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EXECUTIVE SUMMARY

Analyses for incompressible and compressible spiral groove thrust bearings
(SGTBs) and face seals (SGFSs) are presented. The non-linear partial differential
equation of pressure that arises in the compressible analysis is simplified with a
successive approximation, The zeroth- and first-order equations giving the static and
dynamic performance of SGFSs, respectively, are integrated using the finite element
methad for both the incompressible and compressible case. A simple thermal coning
model proposed in a previous analysis is applied to represent deformation of the seal face
due to conduction. Favorable comparisons with the NG ["and an FEM analysis validate
the incompressible fluid case for SGTBs without inward radial flow. A parametric study
indicates effects of changing face seal geometry on the opening force, force coefficients,

leakage rate, and power loss and gives the optimum SGFES geor.ry.
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NOMENCLATURE

B Bearing number; B = -1 = rotating grooves, B =+1 = stationary grooves
c Ridge clearance [m]

Cy Groove depth [m]

Cs e Axial damping coeffi-":nt [N.s/m]; C. = C ¢, Q/W.

D, D, Dy Outer, inner, groove inner diameter [m: [, = 2-R.: D= 2:Ri: Dy, = 2:R,,
h Film thickness [m]: /i = hfh.

Ah Outer diameter film thickness change due to thermal deformation [m]

K K. Axial stiffness [N/m]: K_ = K_c, /W.

m, i, Dimensionless first-order mass flow rates

N Speed [rev/s]

N, Number of grooves

P Number of nodes per element

PE,.P Pressures at speed numbets (A, A,) [Pa]: P=P/R.:

I3 Incompressible model: £ = 1R,/ c): : compressible model: £, = P,
AP Pressure variation, AP =%|d AA

Pa Pean Ambient, cavitation pressure [Pa]

P, Py Zeroth and first order pressure fields, [Pa]. [Pa/m]. [Pa-s/m]

@ Power loss from [riction torque [W]: =30 @ = Vo1 . = ”"H“‘f'ﬂ%*
0 Leakage flow rate [(/min]; O = 0/ Q.

O Radial flow for flat circ. plates [#/min]; O, =6« m‘m'.f,{f - P :i/f:,u ln{f'{]
4y Flow normal to an element

g Axial conductive heat flux [W/m”]

R R, [nner and outer seal dam radii, respectively [m]

Rsis R Inner and outer groove portion radii, respectively [m]

R Gas constant [J/kg-°C]

(r.®,z) Cylindrical coordinates. groove surface stationary, 7 = r/ R,

(r, 8. 2) Cylindrical coordinates, groove surface rotating

R Radius ratio; R = RJ/R;

S Sommerfeld number; § = uNaR2(R, Jc,) W

T Temperature [°C]|

JF Friction torgue [N-m]

i, T Time [sec]; T =1w

W, W Load [N]; W =% : W, =x{R2 - R? )Y R, [e, |

W, W, Dimensionless load defined by Muijderman (1966): W, = ““"’/ W=
Z Complex impedance [N/m]; Z= K. + iw(C

Az Perturbations in axial distance [m]
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Subscripts
gi

0

{

0

0

1

*

Superscripts
e
k3

Groove width ratio

Coefficient of thermal expansion [1/°C]
Spiral angle [*]: f#=90° = radial grooves
Element boundary

Dimensinnless groove depth. §=c./c + 1
Dimensiinless eccentricity; &, = 1-¢/c,

Circumferential coordinate attached to rotating face

Circumf{erential coordinate fixed to stationary face, © = &+ Q¥

Thermal conductivity [W/m-*C)]
Arc length of a groove-ridge pair. ® _ =%,

Speed number A = ““‘%L[’%}E

Fluid viscosity [Pa-s]

Fluid density [kg/m’]

Radius of curvature for thermal deformation |m]

