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Predictions vs. Test Results for Leakage and Rotordynamic Force Coefficients of a Fully 

Partitioned Pocket Damper Seal and a Labyrinth Seal - Limitations of the Current 

Computational Model 

 

Executive Summary 

Pocket damper seals (PDS) evolved from labyrinth seals (LS) by adding radial baffles 

between pairs of blades, thus dividing the circumferential plenum into pockets of equal arcuate 

length, whose role is to brake the evolution of the circumferential flow velocity. A PDS leaks 

more than a LS, but the PDS provided a lot more effective damping and attenuate rotor vibration 

amplitudes more efficiently than a LS. 

The technical report gives introduction to the program TAMU PDSeal and the user 

interface XLPDS
®
.  Also, this report delivers predictions of rotordynamic force coefficients for a 

test LS and a test FPDS in Ref. [1]. The predicted rotordynamic force coefficients correlate well 

with the test data for the labyrinth seal [1]. However, predicted force coefficients for the FPDS 

are in gross error when compared to the experimental coefficients. Hence, the current 

computational program shows severe limitations to predict the dynamic force performance of 

PDSs with thick walls. 

The physical model in the TAMU PDSeal
 
program is a one-control volume, turbulent 

bulk flow model that includes the effects of circumferential flow velocity within a seal pocket 

and uses Neumann’s leakage equation across the seal blades. The model ignores the flow 

resistance along the circumferential direction, badly needed for PDS with blunt blades of sizable 

axial thickness. Needless to state that, it is in this region the seal develops a cross-coupled 

stiffness as the gas is whirled because of shaft rotation. Recommendations for modifications of 

the PDSeal code are given at the end of this report. 
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Nomenclature 

 
iA  ( )L B H  Cross-section area between seal and shaft of the thi  control 

volume [m
2
]  

B  Seal teeth height [m] 

,C c  Seal direct / cross-coupled damping force coefficients [N-s/m] 

fC  Flow contraction coefficient [-] 

kC  Kinetic energy carryover coefficient [-] 

d  Cavity depth [m] 

dD  2 ( ) / ( )L B H L B H    Hydraulic diameter [m] 

e  Surface roughness [m] 

H  Seal clearance [m] 

h  Nominal clearance [m] 

,K k  Seal stiffness force coefficients [N/m] 

L  Axial length of seal cavity [m] 

M  Axial mass flow rate [kg/s] 

m  Axial mass flow rate per unit circumferential length [kg/m/s] 

n  Number of teeth 

iP  Pressure in the thi  cavity [Pa] 

inP  Supply pressure [Pa] 

outP  Back pressure [Pa] 

gR  Specific gas constant [J/kg/K] 

aR  
1

( )
2

L sR R  Average seal radius [m] 

rR  Rotor radius [m] 

Re  Reynolds number 

is  Distance between the centers of the thi  and the 1thi  cavities [m] 

T  Temperature [K] 

t  Time [s] 

bt  Blade tip thickness [m] 

U  Circumferential bulk-flow velocity in seal pocket [m/s] 

V  Axial velocity [m/s] 

  Specific heat ratio [-] 

  Fluid viscosity [Pa-s] 



vi 
 

  Journal rotation speed [rad/s] 

  Excitation frequency [Hz] 

 

 



1 
 

A Short literature review on pocket damper seals 

Labyrinth seals (LS) are installed in compressors and turbines as balance piston drums, 

interestage seals and impeller seals to prevent fluid leakage from a high pressure region to a low 

pressure region [2]. The blades (teeth) of a LS are very sharp and act as orifice-like restrictions 

resisting the axial flow. LSs are effective in restricting leakage [3]; however, experimental 

results [4, 5] evidence two disadvantages of LSs. One is that the direct damping coefficient of a 

LS is usually small, even negative; and the other disadvantage is that the evolution of the 

circumferential flow velocity along the seal causes large cross coupled stiffnesses, which are 

known drivers of rotor-bearing system instability. Hence, LSs provide limited effective damping 

and could even act to destabilize a whole rotor bearing system. [6]  

Pocket damper seals (PDS) evolved from labyrinth seals by adding radial baffles between 

pairs of blades, thus dividing the circumferential plenum into pockets of equal arcuate length. 

