

Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data

Luis San Andrés

Mast-Childs Professor

Tae Ho KimKeun RyuPost-Doc Research AssociatePhD Research Assistant

This material is based upon work supported by NASA NNH06ZEA001N-SSRW2, Fundamental Aeronautics: Subsonic Rotary Wing Project and the Texas A&M Turbomachinery Research Consortium

Outline

 Statement of Work & Sources for Presentation Objectives and accomplished work in 2007-08 **Computational model. Validation with published data. Rotordynamic measurements at TAMU** Objectives and accomplished work in 2008-09 **Description of test rig and foil bearings at TAMU** Effect of temperature on bearing temperatures, coastdown speed and rotor motions Effect of cooling flow on shaft and bearing temperatures. Validation of computational model * The computational code **Graphical User Interface. Further predictions** GFB thermal management tests and preds. Added Value and Closure 2

Topic

Statement of Work & Sources for Presentation

- GFB thermal management tests and preds.
- Closure & added value

Gas Foil Bearings (+/-)

Increased reliability: large load capacity (< 100 psi)

- No lubricant supply system, i.e. reduce weight
- High and low temperature capability (up to 2,500 K)
- No scheduled maintenance
- Ability to sustain high vibration and shock load. Quiet operation
- Less load capacity than rolling or oil bearings
- Wear during start up & shut down
- No test data for rotordynamic force coefficients
- Thermal management issues
 - Predictive models lack validation. Difficulties in modeling + dry-friction damping + effects of temperature on material properties and components' expansion.

Applications: ACMs, micro gas turbines, turbo expanders

SOW – Main Objective

To develop a detailed, physicsbased computational model of gas-lubricated foil journal bearings including thermal effects to predict bearing performance.

The result of this work shall include a fully tested and experimentally verified design tool for predicting gas foil journal bearing torque, load, gas film thickness, pressure, flow field, temperature distribution, thermal deformation, foil deflections, stiffness, damping, and any other important parameters.

Agreement NASA NNH06ZEA001N-SSRW2

References Foil Bearings

ASME GT2011-46767	De Santiago, O., and San Andrés, L., 2011, "Parametric Study of Bump Foil Gas Bearings for Industrial Applications"
ASME GT2011-45763	San Andrés, L., and Ryu, K., 2011, "On the Nonlinear Dynamics of Rotor-Foil Bearing Systems: Effects of Shaft Acceleration, Mass Imbalance and Bearing Mechanical Energy Dissipation."
ASME GT2010-22508 NASA/TM 2010-216354	Howard, S., and San Andrés, L., 2011, "A New Analysis Tool Assessment for Rotordynamic Modeling of Gas Foil Bearings," ASME J. Eng. Gas Turbines and Power, v 133
ASME GT2010-22981	San Andrés, L., Ryu, K., and Kim, T-H, 2011, "Thermal Management and Rotordynamic Performance of a Hot Rotor-Gas Foil Bearings System. Part 2: Predictions versus Test Data," ASME J. Eng. Gas Turbines and Power, v 133
ASME GT2010-22981	San Andrés, L., Ryu, K., and Kim, T-H, 2011, "Thermal Management and Rotordynamic Performance of a Hot Rotor-Gas Foil Bearings System. Part 1: Measurements," ASME J. Eng. Gas Turbines and Power, v 133
J Eng Gas Turbines & Power	San Andrés, L., Ryu, K., and Kim, T.H., 2011, "Identification of Structural Stiffness and Energy Dissipation parameters in a 2nd Generation Foil Bearing; Effect of Shaft Temperature", ASME J. Eng. Gas Turbines Power, vol. 133 (March) , pp. 032501
8th IFToMM Int. Conf. on Rotordynamics	San Andrés, L., Camero, J., Muller, S., Chirathadam, T., and Ryu, K., 2010, "Measurements of Drag Torque, Lift Off Speed, and Structural Parameters in a 1st Generation Floating Gas Foil Bearing," Seoul, S. Korea (Sept.)
ASME GT2009-59920	San Andrés, L., Kim, T.H., Ryu, K., Chirathadam, T. A., Hagen, K., Martinez, A., Rice, B., Niedbalski, N., Hung, W., and Johnson, M., 2009, "Gas Bearing Technology for Oil-Free Microturbomachinery – Research Experience for Undergraduate (REU) Program at Texas A&M University
AHS 2009 paper	Kim, T. H., and San Andrés, L., 2010, "Thermohydrodynamic Model Predictions and Performance Measurements of Bump-Type Foil Bearing for Oil-Free Turboshaft Engines in Rotorcraft Propulsion Systems," ASME J. of Tribology, v132
ASME GT2009-59919	San Andrés, L., and Kim, T.H., 2010, "Thermohydrodynamic Analysis of Bump Type gas Foil Bearings: A Model Anchored to Test Data," ASME J. Eng. Gas Turbines and Power, v 132