Frequency number; o= "%, { )
Shape functions within the finite element

Frequency of dynamic motions
Rotational speed [rad/s]
Finite element sub-domain

Inner radial groove extent
Outer radial groove extent
Inner radius

Outer radius, starting value
Zeroth-order

First-order

Characteristic value

Finite element
Original value

'|~|‘



INTRODUCTION

With the advent of strict mandates from environmental protection laws requiring
engineers to virtually eliminate leakage in industrial processes. better sealing technologies
must be developed to prevent release of these volatile and potentially dangerous process
fluids into the atmosphere. The spiral groove face seal (SGFS) offers numerous
advantages over conventional contacting mechanical seals. Grooves etched on the mating
ring of the sealing surfaces do not wear from contact while rotating, greatly lessening the
need to overhaul machines for seal replacement. Dry (gas lubricated) operation allows
the face seal to perform with less complicated and expensive external support systems
like those required for oil lubricated seals. The use of tandem and double sealing
arrangements with inert buffer gases-allow application of the SGFS in machines handling
highly volatile process fluids with virtually zero leakage to the atmosphere.

The first analyses adopted to model thin-film grooved bearing geometries use the
Narrow Groove Theory (NGT) where an infinite number of grooves is the primary
assumption. This analysis as initially applied to parallel, helical groove configurations is
mostly found for herringbone grooved journal bearings (HGJBs). A detailed review of
the pertinent literature for //1GJBs can be found in Zirkelback and San Andrés (1997). In
general, the NGT is limited to prediction for concentric journal operation. and although
few advances have been made for modeling turbulent flow. the NGT is mainly limited to
prediction in the laminar flow regime,

The eroove shape became the primary concern when applying the NGT to spiral
groove thrust bearings (SGTBs) due to the logarithmic spiral contour of the grooves.

Muijderman (1966) presents an extensive NG T analysis for various spiral and



herringbone groove thrust bearing configurations including flat, spherical, and conical
bearings, and approximate formulae are given for pressure, load capacity, friction torque,
and the coefficient of friction for each bearing type. Experiments are also recorded for
flat aerostatic SGTBs, and comparisons with the given analyses are provided. Although
the analyses represent only incompressible fluids, the comparisons prove favorable.
Finite differences are applied to solve the Reynolds equation for compressible fluids with
constraining jump equations satisfying the discontinuity at the ridge to groove interfaces
in SGTBs as presented by James and Potter (1967). Attempting to better represent the
specfied pressures at the houndaries of SGFSs, Sneck and McGovern (1973) introduce the
narrow seal theory since the original NGT as presented by Muijderman (1966) considers
an infinitely wide thrust bearing face without specified boundary pressures. Despite the
simplification of straight parallel grooves. the predictions using the narrow seal theory
without pressure gradients compare well with results from Muijderman (1966).

As the limitations of the NGT became apparent. extensions to the original analysis
appeared for various theoretical aspects. Pan and Sternlicht (1967) present a simple heat
transfer study that models thermal distortion of flat, ungrooved thrust bearing surfaces.
where the drag-induced frictional power dissipation is conducted through the bearing
faces. The analysis assumes that heat flow through the faces is uniform and purely axial:
however, effects of the groove geometry are neglected in the thermal model since the
viscous shear stress is calculated between two flat plates. Considering for both SGFSs and
Rayleigh step seals. Cheng, et al. (1969) discuss the relative placement of grooves and
seal dams within the context of a NG T analysis that uses the Reynolds equation for

compressible fluids. The authors conclude that seal dams on the low pressure side of the
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SGFS minimize leakage at the expense of axial stiffness, while seal dams on the high
pressure side give higher values of stiffness. Hsing (1972) extends the NGT to include
slip flow and turbulence using generalized coordinates te model most groove bearing
geometries (e. g, flat, spherical, conical, and cylindrical). Using results obtained
previously, Hsing (1974) presents analytical solutions for force coefficients in spiral
groove viscous pumps. Furthermore, Sato. et al. (1990) present a simple, incompressible
NGT analysis in the generalized coordinates provided in Hsing (1972) to obtain the
optimum groove geometry for both the SGT'8 and HGJB configurations.

