

C

C
KKK eq

φφ

φφ

φφ

φφ
φφφφ Ω

=+= ;    (28) 
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The solution procedure 
Equations (11) and (14) describing the equilibrium flow field are solved using a control-
volume numerical procedure. San Andrés details the discretization method and algorithm 
used in the computational analysis [2, 6]. The (discrete) first order flow fields defined by 
equations (12) and (15) are found once the zeroth-order fields are obtained. Bearing 
reaction forces and moments as well as dynamic force/moment coefficients follow from 
numerical integration of the flow fields on the bearing collar surface.  
 
The interested reader should consult the works of Launder and Leschizer [7] and Van 
Dormaal and Raithby [8] for complete descriptions on the CFD procedure, including 
orders of accuracy and convergence. 
 
  
THE COMPUTER PROGRAM HYDROTHRUSTM 
The HYDROTHRUSTM Fortran 90 computer program is an extension of the earlier 
HYDROTHRUST first released in 1998. Both programs run as console applications in a 
personal computer under the MS Windows operating system. The software includes a 
windows based help file (hthrust.help) and several examples featuring the options and 
capabilities of the program.  
 
HYDROTHRUSTM calculates the static and dynamic force performance characteristics for 
the following bearing configurations:  
1. hydrostatic / hydrodynamic thrust bearings with orifice compensation, 
2. annular face seal with a pressure drop from inner diameter to outer diameter, 
3. plain hydrodynamic thrust bearings. 
 
Orifice injection is specified as axial or angled respect to the shaft rotational speed 
direction. The feed hole may be located anywhere within the recess, i.e. upstream or 
downstream of the middle plane.  
 
HYDROTHRUSTM includes the following thermal models: 
- adiabatic surfaces, i.e. insulated shaft and bearing surfaces. 
- isothermal shaft at specified temperature and insulated (adiabatic) bearing. 
- isothermal bearing at specified temperature and insulated (adiabatic) shaft. 
- isothermal shaft and bearing surfaces. 
- isothermal shaft and radial heat flow through bearing (stator). 
- adiabatic  shaft and radial heat flow through bearing (stator). 
 
HYDROTHRUSTM  calculates numerical predictions of: 
• bearing flow rate or seal leakage, 
• friction torque, power dissipation and temperature rise, 
• load capacity if bearing minimum film clearance is given, or bearing film clearance if 

the external thrust load is given, 
• restoring moments about two axes, 
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• three axial force stiffness, damping and inertia force coefficients due to collar 
displacements ( Z∆ ), and two shaft rotations ( YX φφ ∆∆ , ), 

• three x two (=6) moment stiffness, damping and inertia force coefficients due to collar 
displacements ( Z∆ ), and two shaft rotations ( YX φφ ∆∆ , ). 

 
Thus, the matrix of dynamic force coefficients comprises a total of 27 values 
corresponding to nine stiffness, nine damping and nine inertia force/moment coefficients. 
 
The program interfaces with the NIST database to calculate the thermophysical properties 
of the following (single phase) cryogenic fluids: 

(1) parahydrogen, (2) oxygen, (3) nitrogen, (4) methane. 
Other fluids incorporated in the program are: 
      (5) water,   (6) oil,   (7) air,   (12) barotropic fluid. 
 
The help file hthrust.help gives a detailed description of the program operation and 
input/output calculation options. 
  
 
PREDICTIONS AND DISCUSSION 
The analysis and computational program are applicable to a wide range of thrust bearing 
applications including operation at low speeds and feed pressures with viscous mineral 
oils (laminar flow bearings), and high speed hydrostatic / hydrodynamic thrust bearings 
for implementation in modern compact cryogenic liquid turbo pumps and state of the art 
turbomachinery using process fluid lubricants. To date, however, experimental results for 
these novel applications are not available in the open literature.  
 
Table 1 presents the geometry and operating conditions of a six recess hydrostatic thrust 
bearing with R134a refrigerant for a commercial compressor application. San Andrés [2, 
3] presents extensive predictions for a range of thrust loads at two operating speeds, 10 
and 16 krpm, and pressure drops of 5.17 and 10.34 bars (75 and 150 psi), respectively. 
The operating film clearances ranged from 12.7 to 101.6 µm. The computed predictions 
show the paramount effect of fluid inertia (on film lands and recess edges) on the 
performance characteristics of the thrust hybrid bearing. 
 