References Foil Bearings

IJTC2008-71195	Kim, T.H., and San Andrés, L., 2009, "Effects of a Mechanical Preload on the Dynamic Force Response of Gas Foil Bearings - Measurements and Model Predictions," Tribology Transactions, v52
ASME GT2008-50571 IJTC2007-44047	Kim, T. H., and San Andrés, L., 2009, "Effect of Side End Pressurization on the Dynamic Performance of Gas Foil Bearings – A Model Anchored to Test Data," ASME J. Eng. Gas Turbines and Power, v131. 2008 Best PAPER Rotordynamics IGTI
ASME GT2007-27249	San Andrés, L., and Kim, T.H., 2009, "Analysis of Gas Foil Bearings Integrating FE Top Foil Models," Tribology International, v42
J of Tribology	Kim, T.H., Breedlove, A., and San Andrés, L., 2009, "Characterization of Foil Bearing Structure at Increasing Temperatures: Static Load and Dynamic Force Performance," ASME Journal of Tribology, v 131(3)
Tribology International	 San Andrés, L., and Kim, T.H., 2008, "Forced Nonlinear Response of Gas Foil Bearing Supported Rotors," Tribology International, 41(8), pp. 704-715. Kim, T-H, and L., San Andrés, 2007, "Analysis of Gas Foil Bearings with Piecewise Linear Elastic Support 18, Tribology International, 40, pp. 4020, 4045.
	Supports." Tribology International, 40, pp. 1239-1245.
AIAA-2007-5094	San Andrés, L., and T.H. Kim, 2007, "Issues on Instability and Force Nonlinearity in Gas Foil Bearing Supported Rotors," 43 rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, July 9-11
ASME GT2005-68486	Kim, T.H., and L. San Andrés, 2008, "Heavily Loaded Gas Foil Bearings: a Model Anchored to Test Data," ASME J. Eng. Gas Turbines and Power, v130
ASME GT2006-91238	San Andrés, L., D. Rubio, and T.H. Kim, 2007, "Rotordynamic Performance of a Rotor Supported on Bump Type Foil Gas Bearings: Experiments and Predictions," ASME J. Eng. Gas Turbines and Power, v129
ASME GT2005-68384	Rubio , D. , and L. San Andrés, 2007, "Structural Stiffness, Dry-Friction Coefficient and Equivalent Viscous Damping in a Bump-Type Foil Gas Bearing," ASME J. Eng. Gas Turbines and Power, v 129 2005 Best PAPER Rotordynamics IGTI Structures and Dynamics Committee
ASME GT2004-53611	San Andrés, L., and D. Rubio, 2006, "Bump-Type Foil Bearing Structural Stiffness: Experiments and Predictions," ASME J. Eng. Gas Turbines and Power, v128

References Metal mesh foil bearings

ASME GT2011-45274	San Andrés, L., and Chirathadam, T., 2011, "Metal Mesh Foil Bearings: Effect of Excitation Frequency on Rotordynamic Force Coefficients
ASME GT2010-22440	San Andrés, L., and Chirathadam T.A., 2010, "Identification of Rotordynamic Force Coefficients of a Metal Mesh Foil Bearing Using Impact Load Excitations."
ASME GT2009-59315	San Andrés, L., Chirathadam, T. A., and Kim, T.H., 2009, "Measurements of Structural Stiffness and Damping Coefficients in a Metal Mesh Foil Bearing."
AHS Paper	San Andrés, L., Kim, T.H., Chirathadam, T.A., and Ryu, K., 2009, "Measurements of Drag Torque, Lift-Off Journal Speed and Temperature in a Metal Mesh Foil Bearing," American Helicopter Society 65th Annual Forum, Grapevine, Texas, May 27-29
Other	
Journal of Tribology	Kim, T.H., and L. San Andrés, 2006, "Limits for High Speed Operation of Gas Foil Bearings," ASME Journal of Tribology, 128, pp. 670-673
ASME DETC2007-34136	Gjika, K., C. Groves, L. San Andrés, and G. LaRue, 2007, "Nonlinear Dynamic Behavior of Turbocharger Rotor-Bearing Systems with Hydrodynamic Oil Film and Squeeze Film Damper in Series: Prediction and Experiment."
	8

Topic

Statement of Work & Sources for Presentation

Objectives and accomplished work in 07-08 Computational model. Validation with published data. Rotordynamic measurements at TAMU

Objectives and accomplished work in 2008-09
 Description of test rig and foil bearings at TAMU
 Effect of temperature on bearing temperatures,
 coastdown speed and rotor motions
 Effect of cooling flow on bearing and shaft
 temperatures. Validation of computational model

* The computational code

Graphical User Interface. Further predictions

- GFB thermal management tests and preds.
- Closure & added value

Research Objectives (2007-08)

THD model for prediction of GFB performance

- Perform physical analysis, derive governing equations, and implement numerical solution.
- Develop GUI for User ready use
- Compare GFB predictions to limited published test data (NASA mainly)
- Revamp existing test rig with cartridge heater, acquire new bearings, machine new rotor
- Perform structural tests on bearings and measure rotordynamic response for increasing shaft temperatures

Scheduled Timeline & completion

Luis San Andres MS student Tae Ho Kim UG worker

and the second		10.0				1.1	-	
Task	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
Computational analysis GFBS					05			
Development physical model for thermal transport in foil bearings			- 2	31				
Implementation thermal model (Finite Element Based) and coupling to existing STRUCTURAL MODEL							1	
Integration of thermal model with GFB FD computational code (gas film)								100
Predictions of GFB performance for parametric studies			100			-		
Comparison of GFB predictions to measured performance from TAMU test rig		25.4						
Nonlinear analysis GFBS					E			Ţ
Development simple NONLINEAR physical model for foil bearings				314				
Prediction of performance and comparisons to available rotordynamic test data	The second							1
Test rig for identification of FB structure (High Temperature)			59					
Planning of modification, selection of instrumentation and cartridge heater, design of insulation cover				1.27				
Reception of parts and assembly of components, troubleshooting, connection to static loader and shaker		-						
Measurements of load & bearing deflection for increasing shaft temperatures (max 500 C), identification of FB structural parameters		-						
Rotordynamic-GFBs Test rig (High Temperature)							-	
Planning of modifications to existing, selection of instrumentation and cartridge heater, design of insulation cover and rotor			23			2		
Reception of parts and assembly of components, troubleshooting, connection to static loader and shaker	1							
Rotordynamic Measurements for increasing shaft temperatures (max 500 C), identification of GFB synchronous force coefficients								