The baffles role is to brake the evolution of the circumferential flow velocity. Early experiments 

[6, 7] were conducted to reveal the effectiveness of amplitude of imbalance response well in 

reducing in a rotor with the seals installed mid plane. Test results show a PDS leaked more than 

a LS [7], but the PDS provided a lot more effective damping (100 times more) and attenuated 

rotor vibration amplitudes more efficiently than a LS [6].  

In 1993 Vance and Shultz [6] conducted experimental measurements in a non-rotating 

shaft and with a two-bladed four-pocket PDS with diverging clearance. The blades of the PDS 

were as sharp edged as those in a typical LS. The test results show the PDS has more than fifteen 

times damping than that in a conventional LS with the same clearance, and while operating with 

a pressure ratio (supply pressure / discharge pressure) equal to 3.1 [6]. 



2 
 

In 1996 Vance and Li [7] conducted further experiments in a rotating shaft and with the 

same PDS as in Ref. [6]. The authors report the leakage of the PDS is about 30% higher than that 

of a conventional LS both with the same dimensions and operating under identical conditions. In 

addition, the leakage of both the PDS and the LS increase linearly with the pressure ratio (supply 

pressure / back pressure = ambient pressure). However, the leakage of the PDS increases faster 

than that of the LS when the pressure ratio increases [7]. At the time (1993-1996), the 

measurements were a revelation of the potential impact PDSs could have in commercial rotating 

machinery.  

Bulk-flow models [8] are typically used to predict the leakage and the rotordynamic force 

coefficients of LSs. Li and San Andrés [9] apply the bulk-flow model [8] in a one control volume 

(1CV)  method to predict the leakage and rotordynamic force coefficients in a single cavity PDS 

with two sharp teeth. As compared to a simple lumped parameter model [10], Li and San Andrés 

add the effects of fluid viscosity, flow turbulence, and circumferential flow swirl velocity within 

a seal pocket. The wall shear stress differences are functions of the local flow Reynolds number 

and rotor/stator surface conditions. Neumann’s empirical leakage model [11] is used for 

prediction of the axial mass flow rate though a tooth clearance.  

Li and San Andrés [9] also report predicted mass flow rate and direct damping coefficient 

for a two-bladed, four-pocket PDS with sharp teeth that correlate well with the test data in Ref. 

[12]. Li et al. [13] make further comparisons between predictions and test results for the 

rotordynamic force coefficients and the leakage flow rate of a two-bladed, four-pockets PDS of 

diverging clearance. The experiments and predictions show that the direct stiffness, damping 

force coefficients and leakage flow rate of the PDS are weak functions of rotor speed and 

proportional to the pressure ratio (supply pressure/discharge pressure). The test results do not 
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show an apparent trend for the cross-coupled stiffnesses versus rotor speed while the numerical 

prediction estimates that the cross-coupled stiffnesses slightly increase. The magnitudes of both 

measured and predicted cross-coupled stiffness coefficients are much smaller than that of the 

direct stiffness coefficients. The 1-CV bulk-flow model correctly predicts a negative direct 

stiffness coefficient and a large positive direct damping coefficient.  Both the predictive model 

and the experiments show that the seal leakage increases as the pressure ratio increases. 

However, using Neumann’s leakage model [11] slightly over-predicts the leakage (4-10%) 

compared with the test results in Ref. [12]. Li et al. [13] find similar conclusions from further 

experiments and comparisons with the predictions in Ref. [14].  

The blades (teeth) of LS are very sharp so that the regions between the teeth and the rotor 

are modeled just as orifices without considering the blade thickness. Predicted force coefficients 

and leakage of a PDS with sharp teeth correlate well with the test data in Ref. [9, 13] by using 

the same bulk-flow 1-CV model as LS. 

In an effort to quantify accurately leakage in PDSs and see-through LSs, Gamal [15] 

evaluates the accuracy of thirteen flow models, as listed in Table 1, against test data from 

Picardo [16] for a LS, and from Gamal [17] and Ertas [18] for PDSs. The various equations 

differ in their fundamental of physics, kinetic energy carryover coefficients ( kC ) and flow 

constrain coefficients ( fC ).  