The discussion concentrates on the effects of a static shaft misalignment ( )Xφ on the 
performance characteristics of the hybrid thrust bearing operating with a nominal 
clearance (C) of 0.508 mm. All calculations were performed with the full fluid inertia 
model, i.e. including fluid inertia effects at the film lands and recesses (area and edges 
interfacing with the film lands). 
 
For reference in the discussion, Table 2 introduces the definitions for the dimensionless 
bearing performance characteristics. 
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Table 1. Hydrostatic thrust bearing for R134a compressor application 
Axial injection at mid plane of a recess. 

 
Geometry, Nrec=6  SI dimensions English dimensions 
Inner diameter Din 89.13 mm 3.51 inch 
Outer diameter  Dout 126.8 mm 4.99 inch 
Recess diameter  DR 108.6 mm 4.28 inch 
Recess radial length  LR 11.68 mm 0.46 inch 
Recess arc length  

RΘ  24 o   
Recess depth  HR 0.508 mm 0.020 inch 
Film clearance (nominal) C 0.051 mm  0.002 inch 
Recess/Bearing area ratio  0.25  
Orifice diameter do 1.70 mm 0.067 inch 
Empirical parameters    
Orifice discharge 
coefficient  

Cd 0.80  

Entrance loss coefficients,  
 

 0.0, 0.0, 0.0, -
0.5  duoi rr θθ ξξξξ ,,,  

Inlet swirl coefficient  α  0.50  
Bearing and collar relative surface roughness = 0.45% 

 
Operating conditions  SI units English units 
Speed Ω  1,675 rad/s 16,000 rpm 
Supply temperature Ts 311 oK 560 oR (100oF) 
Supply pressure,  Ps 24.10 bar 350 psia 
Exit pressure, PDin=PDout Pa 13.80 bar 200 psia 
Saturation pressure  Psat   9.63 bar 139 psia 
Fluid properties   R134a refrigerant  
Density  aρ  1210 kg/m3 75.54 lb/ft3 

Viscosity  
aµ  0.000198 Pa.s 0.0288 

microReyns 
Fluid bulk modulus ( )pβ/1  1,820 bar 26,667  psi 
    
Circumferential Reynolds number Re 33,000  
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Table 2. Definitions for dimensionless bearing performance parameters, force and 
moment coefficients. 

 
 Symbol Dimensionless parameter 
Pressure 
 
 

P 

as

a

PP
PP

p
−
−

=  

Mass flow 
rate 
 

M 

( )[ ] 2/12 assodrec PPACN
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−
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F −== *
*

;  
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2
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Force and moment coefficients for the aligned hybrid thrust bearing 
Table 3 details the predicted values of the bearing characteristics at the nominal clearance 
position, C=0.051 mm, and without shaft misalignment. Note that for the aligned 
condition, the restoring moments are null, i.e. MX=MY=0. 
 

Table 3. Bearing performance parameters at nominal operating clearance and 
aligned shaft collar. 

 
 Symbol Dimensional value 
Recess, minimum and maximum film 
pressures 

PR, Pmin, Pmax 19.81, 9.95, 23.175 bars 

Recess mass flow rate, mass flow rate 
through inner and outer radii 

MR, MRin, MRout 0.0588, 0.0567, 0.297 kg/s 

Axial load and torque FZ, To 1374 N, 3.57 Nm 
Restoring Moments 

YX MM ,  0, 0 Nm 
Axial force stiffness coefficients 

XY ZZZZ KKK φφ ,,
 

41.3 MN/m, 0 N/rad, 0 N/rad 

Axial force damping coefficients 
XY ZZZZ CCC φφ ,,  29.4 kN s/m, 0 N s/rad, 0 N s/rad 

Axial force inertia coefficients 
XY ZZZZ KKM φφ ,,

 

2. 36 Ns2/m, 0 N s2/rad, 0 N s2/rad 

Moment stiffness coefficients 

XYYX

YYXX

KK

KK

φφφφ

φφφφ

−=

=
 

 

64.2 kN m/rad, 
 
36.1 kN m/rad 

Moment damping coefficients 

XYYX

YYXX

CC

CC

φφφφ

φφφφ

−=

=
 

 