Accomplishments: Proposed & Actual

Task	Planned & Actual	comment
Thermohydrodynamic Analysis of GFBS		
Physical model for thermal transport in foil bearings. Integration of thermal model with GFB FD computational code (gas film). Prediction of GFB performance: parametric study	V	Analysis completed. Code delivered on June 10, 2009
Validation of GFB predictions with measured temperatures from NASA & TAMU published research		See Q4 & Q7 reports
Nonlinear structural analysis of GFBS		
Development simple NONLINEAR physical model for foil bearings. Prediction of performance and comparisons to rotordynamic test data		Implementation in XLTRC2 for ready rotordynamic analyses
Test rig for identification of FB structure (High Temperature)		
Design & construction; selection & procurement of instrumentation and bearings; assembly, troubleshooting and operation at high temperature. Measurements of static load performance & comparison to predictions		See Q4, Q7 reports
Rotordynamic-GFBs Test rig (High Temperature)		
Design & construction; selection & procurement of instrumentation and bearings; assembly, troubleshooting and operation at high temperature rotor-bearing test rig. Measurements of temperatures and rotordynamic performance with Foster-Miller GFBs completed (see Q7). Tests with MiTi® bearings at higher temperatures in progress. Validation of computational model also in progress.	100%	Completed Dec 2010

1^{st &} 2nd Years

Thermohydrodynamic model in a GFB

Side view of GFB with hollow shaft

- Ideal gas with $\rho = \frac{P}{\Re_g T}$

- Gas viscosity,

 $\mu = \alpha, T$

- Gas Specific heat (cp) and thermal conductivity (κ_{a}) at an effective temperature

Reynolds equation in thin film

$$\frac{\partial}{\partial x} \left(\frac{h_f^3 P_f}{12\mu_f \Re_g T_f} \frac{\partial P_f}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{h_f^3 P_f}{12\mu_f \Re_g T_f} \frac{\partial P_f}{\partial z} \right) = U_{m(z)} \frac{\partial}{\partial x} \left(\frac{P_f h_f}{\Re_g T_f} \right)$$

Heat flow paths in rotor - GFB system

THD Model Validation Published data

Generation I GFB with single top foil and bump strip layer

Parameters V		comment		Parameters	Value		
Bearing cartridge				Gas properties at 21 °C			
Bearing inner radius	25 mm	Ref. [7]		Gas Constant	287 J/(kg-°K)		
Bearing length	41 mm	Ref. [7]		Viscosity	10 ⁻⁵ Pa-s		
Bearing cartridge thickness	5 mm	Assumed		Conductivity	0.0257 W/m°K		
Nominal radial clearance	20 µm	Assumed		Conductivity	0.0257 W/III K		
Top foil and bump strip layer				Density	1.164 kg/m ³		
Top foil thickness	127 µm	Ref. [21]		Specific heat	1,020 J/kg°K		
Bump foil thickness	127 µm	Ref. [21]		Ambient pressure	1.014 x 10⁵ Pa		
Bump half length	1.778 mm	Assumed		Cas viscosit	(^Q donaity ^Q		
Bump pitch	4.064 mm	Assumed		Gas viscosit	foil Young's		
Bump height	0.580 mm	Assumed		modulus, ar	nd clearance		
Number of bumps x strips	39 x 1	Assumed		\change with	temperature.		
Bump foil Young's modulus	200 GPa						
Bump foil Poisson's ratio	0.31			Radil and Zeszotek, 200 Dykas and Howard, 2004			
Bump foil stiffness	10.4 GN/m ³	4.747			17		

Peak film temperature Predictions & test data

2008 rotor-GFB test rig Max. temp. 130 °C

Drive motor (25 krpm).

Cartridge heater max. temperature: 300F

Air flow meter (Max. 100 L/min at 14 psig)

19

2008 hot rotor-GFB test rig

- **1** Bearing sleeve temperature (at five locations along circumference)
- **2** Bearing outer surface temperature (Drive and bearing and free end bearing)
- **3** Rotor surface temperature (Drive end and free end)
- 4 Bearing support (housing) surface temperature (Drive end and free end)

Numbers in circles show locations of temperature measurement.

THD Model Validation Bearings at TAMU

Parameter [mm]	Foster-Miller (2 nd gen.)	KIST (1st gen.)	MiTi (2 nd gen.)			
Bearing cartridge						
Outer diameter	50.85	50.80	44.575			
Inner diameter	39.36	37.95	37.921			
Top foil and bump strip lay)r					
Top foil axial length	38.2	38.1	25.4			
Top foil thickness	0.100	0.120	0.127			
Bump foil thickness	0.100	0.120	0.102			
Number of Bumps	25 × 5 axial	26 × 1 axial	24 × 3 axial			
Bump pitch	4.581	4.300	4.640			
Bump length	3.742	2.100	3.950			
Bump height	0.468	0.540	0.510			
Bump arc radius	5.581	4.161	4.079			
Bump arc angle [deg]	68	59	58			
Elastic Modulus 214 GPa Foster-Miller FB with Teflon® 21						

Poisson ratio=0.29

coating (Generation II)

Waterfall plots: coastdown responses

Case 1-3 without cooling flow, $T_a \sim 22^{\circ}$ C, and $T_{hs} = 22^{\circ}$ C, 93 °C, and 132°C

Rotor speed up 1X response

W/o cooling flow, $T_a \sim 22^{\circ}$ C, and $T_{hs} = 22^{\circ}$ C, 93 °C & 132°C

Above critical speed ~ 14.5 krpm, amplitude drops. A nonlinearity! As T_{hs} increases, the peak amplitude decreases.

Rotor coastdown 1X response

W/o cooling flow, $T_a \sim 22^{\circ}$ C, and $T_{hs} = 22^{\circ}$ C, 93 °C, and 132°C

As T_{hs} increases, critical speed raises by ~ 2 krpm and the peak amplitude decreases. Nonlinearity absent!