Table 2 lists the three typical gas leakage equation models used in LS analysis. There are 

St. Venant’s, Martin’s, and Neumann’s basic leakage equation. Ref [15] implements the three 

fundamental gas leakage equations considered with three kinetic energy carryover coefficients     

( kC ) as listed in Table 3 (Hodkinson, Neumann, and Vermes) and two flow contraction 
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coefficients ( fC ) as listed in Table 4 (Chaplygin’s geometry dependent value [19] and Esser and 

Kazakia constant value [20]), to make the fourteen different leakage models listed in Table 1. 

Table 1. Summary of leakage models [15] 

Model 
Basic gas leakage 

equation  

Kinetic Energy Carryover 

Coefficient ( kC ) 

Flow Contraction 

Coefficient ( fC ) 

St. Venant St. Venant None None 

Martin Martin None Constant 

Hodkinson Martin Hodkinson Empirical 

Vermes Martin Vermes Empirical 

Neumann Neumann Neumann Chaplygin 

Zimmerman & Wolf St. Venant & Martin Empirical Empirical 

Esser & Kazakia Neumann Esser & Kazakia Constant 

Scharrer Neumann Vermes Chaplygin 

MOD.1 St. Venant Hodkinson None 

MOD.2 St. Venant Vermes None 

MOD.3 St. Venant Vermes Chaplygin 

MOD.4 Neumann Vermes None 

MOD.5 St. Venant Hodkinson Chaplygin 

Gamal model St. Venant Hodkinson Constant 

 

Table 2. Basic gas leakage equations through a restriction [15] 

Neumann gas basic 

leakage equation 

St. Venant gas basic 

leakage equation 

Martin gas basic 

leakage equation 

2 2
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where iM  is the axial flow rate at the thi tooth [kg/s], A
i
 is the clearance area under the thi tooth, 

and iP  is the pressure in the thi cavity, inP  is the supply pressure, outP  is the back pressure, n  is 

the number of teeth, 
gR is the specific gas constant,  T is the temperature, and g

 
is the specific 

heat ratio. 
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Table 3. Kinetic energy carryover coefficient (
kC ) for leakage equations through a 

restriction [15] 

Hodkinson Neumann Vermes 

1

/1
1

/ 0.02

i

i i

i i

kC
H Ln

n H L
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   
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1

1 16.6
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i

i

i

k

n
C

n

H

s

 


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  

 
 
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1

1

8.52

7.23

i

i
i

k

i

i

i

C

s t

H







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



 

n  is the number of teeth, iH is the clearance of the thi tooth, L
i  is the length of the thi cavity, t

i
 is 

the blade tip thickness of the thi tooth, s
i
is the distance between the centers of the thi and the

( 1)thi  cavities 

 

Table 4.  Flow contraction coefficient ( Cf ) for leakage equations through a 

restriction [15] 

Chaplygin Constant 

2

1

1

2 5 2

1

i

i

i
i

f

i

i

C

P

P





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






  

 
  
 

 0.716f iC    

iP  is the pressure in the thi cavity, n  is the number of teeth , and g
 
is the specific heat ratio. 

 

A leakage model using either St. Venant’s equation or Neumann’s equation iteratively 

calculates the pressure drop in consecutive cavities of a seal from upstream to downstream 

region. A leakage model using Martin’s equation simply uses the total number of teeth ( n ), 

supply pressure ( inP ) and back pressures ( outP ) to calculate the seal leakage. Hence, leakage 

models using Martin’s equation do not require or provide any information on intermediate 

pressures. However, this can be circumvented by applying Martin’s Equation to each individual 

cavity to compute intermediate pressures. [15] 
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Gamal [15] discovers that the examined leakage equations deliver results of varying 

accuracy. Vermes’ Model and MOD.2 and MOD.4 listed in Table 1 produce the most accurate 

leakage predictions for high-pressure LSs, whereas the Neumann Equation, Scharrer Equation 

and Gamal MOD.3 predict leakage with high accuracy for low pressure LSs. St. Venant’s, 

Martin’s, Vermes’ and Neumann’s Equations reasonably predict the leakage rate of certain 

PDSs. [15] 

Gamal [15] also finds that blade thickness produces a drag force on the flow. However, 

none of the evaluated models takes friction from the blades into account or accurately accounts 

for the effect of blade thickness. The blade thickness is only considered as a geometrical term in 

Vermes’ kinetic carryover factor. Experimental results show the leakage reduces significantly as 

the blade thickness increases. Gamal concludes that the under-predicted leakage flow rate for 

high-pressure LSs is at least partially due to unknown effects from too thick blades [15]. 