43.65 N m s/rad 
 
  6.25 N m s/rad 

Moment inertia coefficients 

XYYX

YYXX

MM

MM

φφφφ

φφφφ

−=

=
 

  3.3010-3 N m s2/rad 
-0.19 10-3 N m s2/rad 

Other cross-force and moment coefficients   0 
   
 
San Andrés [2, 3] discusses the bearing performance for two operating speeds and 
increasing axial loads. Figure 3 reproduces some of the calculated axial load performance 
parameters for the statically aligned hybrid thrust bearing ( 0== YX φφ ). Note that as the 
axial load increases, the recess pressure )( RP increases towards the supply value and the 
operating (axial) clearance decreases rapidly. For the smallest load the maximum or 
largest clearance equals101.6microns. The dynamic force damping coefficient (CZZ) for 
axial motions remains more or less uniform for the range of small to moderate loads, and 
increases rapidly for heavily loaded conditions due to enhanced hydrodynamic effects. 
The static (KZZ) and synchronous (KZZ-MZZ) axial stiffness coefficients show a typical 
behavior with an optimum value for moderate loads at a recess pressure ratio )( RP  ~ 0.6, 
as expected from a turbulent flow hydrostatic bearing. 
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Recall that at the statically aligned bearing condition, ;00 ===== YZZZ XXYX

ZZZZ φφφφ  

and ;;
YXXYYYXX

ZZZZ φφφφφφφφ −== thus, the equivalent moment stiffness coefficient and 

whirl frequency ratio reduce to
XX

YX

XX

YX

YXXX C

K
WFR

C

C
KKK eq

φφ

φφ

φφ

φφ
φφφφ Ω

=+= ; . 

 
Figure 4 depicts the moment coefficients for increasing axial loads. The static and 
(synchronous) dynamic direct coefficients ( )

XXXXXX
MKK φφφφφφ −,  show a similar 

behavior as the axial force coefficients, i.e. render low values for small and large recess 
pressures and an optimum (maximum) value at about the same recess pressure for the 
axial force stiffness. On the other hand, the direct moment/angle damping ( )

YYXX
CC φφφφ =  

and cross-stiffness ( )
YXXY

KK φφφφ −= coefficients increase rapidly with the applied load, 
thus denoting the large influence of hydrodynamic effects as the operating clearance 
decreases. The whirl frequency ratio (WFR) is approximately 0.50 for all operating 
conditions, thus showing hybrid thrust bearings undergoing angular shaft motions have 
the same inherent stability limit as hydrodynamic thrust bearings and face seals. 
 
Effect of shaft static misalignment on thrust bearing performance 
The following figures depict the effect of the shaft collar static misalignment 
angle ( )Xφ on the performance characteristics of the hybrid thrust bearing operating with a 
nominal clearance of 0.51 mm [ )( RP ~0.6]. Recall that operation at this condition shows 
near optimum (direct) axial force and moment direct stiffness coefficients. The 
calculations were conducted for misalignment angles ( )Xφ as large as 723 micro radians, 
which translate into a minimum film thickness as low as 10% of the nominal clearance.  
 
Figures 5 through 7 show the predicted static performance characteristics of the hybrid 
thrust bearing. Minimum and maximum film pressures and recess pressures increase 
(nearly) linearly as the misalignment angle increases. The largest film and recess 
pressures are located on the side of the minimum film thickness. The maximum film 
pressure is already larger than the supply pressure for relatively small misalignment 
angles and denotes the dominance of centrifugal hydrodynamic flow effects as noted 
earlier in [2]. The minimum film pressures are lower than the bearing discharge pressure 
due to fluid inertia effects as also discussed then2. 
 
Figure 6 depicts the dimensionless mass flow rates through the inner and outer radii of 
the bearing versus the misalignment angle. Again, due to centrifugal fluid inertia effects, 
the flow rate leaving the bearing through the inner radius decreases as the misalignment 

                                                 
2 The dimensionless pressure corresponding to the refrigerant saturation pressure equals –0.405. Thus, the 
predictions indicate zones of fluid cavitation (vaporization), in particular at the downstream side of a recess 
in the circumferential direction.     
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angle increases (minimum film thickness decreases). There is approximately a 20% 
reduction in flow rate (M=MRout+MRin) from the nominal condition to that with the 
largest misalignment angle.  
 
Figure 7 shows the predicted axial force ( )ZF , drag torque ( )oT and restoring moments 

( )YX MM , versus the misalignment angle ( )Xφ . The axial force and drag torque remain 
relatively insensitive to the degree of misalignment while the restoring moments increase 
rapidly. The rate of growth of the hydrostatic reaction moment ( )XM  appears to be linear 
with the misalignment angle, while the cross-moment ( )YM  due to hydrodynamic effects 
is of importance at large misalignment angles. 
 