Topic

Statement of Work & Sources for Presentation

 Objectives and accomplished work in 07-08
 Computational model. Validation with published data. Rotordynamic measurements at TAMU

Objectives and accomplished work in 2008-09
 Description of test rig and foil bearings at TAMU
 Effect of temperature on bearing temperatures,
 coastdown speed and rotor motions
 Effect of cooling flow on bearing and shaft
 temperatures. Validation of computational model

* The computational code

Graphical User Interface. Further predictions

- GFB thermal management tests and preds.
- Closure & added value

Research Objectives 2008-09

Model validation with TAMU FB test data

- Complete test rig using cartridge heater for high temperature operation (up to 360C)
- Measure rotordynamic performance during speed coastdown from 30 krpm and for increasing shaft temperatures
- Quantify effect of side flow on cooling bearings (max. 150 LPM per bearing)
- Benchmark model predictions

THD Model Validation Bearings at TAMU

Parameter [mm]	Foster-Miller (2 nd gen.)	KIST (1st gen.)	MiTi (2 nd gen.)			
Bearing cartridge						
Outer diameter	50.85	50.80	44.575			
Inner diameter	39.36	37.95	37.921			
Top foil and bump strip lay)r					
Top foil axial length	38.2	38.1	25.4			
Top foil thickness	0.100	0.120	0.127			
Bump foil thickness	0.100	0.120	0.102			
Number of Bumps	25 × 5 axial	26 × 1 axial	24 × 3 axial			
Bump pitch	4.581	4.300	4.640			
Bump length	3.742	2.100	3.950			
Bump height	0.468	0.540	0.510			
Bump arc radius	5.581	4.161	4.079			
Bump arc angle [deg]	68	59	58			
Elastic Modulus 214 GPa, — — — — — — — — — — — — — — — — — — —						

Poisson ratio=0.29

2009 hot rotor-GFB test rig

Max. 360 °C

Instrumentation for high temperature. Insulation casing Gas flow meter (Max. 500 LPM). Drive motor (max. 65 krpm)

Thermocouples in test rotor-GFB rig

Overall 15 thermocouples for GFB cartridge outboard, Bearing support housing surface, Drive motor, Test rig ambient, and Cartridge heater temperatures ³⁰ **Two noncontact infrared thermometers** for rotor surface temperature

Thermocouples in test GFB

Foster-Miller FB uncoated (Generation II)

five (5) thermocouples placed within machined axial slots.

Time to coast down rotor Effect of shaft temperature

Baseline, Heater up to 360C. No forced cooling

> Long time to coastdown : very low viscous drag (no contact between rotor and

bearings)

Test Data Coastdown time lesser as rotor heats (reduced clearance)

Bearing outboard temperature predictions & test data

FB OD temperature rises with rotor speed and decreases with forced cooling stream ~ 50 LPM. Predictions agree with test data

1X response as rotor heats Tests

Baseline. Heater to 360C. No forced cooling

Test Data

As heater *T* increases to 360°C, peak motion amplitude decreases in speed range 7 krpm to 15 krpm

1X rotor response predictions & tests

Baseline. Heater to 360C. No forced cooling

Test data & predictions

As heater temperature raises, rotor amplitude decreases for speed < 15 krpm & the critical speed increases from 14 krpm to 17 krpm

Bearing outboard temperature predictions & tests

Test data & predictions

FB cartridge temperature increases linearly with shaft temperature
Cooling gas flow into GFBs

Gas pressure Max. 100 psi

Cooling flow needed for thermal management: to remove heat from shear drag or to reduce thermal gradients in hot/cold engine sections

Cooling gas flow into GFBs

Gas pressure Max. 100 psi

Heater warms unevenly rotor. Side cooling cools unevenly rotor and also heater

Heating of rotor Effect of rotor speed and side cooling

Baseline imbalance, No side flow & 50 L/min

: Temp. drop due to 50L/min cooling flow

No heating Free End Drive End T1 T1 T1 T12

Bearing cartridge and rotor temperatures increase steadily with time

Rotor speed : 10, 20, 30 krpm

Rotor speed makes rotor and bearings hotter

Cooling flow removes heat from shear dissipation in rotor, most effective at high speed

Test Data Heater OFF

Heater temperature Effect of cooling flow

Heater temperature increases

Heater up to 360C w/o & w cooling flows

Rotor speed : 30 krpm

40

Test Data Cooling>100 LPM cools both rotor & HEATER!

Bearings OD temperatures Effect of cooling flow

Cooling effective > 100 LPM and when heater at highest temperature

Bearing cartridge temperature Effect of cooling flow

Test Data Bearing OD temperature decreases with cooling flow

42

Time to coast down rotor Effect of cooling flow

Test Data Coastdown time down by 20% (13 s) with cooling at 50 LPM

43

Bearing cartridge temperature **Predictions & tests**

Test data & predictions

As cooling flow rate increases, FB cartridge temperature decreases. Predictions agree with test data.

Post-test condition of rotor and GFBs

Before operation

UNCOATED top foil !

Before operation

FE

DE

After extensive heating with rotor spinning

Wear marks on top foils are at side edges

Rotor shows polishing marks at bearing locations. Deep wear marks at outboard ed⁴⁵ges

After extensive hearing with rotor spinning tests

Test data & predictions

> Amplitudes of rotor synchronous motion proportional to added imbalances.

- For operation with hot shaft, amplitude of rotor motion drops while crossing (rigid body mode) critical speed.
- As rotor and bearing temperatures increase, air becomes more viscous and bearing clearances decrease; hence coastdown time decreases.
- Thermal management with axial cooling streams is beneficial at high temperatures and with large flow rates ensuring turbulent flow conditions.
- > Test foil bearings continue to survive high temperature & high vibration operation!

Topic

Statement of Work & Sources for Presentation

Objectives and accomplished work in 07-08

Computational model. Validation with published data. Rotordynamic measurements at TAMU

Objectives and accomplished work in 2008-09

 Description of test rig and foil bearings at TAMU
 Effect of temperature on bearing temperatures, coastdown speed and rotor motions
 Effect of cooling flow on bearing and shaft
 temperatures. Validation of computational model

* The computational code Graphical User Interface. Further predictions

GFB thermal management tests and preds.