Commercial PDSs have invariably thick teeth, not sharp blades. The thickness of a 

twelve-bladed PDS in Ref. [18] is 3.175 mm while the cavity widths are 5.283 mm and 3.175 

mm, which are the same order of magnitude as the blade thickness. Ertas et al. [1] recently 

compare the rotordynamic force coefficients of a fully partitioned damper seal (FPDS), a LS and 

a honeycomb seal (HC) operating with a high pressure ratio of 6.9 over a frequency range from 

25 Hz to 250 Hz. FPDSs have axial baffles covering the whole seal axial extent and the pockets 

are separated by thick small clearance regions, which can amount to 20% of the whole sealing 

area. The blade thickness of the test FPDS is 3.175 mm and the baffle thickness is 3.556 mm, 

which cannot be regarded as sharp (rather blunt) compared with the pocket cavity axial length, 

6.35 mm or 13.97 mm. Also, the empirical leakage equation cannot be used because there is an 
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axial pressure change along the “blade”. A new 1CV bulk-flow model that includes the axial 

flow momentum is needed to obtain more accurate predictions.   

Sheng et al. [21] recently measured the leakage of two fully-partitioned PDS (FPDS) 

with different cavity depths, a honeycomb seal (HS) and a LS. All four seals have the same 

nominal clearance ( 0.292H mm ), operate at 15,000 rpm rotor speed, and operate with a range 

of inlet pressures from 6.9 bar to 20.7 bar (pressure ratio from 1.15 to 2.15). Test results show 

that the FPDS leaks 9-21% more than those from the LS and HC do, and a FPDS with a smaller 

cavity depth ( 3.175d mm ) leaks less than the FPDS does with a larger cavity depth 

( 6.175d mm ) [21]. The authors indicate that the leakage performance of PDS can be improved 

by optimizing certain seal geometry parameters like decreasing the cavity depth. 

This technical report provides predictions for the leakage and rotordynamic force 

coefficients of a LS and a PDS with thick walls using the TAMU PDSeal code which is strictly 

valid for LSs and PDSs with sharp teeth. Recommendations for modifications of the PDSeal 

code are also given at the end of this report. 

 

Main features in bulk-flow model [22] and the TAMU PDSeal code 

Ref. [22] by Li and San Andres details analysis of PDS with a 1-CV bulk-flow model. 

The TAMU PDSeal program solves the main flow continuity equation, circumferential 

momentum equation and Neumann’s leakage mode. The program performs a small amplitude 

motion perturbation analysis to calculate the rotordynamic force coefficients. Table 5 sums the 

major features of the TAMU PDSeal code, as designed for PDSs and FPDSs with sharp teeth 

(blades). 
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Table 5 Summary of main features of TAMU PDSeal code 

Governing Equations 
Continuity equation, circumferential momentum equation  

in pockets 

wall Stress Moody’s friction formulas 

Leakage model (blades) Neumann model 

Ideal gas assumption / gP R T   

Perturbation Analysis Non-synchronous solution (excitation frequency) 

Teeth Location On stator 

Multiple Case Variables Rotor speed, excitation frequency, supply and discharge pressure  

 

Li [22] uses the Neumann’s leakage model, 

 2 2

12

*

( )
i

k f i

i i

C C H
m P P

V
    (1) 

where 
kC and fC are  kinetic energy carryover coefficient and flow contraction coefficient, 

respectively. P is the pressure, and U is the circumferential flow velocity. 

The equation for main flow continuity and circumferential momentum in a pocket cavity are, 

 1

( ) ( )1
( ) 0i i

r i i

ag

PA PAU
m m

R T t R
 

  
    

  
  (2) 

 1

2

1

( ) ( )1
( )i i

r
i i

i

a a

i i i xi

g

PAU PAU A P
m U mU

R T t R R
  

   
      

   
  (3) 

im and 1im  are the axial mass flow rates per unit circumferential length across the upstream tooth 

and downstream tooth of the i
th

 cavity. iA  is the cross-section area in the i
th

 axial cavity. The 

coefficient  /r r aR R  accounts for the effect of the pocket depth when the volume of the 

differential control-volume is calculated with aR , the average radius of the seal.  