Figures 8 and 9 depict the dimensionless force stiffness and damping coefficients due to 
shaft axial displacements and angulations, respectively. As the misalignment angle ( )Xφ  
increases, the axial force stiffness and damping coefficients( )ZZZZ CK ,  due to shaft axial 
displacements are larger (though relatively invariant) than the force coefficients 
( )

XX ZZ CK φφ , and ( )
YY ZZ CK φφ , due to shaft angulations. However, for large misalignment 

angles the cross-coefficients ( )
XY ZZ CK φφ ,  due to hydrodynamic effects become important. 

 
Figures 10 and 11 show the dimensionless moment stiffness and damping coefficients 
due to shaft angulations and axial displacements, respectively. The direct moment-angle 
coefficients are significant for an aligned shaft condition while the cross-moment 
coefficients are negligible. Note that the symmetry (anti-symmetry) relations hold at the 
aligned condition. The direct moment stiffness coefficients ( )

YYXX
KK φφφφ , remain 

relatively constant even for large misalignment angles, while the cross-stiffnesses 
( )

XYYX
KK φφφφ −,  are smaller and increase rapidly due to the hydrodynamic shear flow 

effect. The direct moment damping coefficients ( )
YYXX

CC φφφφ ,  , always larger than the 

cross-damping coefficients ( )
XYYX

CC φφφφ −, , increase rapidly as the misalignment angle 
grows since the local film thickness is smaller. Note also that the hydrodynamic moment 
stiffness ( )ZY

Kφ−  and damping ( )ZX
Cφ coefficients due to shaft axial displacements 

increase rapidly for large misalignment angles.  
 

The predicted whirl frequency ratio (WFR=
Ω

nω
) for a shaft collar undergoing dynamic 

angulations remains uniform at approximately 0.50 for most misalignment angles.  The 
equivalent moment stiffness ( )eqK , here mainly determined by the hydrostatic stiffnesses 

( )
YYXX

KK φφφφ ~ , provides a measure of the largest mass moment of inertia for safe 

operation of the rotating system, i.e. 2
n

eqK
I

ω
= without the likeliness of a hydrodynamic 

instability. 
 



 21 

The predictions presented correspond to a bearing with axial injection at the mid plane of 
a recess. Calculations were also performed for hydrostatic feed with a tangential feed 
injection (90 degrees) opposite to the shaft rotational speed and at different 
circumferential locations upstream and downstream of a recess. These predictions were 
conducted to determine if the whirl frequency ratio would decrease so as to render a more 
robust bearing free of hydrodynamic instability. Table 4 below shows the predicted 
results for the axial force, torque, force and moment coefficients for the bearing aligned 
condition at the nominal operating condition (C=0.051 mm).  
 

Table 4. Predictions for aligned bearing with angled hydrostatic feed injection. 
 
Feed 
angle 

Position FZ To KZZ CZZ 
XX

K
φφ

 
YX

K
φφ

 
XX

C
φφ

 
YX

C
φφ

 Keq WFR 

degrees  kN Nm MN/m KNs/m KNm/rad KNm/rad Nm.s/rad Nm.s/rad KNm/rad  
0 0.5 1.37 3.56 41.3 29.4 64.1 36.1 43.6 6.25 69.6 0.50 
90 0.1 1.41 3.50 45.2 30.8 70.8 35.6 45.7 5.88 75.3 0.46 
90 0.5 1.39 3.34 40.7 29.9 64.2 32.6 43.4 5.42 68.3 0.44 
90 0.9 1.45 3.23 37.3 27.7 59.4 29.7 41.2 4.93 62.8 0.43 

Angle:  0 = axial feed,  +90 degrees = tangential against shaft rotation, -90 degrees= tangential parallel to shaft rotation 
Position: 0.5 = middle of recess, 0.0 = upstream edge of recess, 1.0 = downstream edge of recess.  