Closure & added value

The computational program

- Windows XP OS and MS Excel 2003 (minimum requirements)
- Fortran 99 Executables for FE underspring structure and gas film analyses. Prediction of forced – static & dynamic- performance.
- Excel® Graphical User Interface (US and SI physical units). Input & output (graphical)
- Compatible with XLTRC² and XLROTOR codes

Code: XL_GFB_THD

Delivered on June 2009

Worksheet: Shaft & Bearing models (I)

Worksheet: Shaft & Bearing models (II)

51

Worksheet: Top Foil and Bump Models

XL GFB TH *** Spreadsheet for hydrodynamic foil GAS bearings TEES project # 32525/39600/ME funded by NASA Version 1.0. Copyright 2009 by Texas A&M University. All rights reserved. Dr. Luis San Andres & Dr. Tae Ho Ki Interface to Program:XLGFBHT Foster-Miller Tech 2nd GEN GAS FOIL BEARING EDIT "DUMP.TXT" after program execution to VERIFY calculations & convergence. Title: Thermohydrodynamic MODEL Bearing Geometry Lubricant Fluid Properties aalysis Type Rotor Outer Diameter 3.81E-02 meters ΨL 3.81E-02 Axial Length meters **Radial Clearance** 3.50E-05 neters

 Radial Clearance
 3.50E-05

 Radial Clearance
 3.50E-05

 Number of shims
 0

 TOP Foil - arc length
 \$50.00

 deg
 45.00

 Shim thickness
 0.00

 offract (Acq Inceting of the State)
 0.00

1.010	Dar
21.0	deg C
1.93E-02	c-Poise
1.16	kg/m3
1007.0	Ji(kg-K)
0.02	₩/(m-K)
287	JI(kg-K)
	1.93E-02 1.16 1007.0 0.02 287

CONVERGENCE PAR.	AMETER:	Select - Analysis Type
Max Iterations - film lan-	500	Yang baad
error press-temp film lar	1.00E-05	Select - Option Foil Detach
		DETACH
GRID RATIO (circ/Azi	0.98	
No. Circ. Grid Points	76	
No. Axial Grid Points	13	4. Run FOIL_GAS_BEAR
Frequency Analysis Op	otion	
Constant Shaft Rpm	28080	rpm

Ē

Synahraana Analysia

NOTE to USER : Enter input values in gray cells.

"Run FOIL_GFB_BEAR" predicts GAS FOIL BEARING static and dynamic

force performance and temperature field.

Yellow cells show output values.

	Ent	er INPUT valu	ies			FOIL Bearin	g force coef	ficients						IMPEDAI	NCES (R:	real, I: im
<u> </u>	<u></u>	Load-X N	Load-Y N	Speed rpm	Kstructure N/m	Kxx [N/m]	Kzy N/m	Kyx N/m	Kyy H/m	Cxx [N-s/m]	Czy N-s/m	Cyx N-s/m	Cyy N-sim	R-XX N/m	R-XY	R-YX
		6.50	0.00	10000	2.37E+06	3.33E+06	6.12E+05	-1.18E+06	3.33E+06	3227.6	-1868.5	879.9	3676.8	3.33E+06	6.12E+05	-1.18E+06
		6.50	0.00	20000	2.37E+06	5.53E+06	-6.03E+05	-1.29E+06	5.39E+06	1613.4	-1110.6	621.5	1913.9	5.53E+06	-6.03E+05	-1.29E+06
		6.50	0.00	30000	2.37E+06	6.93E+06	-1.14E+06	-1.18E+06	6.72E+06	938.6	-661.0	457.3	1188.0	6.93E+06	-1.14E+06	-1.18E+06
		6.50	0.00	40000	2.37E+06	7.98E+06	-1.31E+06	-1.10E+06	7.76E+06	606.0	-439.6	356.4	815.2	7.98E+06	-1.31E+06	-1.10E+06
,																

FOIL Bearing static load performance parameters																
Speed	e_structure	eI	e y	Eccentricity	eccentricit T	Angle	Hi.i fil.	Peak film temperatur	Fr Reaction	Fy Reaction	Force	Specific load	Max pressur	Torque	Power Loss	Keq
[rpm]	p.m.	p.m.	p.m.	p.m.	ratio	deg	[pm]	[degC]	N	N	N	bar	[bar]	N-m	[k¥]	N/m
10000.00	38.41	1.38	3.00	3.30	0.09	65.33	15.48	124.3	-6.5	-0.1	6.5	0.04	1.11	1.68E-03	1.76E-03	2.93E+06
20000.00	38.41	0.16	1.64	1.65	0.05	84.26	16.76	125.1	-6,4	0.0	6.4	0.04	1.13	3.26E-03	6.82E-03	5.17E+06
30000.00	38.41	-0.10	1.14	1.14	0.03	-84.80	16.76	126,4	-6.5	0.1	6.5	0.04	1.18	4.81E-03	1.51E-02	6.71E+06
40000.00	38.41	-0.22	0.82	0.85	0.02	-74.68	16.32	128.4	-6.5	0.1	6.5	0.05	1.23	6.39E-03	2.68E-02	7.87E+06

Worksheet: Foil Bearing (Operation and Results)

Static load parameters **Predictions**

Predictions

As temperature increases, journal attitude angle and drag torque increase but journal eccentricity and minimum film thickness decrease due to reduction in operating clearance

Bearing stiffnesses Predictions

Drive End FB

static load ~ 6.5 N No cooling flow

Predictions

As temperature increases, stiffnesses (K_{XX} , K_{YY}) increase significantly, while difference (K_{XY} - K_{YX}) increases slightly at low rotor speeds and decreases at high rotor speeds

Bearing damping Predictions

Drive End FB

static load ~ 6.5 N No cooling flow

Predictions

As temperature increases, damping $(C_{\chi\chi}, C_{\gamma\gamma})$ increase. Cross damping $(C_{\chi\gamma}, C_{\gamma\chi})$ change little above 30 krpm.