Li [22] uses Moody friction factor model to calculate the wall shear stresses differences,  
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2

xi xi Ji
i r

i

d i

L R
k U k

D H




 
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 
  (4) 

where  is the gas viscosity, 
iL is the length of the thi cavity, 

hD is the hydraulic diameter, 
iH is 

the clearance of thi tooth, ,  is the rotor speed and 
rR is the rotor radius, xik  and Jik  are turbulent 

shear flow parameters, 

 

1        
1

,
2 2

Re , R   e  

r ri s i i i
r ri xi si

i

ri ri i si si

Ji

i

k L B B
k k k k

L

k f k f

 
 

  
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 
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  (5) 

The Moody’s friction factor equals  

 

34

2
1

10
1

Re

M

Me
f M

B H

   
    

   

  (6) 

 3 6

1 2 3

1
1.375 10 , 1 10 ,

3
M M M      (7) 

where e is the surface roughness and Re is the local Reynolds number, 2 2Re h U V



   

Li [22] solves for non-synchronous shaft motion by input of excitation frequencies and 

rotor speed to the TAMU PDSeal code with a Bulk-Flow model as in Childs [23] who uses a 

bulk-flow version of the Navier-Stokes equations. The seal linearized reaction force is 

( , )Tx X Y  about a centered position as  

 
X

Y

F K k X C c X

F k K Y c C Y

        
          

         
  (8) 

where ,K C are the direct stiffness and damping coefficients, and ,k c  are the cross coupled 

stiffness and damping coefficients. A zero order solution gives the steady-state pressure field, the 

circumferential velocity field and the seal leakage. Solution to first order equations gives 

pressure field to determine the rotordynamic force coefficients. 
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Introduction to XLPDS
®
 worksheet 

During 2013, a GUI was created to run the TAMU PDSeal automatically. XLPDS
®

 

Worksheet, as shown in Figure 1 (a)-(d), provides a convenient way for a user to predict the 

leakage and the force coefficients and of a gas pocket damper seal (PDS), or a fully partitioned 

damper seal (FPDS).  

The users need to input the seal geometry and operating conditions see Figure 1. 

XLPDS
®

 can perform multiple predictions by inputting multiple sets of supply pressure, 

discharge pressure, rotor speed and excitation frequency, as shown in Figure 1 (c). The code 

outputs force coefficients and leakage, as shown in Figure 1 (d).  

The active / inactive blades are blades without / with a notch. A seal with staggered 

pocket damper cavities and labyrinth seal cavity is a traditional PDS. A seal with all cavities as 

pocket damper is a fully-partitioned damper seal. 

 

Figure 1 (a) GUI XLPDS® Worksheet for PDS and FPDS: input parameters 
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Figure 1 (b) GUI XLPDS® Worksheet for PDS and FPDS : more input parameters 
 
 

 

 
 

Figure 1 (c) GUI XLPDS® Worksheet for PDS and FPDS: table of operating conditions 

 

 

 
 

Figure 1 (d) GUI XLPDS® Worksheet for PDS and FPDS: predictions 
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Example of predictions 

Ertas et al. [1] conduct experiments on a labyrinth seal (LS) and a fully partitioned 

damper seal (FPDS) and compare the identified rotordynamic force coefficients. Table 6 lists the 

dimensions of the tested LS and FPDS in Ref. [1], respectively. Table 7 lists the operating 

conditions given in Ref. [1]. Tests were conducted on a LS and a FPDS on a 170 mm diameter 

rotor for rotor speeds of 7,000 rpm and 15,000 rpm, with an inlet air pressure of 6.9 bar (absolute 

pressure), ambient back pressure (1.0 bar), inlet preswirl ratio of 0 and 0.96, and with excitation 

frequencies from 25 Hz up to 250 Hz.  