Special considerations necessary when dealing with cryogenic liquid oxygen are
noted for the design of a particular SGFS in Shapiro, et al. (1984). The analysis used
applies enhancements to Muijderman’s NG7' in turbulence. fluid inertia, and thermal and
¢lastic deformations to make predictions of film thickness, axial stiffness, leakage. power
loss, and temperature rise for increasing rotational speeds. Salant and Homiller (1992)
present a finite difference solution of the Reynolds equation lor incompressible {luids that
accounts for fluid cavitation in upstream pumping SGFS operating in both single and
double seal configurations. A parametric study reveals instability due to negative
stiffness when a SGFS operates as a single seal; however, properly designed SGFSs
remain stable in double seal configurations. Lastly, Kowalski and Basu (1995) optimize
the SGFS geometry for reverse rotation and forward rotation simultaneously by solving
the Revnolds equations for compressible fluids with finite differences. Tests verify the
feasibility of meeting the design demands; however, an expected increase in leakage

accompanies the optimized bidirectional design (23° groove angle).



Experimental studies in addition to that presented by Muijderman (1966) include
tests by James and Potter (1967) performed on a test rig that employs ceranuc¢ SGTBs and
spiral groove compressors with air. The experiments involve measurements of outlet
pressure and air flow rate. Static loads with 10% possible error and an optimum
geometry are determined from the tests. In a series of reports, DiRusso (1982, 1984,
1985) presents measurements of the film thickness and drag torque for various SGEFS
configurations. The latter two reports (DiRusso. 1984, 1985) concentrate on the dynamic
axial oscillations of the seal face and the effects of misalignment while reporting
instabilities for outward pumping SGFS when the hydrodynamic pressure forces
overcome the spring force at seal liftoff. DiRusso (1983) also presents a parametric study
using a previous NG T study to analytically determine the optimum geometry of SGFSs.
Experiments presented in Furuishi, et al. (1983) for a SGT'B operating with water give the
load carrying capacity and corresponding minimum film thicknesses for geometries with
varying groove depths and support configurations. Different support configurations
lessen thermal coning so that experiments match more closely with the simplified NGT
analysis presented. However, the softer support configurations also diminish the load
carrying capacity of the spiral groove thrust bearing.

With its ability to easily represent complicated geometries and any number of
arooves, the Finite Element Method (#EM) has been the more recent choice for solving
the Reynolds equation applied to spiral groove bearing and seal designs. Reddi (1969)
and Reddi and Chu (1970) discuss application of the FEM to incuinpressible and
compressible fluid spiral groove bearings, respectively. Finite element solutions for load

capacity and axial force coelficients are provided by Someya (1989) for an
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incompressible fluid SGTA having a pressure dam on the bearing inner diameter.
Bonneau, et al. (1443) present a finite element model of SGFSs that uses upwinding to
allow solution of the nonlinear Reynolds equation for compressible fluids. Graphs
showing load and leakage rate illustrate the effects of mesh refinement and increased

speed numbers.

OBJECTIVE

The present work includes analyses of incompressible as well as compressible
fluid SGFSs using the finite element method to solve the partial differential equations of
hvdrodynamic pressure. Analytical perturbations are performed for both cases in order to
determine the dynamic axial force coefficients. To allow solution of the non-linear
partial differential equation describing compressible fluids in SGFS5s, the analysis utilizes
the successive approximation approach described in Reddy and Chu (1970) to obtain
solutions for the zeroth-order (equilibrium) pressure distribution. A simple model of
thermal deformation due to conduction through the seal faces 15 employed since low flow
rates out of the seal render convection heat transfer as negligible. Comparisons are made

with the NG T (Muijderman, 1966) to validate the present incompressible model.

ANALYSIS

Figure | shows two configurations of the spiral groove face seal (SGFS). In
Figure " .., the grooved surfa. . is stationary while the flat mating surface rotates
(counterclockwise) with speed €. The (7. ©. z) coordinate system, connected to the

stationary grooved surface, is used to describe this seal geometry  Figure 1.b shows the



second configuration of the SGFS where the grooved surface rotates at speed Q2
(clockwise) opposing a stationary. flat mating surface. This configuration is described
with a (r, £, z) coordinate system attached to the rotating, grooved surface.