Predictions on effect of cooling flow

Predictions

Peak temperature drops with strength of cooling stream. Sudden drop at ~ 200 lit/min b/c of transition from laminar to turbulent flow

Predictions radial temperature Model

Model predictions

With forced cooling, GFB operates 50 °C cooler. Outer cooling stream is most effective in removing heat

Topic

Statement of Work & Sources for Presentation

Objectives and accomplished work in 07-08

Computational model. Validation with published data. Rotordynamic measurements at TAMU

Objectives and accomplished work in 2008-09

Description of test rig and foil bearings at TAMU Effect of temperature on bearing temperatures,

Effect of cooling flow on bearing and shaft temperatures. Validation of computational model

* The computational code

Graphical User Interface. Further predictions

Work with MiTi Bearings

 CI San Andrés, L., Ryu, K., and Kim, T.H., 2011, "Identification of Structural Stiffness and Energy Dissipation parameters in a 2nd Generation Foil Bearing; Effect of Shaft Temperature", ASME J. Eng. Gas Turbines Power, vol. 133 (March), pp. 032501

MiTi Korolon® foil bearing

1 pet	Cartridge sheet
	Top foil
1	Bumps

Two generation II GFBs

Three (axial) bump strip layers, each with 24 bumps. Korolon® 800 coating (up to 800°F) on top foil surface.

Parameter [Dimension]	Symbol	Value
Cartridge inner diameter [mm]	D	37.98
Cartridge outer diameter [mm]	Do	44.64
Axial bearing length [mm]	L	25.40
Number of bumps	N _B	24× 3
Bump pitch [mm]	S	4.318
Bump length [mm]	21 ₀	3.302
Bump foil thickness [mm]	t	0.102
Bump height [mm]	h	0.394
Top foil thickness [mm]	t _T	0.127
Bump arc radius [mm]	r _B	5.08
Bearing Top foil inner diameter [mm]	D _T	38.135
Shaft diameter [mm]	D	36.84
Nominal radial clearance [mm]	С	0.160

FB nominal dimensions

MiTi® FB deflection versus static load

Room temperature tests

Lathe chuck

Shaft OD 36.56 mm: Highly preloaded FB

Large hysteresis loop : Mechanical energy dissipation due to dry-friction between top foil contacting bumps and bump strip layers contacting bearing cartridge sheet

MiTi® FB structural stiffness

Room temperature tests

MiTi® FB deflection versus static load

MiTi® FB test setup for dynamic loads

Shaft Temperature, °C Bearing Mass *M*, kg

23, 103, 183, and 263 0.785 (load cell + attachment hardware) Uncoated rigid, nonrotating, hollow shaft supported on FB.

Shaft heating using electric heater

Parameter Identification (no shaft rotation)

Equivalent Test System: 1DOF

K stiffness, C_{eq} viscous damping OR γ loss factor

$$M \ddot{x} + K x + C_{eq} \dot{x} = F_{(t)}$$

$$F_{ext} \xrightarrow{K_{eq}} M_{eq} \xrightarrow{M_{eq}} C_{eq}$$

$$F(t) = F_O e^{i\omega t} \quad x(t) = \overline{X} e^{i\omega t}$$

Harmonic force & displacements

$$Z = \frac{F_o}{\overline{X}} = (K - \omega^2 M) + i \,\omega C_{eq}$$

Impedance Function

 $E_{dis} = \pi \omega C_{eq} \left| \overline{X} \right|^2$ $E_{dis} = \pi \gamma K \left| \overline{X} \right|^2$

Viscous Dissipation or dry-friction Energy

Effect of temperature on dynamic stiffness

Real (*F/X*) decreases with FB motion amplitude & increases with shaft temperature.

Effect of temperature on structural stiffness

Highly preloaded FB: *K* decreases as FB motion amplitude increases due to decrease in # of active bumps

Effect of temperature on stiffness & damping

FB stiffness and viscous damping increase with shaft temperature and decrease with excitation frequency.

TEST FB cartridge OD is constrained within bearing housing. FB radial clearance decreases as shaft temperature raises!

Effect of temperature on loss factor γ

Structural (material) loss factor best represents energy dissipation in FB

FB motion amplitude: 14.8 µm

The FB loss factor increases with excitation frequency and decreases slightly with shaft temperature. More damping expected in rotordynamic measurements

Texas A&M University Mechanical Engineering Department

EFFECT OF COOLING FLOW ON THE OPERATION OF A HOT ROTOR-GAS FOIL BEARING SYSTEM

fribology G

Nov. 23, 2010

Ph. D. Final Exam

Keun Ryu

Chair of Advisory Committee: Dr. Luis San Andrés

This material is based upon work supported by NASA GRC and the TAMU Turbomachinery Research Consortium (TRC)

Objective

Quantify effect of cooling flow and shaft temperature on the rotordynamic performance of a GFB supported rotor. Investigate adequate thermal management strategies using forced cooling flow into the GFBs

Research tasks

- Revamp a GFB rotordynamic test rig for operation at high speed and extreme temperatures
- Measure temperature of bearings and rotor and the motions of rotor for increasing rotor speeds, shaft temperatures, and cooling flow rates
- Quantify effect of gas flow on cooling bearings (max. 500 L/min)

 Compare the experimental results (rotor responses and bearing temperatures) to predictions from an in-house computational program

TAMU Hot rotor-GFB test rig

Instrumentation for high temperature

Gas flow meter (Max. 500 LPM). Drive motor (max. 50 krpm)

Cooling gas flow into GFBs

Gas pressure Max. 100 psi

Cooling flow needed for thermal management: to remove heat from shear drag or to reduce thermal gradients from hot to cold engine sections

Cooling gas flow into GFBs

Gas pressure Max. 100 psi

Heater warms unevenly test rotor. Side cooling flows cool unevenly the rotor.