Table 6 Dimensions of LS, FPDS and rotor [1] 

 LS FPDS 

Number of blades 14 8 

Number of pockets 1 8 

Blades properties All active Active / Inactive  

  (without notch / with notch) 

Cavity depth 4 mm 3.175 mm 

Cavity axial length 5.004 mm 13.97 mm (1, 3, 5, 7 cavity) 

  6.35 mm (2, 4, 6 cavity) 

Blade axial length 0 6.35 mm (1 blade) 

  3.175 mm (2, 3, 4, 5, 6, 7, 8 blade) 

Radial clearance 0.3 mm 0.3 mm 

Seal overall length 65 mm 102.87 mm 

Rotor Diameter  170 mm 170 mm 

 

Table 7 Operating conditions for test seals in Ref. [1] 

Inlet pressure  6.9 bar (absolute pressure) 

Back pressure (Atmosphere)  1 bar (absolute pressure) 

Excitation frequency  0 – 250 Hz 

Inlet temperature  285.93 K (12.78 °C) 

Rotor speed   7,000 rpm 15,000 rpm 

Rotor surface velocity  R   62.3 m/s 133.5 m/s 

Inlet preswirl velocity  0 60 m/s 

Preswirl ratio  0 0.96 0.45 

Inlet preswirl ratio equals inlet circumferential flow speed divided by rotor 

surface velocity  R  
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Gas Air 

Molecular weight 28.97 

Gas compressibility factor  1 

Specific heat ratio  1.4 

Viscosity 18 µPa·s at 13°C 

 

Figure 2 depicts the schematic view of the FPDS and the LS in Ref. [1]. The fourteen-

bladed LS and the FPDS have the same radial clearance throughout 0.3H mm . The FPDS has 

eight blades (seven axial cavities) and eight circumferential pockets in each cavity. In addition, 

downstream blades of pocket dampers are notched to make the clearance diverge as shown in 

Figure 3 [1].  

 
Figure 2 Schematic views of the tested FPDS and LS (in inches) [1] 

  

Figure 3 Schematic views of a six-bladed FPDS with notches on downstream blades [1] 
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Figures 4, 5 and 6 present the experimental results from the mechanical impedance 

testing on both FPDS1 and LS and predictions from the TAMU PDSeal code. For the test data, 

the direct coefficients are averages from in the X and Y directions. 

Figure 4 shows the direct stiffness coefficients of the FPDS1 and LS versus excitation 

frequency at rotor speeds of 7,000 rpm and 15,000 rpm. Each graph includes both test results and 

predictions with inlet preswirl ratio = 0, 0.96 or 0.45. For the FPDS1, the direct stiffness from 

both test results and predictions increases as the excitation frequency increases. However, for the 

LS, the direct stiffness slightly decreases as the excitation frequency increases. The experimental 

direct stiffness of the FPDS1 is negative and small at low frequencies and then becomes positive 

at frequencies between 75 Hz and 100 Hz. On the other hand, the predicted direct stiffnesses for 

the FPDS1 are negative for all frequencies in the range of 25 Hz to 250 Hz. The absolute value 

of direct stiffness with preswirl is slightly higher than that without preswirl for both experimental 

results and predictions, except those predictions for an operating speed of 15,000 rpm and with a 

preswirl of 0.45. Rotor speed does not play a discernible role in affecting the direct stiffness for 

the test results. The experiments show direct stiffness coefficients of the LS are positive and 

minimal at low frequencies and become negative after the cross-over frequency. The cross-over 

frequency occurs between 125 Hz to 150 Hz. [1] 
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Figure 4 Direct stiffness coefficients of a FPDS1 and a LS versus excitation frequency. 
Rotor speeds = 7,000 rpm and 15,000 rpm. Preswirl ratios noted. Test data from Ref. [1] 

 

Figure 5 depicts the direct damping coefficients of the FPDS1 and LS versus excitation 

frequency at rotor speeds of 7000 rpm and 15,000 rpm. Direct damping coefficient for LS is not 

sensitive to either rotor speed or excitation frequency; however, the direct damping coefficient 

for the FPDS decreases as the excitation frequency increases. Incidentally, the direct damping 

coefficient for the FPDS increases significantly (~20%) as the rotor speed increases [1]. 
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Figure 5 Direct damping coefficients of a FPDS1 and a LS versus excitation frequency. 
Rotor speeds = 7,000 rpm and 15,000 rpm. Preswirl ratios noted. Test data from Ref. [1] 

 
 

Figure 6 shows the cross coupled stiffness versus excitation frequency.  Rotor speed or 

excitation frequency does not influence the cross coupled stiffness. The cross coupled stiffnesses 

with an inlet preswirl are larger than those without preswirl.  