 
The predictions show that angled injection reduces slightly the whirl frequency ratio but 
not significantly to free the bearing from its limited stability limit. Note that this bearing 
application has large surface speeds with a nominal circumferential flow Reynolds 
number approximately equal to33,000; thus then the limited advantage of angled 
injection. Similar results (theoretical and experimental) have been obtained for radial 
hydrostatic bearings [9]. Nonetheless note that a hybrid bearing with a tangential 
injection orifice location well upstream within the recess (position 0.1) shows a 
significant increase for its equivalent angular stiffness (Keq), thus effectively increasing 
the critical mass moment of inertia of the rotating system. On the other hand, tangential 
feed injection located well downstream of the recess (position 0.9) shows a significant 
reduction in the cross-coupled stiffness coefficient 

YX
K

φφ
; thus rendering the lowest whirl 

ratio but also the lowest equivalent angular stiffness. The predictions also show that the 
axial load and axial force displacement coefficients (KZZ , CZZ ) are not greatly affected 
by the angled feed injection. 
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CONCLUSIONS 
A bulk-flow analysis and computer program for prediction of the static load performance 
and dynamic force and moment coefficients of angled injection, orifice-compensated 
hydrostatic / hydrodynamic thrust bearings have been completed. Advanced cryogenic 
fluid turbopumps are very compact, operate at extremely high shaft speeds, and require of 
hybrid (hydrostatic / hydrodynamic) radial and thrust fluid film bearings for accurate 
rotor positioning and control of critical speeds.  
  
The analysis accounts for the bulk-flow mass, momentum and thermal energy transport, 
includes flow turbulence and fluid inertia (advection and centrifugal) effects on film 
lands and recesses, and incorporates cryogenic fluid properties using a NIST data base. 
The computer program predicts the flow rate, load capacity, restoring moments, power 
loss and 27 dynamic force coefficients for rigid surface, tapered land hybrid thrust 
bearings.  
 
Predictions on the effects of shaft collar misalignment on the static and dynamic force 
and moment performance of a refrigerant R134a hybrid thrust bearing are presented. The  
The axial force stiffness coefficient and the direct moment/angle stiffness coefficients 
show an optimum value for a certain load (recess pressure ratio) while the damping 
coefficient steadily increases with the applied load. As the misalignment angle increases, 
both moment and force coefficients due to shaft axial displacements and angulations also 
increase. The most important result is, however, the prediction of a whirl frequency ratio 
equal to 0.50 for most operating conditions. That is, thrust hybrid bearings offer the same 
limited stability characteristics as hydrodynamic bearings thrust when undergoing self-
excited shaft angular motions.  
 
The research conducted concludes a multiple year effort funded by NASA Centers for the 
development of sound computational tools able to predict reliably the performance of 
externally pressurized bearings needed for their current state of the art turbo pump 
technology.  
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Figure 3.  Operating clearance, recess pressure ratio, and axial force coefficients 
(Kzz, Czz) versus axial load for statically aligned bearing.  

Figure 4.  Moment force coefficients (Kφxφx, Kφxφy,Cφxφx,Cφxφy) and whirl ratio 
versus axial load for statically aligned bearing. 
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Figure 5. Minimum and maximum film and recess pressures versus shaft collar 
static misalignment angle - CRoutX /φ . 

Figure 6. Mass flow rates through bearing inner and outer radii and recess flow 
rate versus shaft collar static misalignment angle - CRoutX /φ . 
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Figure 7. Axial load (FZ), drag torque (To) and restoring moments (MX, MY) 
versus shaft collar static misalignment angle - CRoutX /φ . 

R134 6recess HTB Ps=24.1 bar, 16 krpm
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Figure 8. Synchronous (force) stiffness coefficients versus shaft collar static 
misalignment angle - CRoutX /φ . 

R134 6recess HTB Ps=24.1 bar, 16 krpm
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Figure 9. Force damping coefficients versus shaft collar static misalignment 
angle - CRoutX /φ . 

R134 6recess HTB Ps=24.1 bar, 16 krpm
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Figure 10. Synchronous moment stiffness coefficients versus shaft collar static 
misalignment angle - CRoutX /φ . 

R134 6recess HTB Ps=24.1 bar, 16 krpm
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Figure 11. Moment damping coefficients versus shaft collar static misalignment 
angle - CRoutX /φ . 

R134 6recess HTB Ps=24.1 bar, 16 krpm

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Misalignment X (Ro/C)

M
o

m
en

t D
am

p
in

g
 C

o
ef

fi
ci

en
ts

Cdxdx Cdydy Cdxdy

Cdydx[-] Cdxz Cdyz[-]

Cφxφx

Cφyφy

Cφxφy -
Cφyφx

-CφyZ

CφxZ



 29 

 
  
     
 