Overview – Thermal management

Component-level tests

- Ruscitto et al (1978): Perform load capacity tests on 1st gen. GFB up to 45 kprm (1.7 MDN) and static load 111 N with 110 L/min cooling flow at 315C bearing temperature.
- DellaCorte (1998): No cooling flow. 3rd gen. GFB up to 70 krpm (2.4 MDN) at 700C. Bearing load capacity and torque decrease with temperature because of reduced bearing preload.
- Dykas (2006): Investigates thermal management in foil thrust bearings. Cooling flow rates, to 450 L/min, increase bearing load capacity at high rotor speeds. Inadequate thermal management can give thermo-elastic distortions affecting load capacity of test FB
- Radil et al (2007): Evaluate effectiveness of three cooling methods (axial cooling, direct and indirect shaft cooling) for thermal management in a hot GFB environment

Overview – Thermal management

System-level tests

- LaRue et al (2006): Oil-free Turbocharger. Thermal management achieved by cooling the TC rotor and FBs.
- Lubell et al (2006): Commercial oil-free micro-turbines. Cooling air flows axially through hollow rotor ID remarkably decrease rotor temperature.
- Heshmat et al (2005): Demonstrates hot (650C) GFB operation in a turbojet engine to 60 krpm. Cooling flow rates to 570 L/min still give large axial thermal gradients (13°C/cm)
- San Andrés et al (2009): Forced cooling flow has limited effectiveness at low rotor temperatures. At high test temperatures, large cooling flows (turbulent) remove heat more efficiently.

Gases have limited thermal capacity, hence (some) bearings demand large cooling flows to remove heat from hot rotor sections.

Why thermal effects are important?

Gas bearings (when airborne) are nearly friction free, hence the show small (drag) power loss and temperature raise. With hot rotors the "lubricant" in the bearings must also cool components. But gases have small thermal capacity and conductivity, and hence, get hot! Rises in temperature change material properties (solids and gas), and most importantly, change bearing clearance!

Lesson from previous demonstration

12/2009: HT GFB test

NO COOLING FLOW!!

Test Gas Foil Bearing

2010: GFBs donated by KIST

Reference: DellaCorte (2000) Rule of Thumb

Test Gas Foil Bearing (Bump-Type) 1st Generation. Diameter: 36.63 mm Foil material: Inconel X-750

UNCOATED TOP Foil !

Hollow rotor (Inconel 718): 1.360 kg. Length: 200.66 mm. OD 36.51 mm and ID 17.9 mm. HT Coating up to 400C

Foil Bearing Dimension

KIST FB uncoated (Gen. I)

	Parameter [mm]	
Bearing cartridge	E I	
Outer diameter	50.8	
Inner diameter	37.95	Top foil
Top foil and bump strip layer		
Top foil axial length	38.1	Rump strip lavor
Top foil thickness	0.12	
Bump foil thickness	0.12	bearing sleeve
Number of Bumps	26 × 1 axial	and a very set of
Bump pitch, S _o	4.4	s_0 h_B
Bump length, l_B	2.5	
Bump height, h_B	0.50	
Bump arc radius, r_B	2.25	Ruler: 0.5 mm
Bump arc angle [deg]	67	Each graduation
		The second s

Foil material: Inconel X-750

FB deflection versus static load

Hysteresis loop : Mechanical energy dissipation

due to dry-friction between top foil contacting bumps and bump strip layers contacting bearing cartridge

Thermocouples in test GFB

Four (4) thermocouples placed within machined axial slots.

Thermocouples in bearing housing

1 in housing duct + 1 at outboard plane of free end bearing

Hot rotor-GFB test rig

Dimensions

Hot rotor-GFB test rig

Test Cases

Test case #	Heater set temperature [°C]	Rotor speed [krpm]	Set cooling flow rate (into two bearings) [L/min]	Time [min]
1	65	0	350 → 250 → 150 → 50 → 0	87
2	100	0	350 → 250 → 150 → 50 → 0	84
3	150	0	350 → 250 → 150 → 50 → 0	108
4	65	10→ 20 → 30	350 → 250 → 150 → 50	248
5	100	10→ 20 → 30	350 → 250 → 150 → 50	266
6	150	10	350 → 250 → 150 → 50	136
7	Off	30	350	30
8	65	30	350	30
9	100	30	350	30
10	100	30	50	30
100			Overall 1049 min	

Rotor OD Temps. vs Time

Duct & Outboard temperature rises vs time

FE bearing temperature rise vs time

Bearing temperature rise vs duct temp.

Test cases #2 and #5

Heater set temperature = 100°C

Free end Bearing

Temperatures on bearings ODs linearly increase with duct air temperature as the cooling flow rate into the bearings decreases

Rise in temperatures: Duct vs Rotor OD

Test cases #2 and #5

Bearing OD temperature rise vs. cooling flow

Test cases #2 and #5

Free end Bearing

Temperature difference (T-Td) is invariant while increasing cooling flow rate!

Bearing temperature is a small fraction of the heat source temperature (heater and duct air).

Rotor OD temp. vs heater temp. (- duct ???)

No rotor spinning

Test cases #1~#3

The cooling gas flow removes heat from the top foil back surface, thus cooling the rotor OD

Duct

Rotor OD temp. vs heater temp.

Test cases #4 and #5

Rotor OD temp (relative to duct temp Td) decrease with cooling flow

Cooling Capability: Bearing OD temp.

Test cases #2 and #5

0.2 [°C/L/min] 0.15 No rotor spinning 10 krpm 20 krpm 30 krpm 0.1 Constant 0.05 Cooling flow rate Temperature rise 0 100 200 300 400 500 -0.05 -0.1 **Cooling flow rate increases** -0.15 -0.2 Cooling flow rate [L/min]

Heater set temperature = 100°C

Free end Bearing

The cooling capability of the forced axial flow on the bearing temperatures changes little with flow rate

Cooling Capability: Rotor OD temp.

Test cases #2 and #5

Heater set temperature = 100°C

Free end rotor

The cooling capability of the forced axial flow on the rotor temperatures appears to have an exponential decay character.

The cooling effectiveness of the forced cooling stream is most distinct at the free end rotor OD.

Cooling flow rate does not affect amplitude and frequency contents of rotordynamic displacement

Rotor motion measurements

Test case #6

Rotor OD temperature does not affect rotor dynamic displacements!

Synchronous rotor response: effect of shaft temp.