Figures 4, 5 and 6 show that the predicted rotordynamic force coefficients correlate well 

with the test results for the LS, but the TAMU PDSeal code fails to provide reasonable 

predictions for the FPDS. 
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Figure 6 Cross coupled stiffness coefficients of a FPDS1 and a LS versus excitation 
frequency. Rotor speed = 7,000 rpm and 15,000 rpm, Preswirl ratios noted. Test data from 
Ref. [1] 

  

Figure 7 shows the effective damping coefficients ( ,eff X eff YC C ) versus excitation 

frequency, the effective damping coefficients are defined as [2]: 

eff

k
C C


   

 For the experimental data, the effective damping of the FPDS is much larger than that of 

the LS. The effective damping is positive over the range of 50 Hz to 250 Hz. However, the 

predicted effective damping coefficients are all negative for both the FPDS and a LS with 

preswirl. 
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 Figures 4, 5, 6, and 7 show that the predictions from the program TAMU PDSeal 

correlate well with the test data for the LS, but the program cannot deliver good predictions for 

the FPDS. 

  

  
Figure 7 Effective damping coefficients of a FPDS1 and a LS versus excitation frequency. 
Rotor speeds = 7,000 rpm and 15,000 rpm. Preswirl ratios noted. Test data from Ref. [1] 
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Conclusions and recommendations  

This report delivers predictions of rotordynamic force coefficients for a test LS and a test 

FPDS in Ref. [1]. The predicted rotordynamic force coefficients correlate well with the test data 

for the labyrinth seal [1]. However, predicted force coefficients for the FPDS are in gross error 

when compared to the experimental coefficients. Hence, the current computational program 

shows severe limitations to predict the dynamic force performance of PDSs with thick walls. The 

physical model in the TAMU PDSeal is a one-control volume, turbulent bulk flow model that 

includes the effects of circumferential flow velocity within a seal pocket and uses Neumann’s 

leakage equation across the seal blades. The model ignores the flow resistance along the 

circumferential direction, badly needed for PDS with blunt blades of sizable axial thickness. 

Needless to state that, it is in this region the seal develops a cross-coupled stiffness as the gas is 

whirled because of shaft rotation.  

For the further work, the specific tasks are: 

• Update the physical model for PDS [9] by replacing the empirical leakage formulas with 

a bulk flow model that incudes flow conservation and circumferential and axial momenta 

transport equations in the flow region under a thick blade and the spinning rotor.   

• Extend the bulk-flow model to include two-component mixtures (liquid in a gas) as in 

Ref. [26].  
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Appendix A 1-Control-Volume governing equations for grooved 

seals  
The model by Li [22] will be remodeled to include thick blades. Figure 1 shows the 

schematic view of an annular seal with circumferential grooves. The governing equations for the 

fluid flow in grooved seals are based on both Hirs' bulk-flow theory [8] and Kim’s analysis for 

helically-grooved annular seals [24].  

 

Figure 8 Schematic view of a circumferential grooved seal 

Governing Equations for the thi  Cavity or for the land on the right of the thi  Cavity [24] 

Continuity Equation [24] 
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Circumferential Momentum Equation [24] 

 
       

2

,

1 1 1i i i i
i

r r g r r

dLPUdLP dLPU HL

R R T t R

PUV

ZR z


  

 


  

 
    

 
 

 (A2) 

 

 

i
th

 cavity 

Rotor 

1
st

 CV 
Under 

the blade  

Grooved Seal 

1
st

 CV in 

the cavity  

  

    

  

  

Flow 
 



23 
 

Axial Momentum Equation [24] 
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Where      , sr
r s

a a

RR

R R
                         (A4) 

For the control volumes under blades,  1, 1sr
r s

a a

RR

R R
       

D is the depth of a control volume, D H B   for the control volumes in the cavities.

D H for the control volumes under blades, i.e., 0B   , B is the tooth height, and H is the 

clearance. 

For fully developed turbulent flow, the wall shear stress differences in the circumferential 

direction and in the axial direction are [22] 
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Where  [22] 
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     Re , Reri r ri si s sik f k f   (A7) 

The Reynolds numbers relative to the rotor ( Reri ) and the stator ( Resi ) surfaces are [22] 
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The friction factors are formulated using Moody’s friction factor 
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Where x is either r (for the rotor) or s (for the stator), and xr is the surface roughness.   

 