Flexible rotor mode at ~90 krpm (rap test) Critical speed (Rigid body mode) ~ 5 and 8 krpm

No major differences in responses between cold and hot

Test cases #7~#9

GFB TEHD model

By San Andrés and Kim (2008)

Gas film	Reynolds eqn. for hydrodynamic pressure generation Energy transport eqn. for mean flow temperature Various surface heat convection models Mixing of temperature at leading edge of top foil
Top foil & underspring	Thermo-elastic deformation eqns.Finite Elements and discrete parameter for bump strips.Thermal energy conduction paths to side cooling flow and bearing housing.
Bearing clearance	Material properties (gas & foils) = f (Temperature) Shaft thermal and centrifugal growth Bearing thermal growth

Recap: test rotor and FB

Schematic view of rotor and heater cartridge + side cooling stream

Heat flow paths in rotor - GFB system

Bearing temperature predictions & tests

Predictions agree with test data!!
Bearing temperature predictions & tests

Predictions follow test data: better at DEB since smaller temperature gradient along heater axial length

Predictions: *Temperature* fields

GFB rotorydnamic force coefficients do not change with the strength of cooling flow rate

GFB rotorydnamic force coefficients do not change with the strength of cooling flow rate.

FE Model of Test Rotor-Bearing System

A linear rotordynamics software (XLTRC2®) models test rotor – GFBs system and predicts the rotor synchronous responses

Damped Natural Frequency Map

Test case #7, Heater off

The predicted rotor responses reasonably correlate with the measurements.

Conclusions

- GFB temperatures linearly increase with the inlet cooling air temperature.

- When the rotor spins, the bearing sleeve temperatures do not change with the cooling flow rate; albeit the rotor OD temperature increases with the strength of the cooling stream,

- The cooling effect of the forced external flows is most distinct when the rotor is hottest and at the highest rotor speed.

- Forced cooling flows do not affect the amplitude and frequency contents of the rotor motions. The test system (rigid-mode) critical speeds and modal damping ratio remain nearly invariant for increasing the rotor temperature and cooling flow strength.

-A physics-based computational THD model predicts accurately measured FB OD temperatures for increasing shaft temperatures with cooling flow

- Rotordynamic analysis integrating predicted FB force coefficients reproduces recorded rotor dynamic responses with increasing cooling flow rate and shaft temperature.

Predictive tool validated & benchmarked to reliable test data base !!!

The present work provides the most complete to date measurements of GFB temperatures and rotordynamic response thereby extending the GFB knowledge database. Comprehensive experiments and benchmarking of predictive tool serve to advance GFB applications for use into high temperature microturbomachinery.

Topic

Statement of Work & Sources for Presentation

- Objectives and accomplished work in 07-08
 - Computational model. Validation with published data. Rotordynamic measurements at TAMU
- Objectives and accomplished work in 2008-09
 - Description of test rig and foil bearings at TAMU Effect of temperature on bearing temperatures, coastdown speed and rotor motions Effect of cooling flow on bearing and shaft
- * The computational code
- Graphical User Interface. Further predictions

 Current work with MiTi Bearings
- Added value & closure

NSF-Research Undergraduate Experience in Microturbomachinery & Manufacturing

To conduct hands-on training and research in mechanical, manufacturing, industrial, or materials engineering topics related to technological advances in microturbomachinery

To develop microturbines to enhance defense, homeland security, transportation, and aerospace applications.

(10 students /year) x 3 y

NSF (06-09) \$ 259 k

Added value to NASA Project

2009 REU MTM Program

Closure: objectives accomplished

- To develop a physics-based computational model of GFB including thermal effects
- -To develop a fully tested and experimentally verified design tool for predicting GFB performance
- To measure the rotordynamic performance of a HOT rotor supported on GFBs
- To quantify the effect of feed gas flow on cooling GFBs

Predictive tool validated & benchmarked to reliable test data base !!!

Acknowledgments

- NASA GRC: Drs. S. Howard & Dr. C. DellaCorte
- Turbomachinery Research Consortium
- NSF REUP
- Capstone Turbine, Inc.
- MiTi©, Foster-Miller
- KIST: Korea Inst. Science & Technology
- Honeywell Turbocharging Technologies

Learn more at: http://rotorlab.tamu.edu

Back up slides

THD Model Validation

Bearings at TAMU

Parameter [mm]	Foster-Miller (2 nd gen.)	KIST (1st gen.)	MiTi (2 nd gen.)
Bearing cartridge			
Outer diameter	50.85	50.80	44.575
Inner diameter	39.36	37.95	37.921
Top foil and bump strip laye	r i		
Top foil axial length	38.2	38.1	25.4
Top foil thickness	0.100	0.120	0.127
Bump foil thickness	0.100	0.120	0.102
Number of Bumps	25 × 5 axial	26 × 1 axial	24 × 3 axial
Bump pitch	4.581	4.300	4.640
Bump length	3.742	2.100	3.950
Bump height	0.468	0.540	0.510
Bump arc radius	5.581	4.161	4.079
Bump arc angle [deg]	68	59	58

Elastic Modulus 214 GPa, Poisson ratio=0.29

Static load test setup

Steady static load (or unload) proportional to linear movement of lathe tool holder

126

High temperature rotor

NO COST!

: photos taken by manufacturer (KIST) prior to machining of threaded holes at rotor ends and coating shaft at bearing locations.

Locations of 8 threaded holes of 4–40 tap with 13mm depth

KIST proprietary solid lubricant (400 °C)

Closure Y2

Assess effects of temperature (to 160 C) on the structural properties of FB from static load (250 N) tests:

Loading and unloading tests show hardening nonlinearity and mechanical hysteresis.

FB structural stiffness reduces with temperature due to increase in bearing radial clearance (atypical).

Model predictions reproduce test data, when accounting for thermal effects in materials properties and components' expansion.

> ADDED VALUE:

08 & 09 Summer NSF-REU in microturbomachinery educated six undergraduate students (US citizens).

1X response with cold and hot rotor

Baseline coastdown, No forced cooling

Elastic rotor mode at 29 krpm (480 Hz) : soft coupling and connecting rod Critical speed (rigid body mode) ~ 13 krpm Test Data

Similar rotor responses for cold and hot rotor operation