The coordinate transformation between the two configurations 1s given by
B =2+ (1)
and a bearing number (B) of +1 implies stationary grooves while B = -1 denotes rotating
grooves. The seal has inner radius R; denoting the beginning of the inner seal dam and
outer radius R, indicating the end of the outer seal dam. The inner and outer radii for the
grooved portion are defined with Ry, and Ry, respectively. It is assumed that the rotating
surface can only move axially so that tilt angles can be neglected. Several descriptive
parameters characterize the groove geometry. The ridge clearance (¢) plus the groove
depth (¢,) give the maximum clearance (¢ + ¢,), and the dimensionless groove depth () is

described with §=c/e + 1. The width ratio () is the fraction of the arc length of a
groove-ridge pair {E‘JQ_, =2 ‘_) that is occupied by a groove. The equation governing the
logarithmic shape of the grooves is (Muijderman, 1966)

r= Rgrermﬂw i (2)
where the circumferential coordinate is represented by @ and the helix angle (/) is the

angle of the groove from the tangent, with = 90° giving radial grooves as illustrated in

Figure 2,



Incompressible Fluid Analysis
The lubricating fluid is regarded as incompressible, isoviscous, and newtonian,
The appropriate Reynolds equation in cylindrical coordinates describing incompressible,

isothermal, laminar, inertialess fluid now on the seal face is

1_{[3}@) IF[P:‘ lf;PJ G O
Y (3)

e Tra@\12ur @
0<h<®,: R <r<R

124 6F

Refer to the Nomenclature for proper definitions of all variables. The film thickness /& in
the equations above is described with

h=¢ {4.a)

in the ridge region and

h=c+e, (4.h)

in the groove region.

The pressure for the seal is specified at the inner and outer radius as, respectively,

P(R.6.1)=P (5.a)

P(R,.6.1)=P, (5.h)
Since azimuthal thermal distortion and misalignments of the faces are neglected, the

circum{erential pressure distribution for each groove ridge pair is periodic.

Plr.8, + HEIx_r,_E) = P(r.6,..1) (6)

el
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Perturbation Analvsis

If the rotating surface describes small axial motions (Az) from an equilibrium
position (Ag). the film thickness is equal to
h(r.6.1) = h(r.8)+ Az ™ (7)
The effect of these small amplitude motions is to bring perturbations in the pressure about
an equilibrium field (#y). described by the superposition of zeroth- and first-order
pressure fields:
P(r.6.t)= B(r.8)+ PAz ™ i=+"1 (8)
where Py is the zeroth-order pressure field. and P is the perturbed first-order pressure,

With the following definition for the linear differential operator,

al ri’ fﬁ?J | é‘[ﬁ" 1 4P

1
¢ ) IErn o oSy == e Aol i
“”‘:-&Luy& Ty o9 llyrﬁﬂJ @)

and the substitution of Equations (6) and (7) into the Reynolds Equation (2) gives the

zeroth- and first order equations as

Zeroth-Order Equation

Q oh,
LUL)*J’J’;E (10)
First-Order Equations
I c?[}rh,f P, } 1 r( 3h E,F:.J :
e | e e 11
UR)=—17 12 ) FPa\ldudn) 2 at

If' Az is arbitrary, it follows that P| =0 on the seal boundaries since the inlet and outlet

pressures are invariant,



The equilibrium fluid film seal forces (static) acting on the mating surface are
obtained from the integration of the zeroth-order pressure field over the area of the seal
face:

",
J’:I.' o ‘I‘I"r.' I

i
[

Iﬁ, rdtkdr (12)
i

while the stiffness and damping are obtained from real and imaginary parts of first-order
pressure field integration,
RO,
Z=K.+ieC.=-N, [ [P rdadr (13)
R0
It is important to note that the partial differential equations from which the stiffness and
damping coefficients result are not coupled. Hence, the force coefficients are frequency
() independent.

To utilize these expressions for forces and force coefficients (Egns. 12 and 13).
the respective pressure fields must be solved. This is accomplished using the finite
element method. The program spiral.for uses the finite element method to solve the
zeroth- and first-order pressure equations for a spiral groove face seal with an
incompressible {luid using FORTRANTT in the WINDOWS NT operating system. The finite

element method applied to this analysis will now be discussed in more detail.

Finite Element Formulation
I'he flow domain is discretized into a collection of 4-noded 1soparametric finite
elements. The pressure over an element is a linear combination of nodal values and shape

functions {¥;} given by



[

10

Pun A Z W Pﬁ I:I'-I-.H}

K

(14.b)

P= Z Wy
=l
This allows the difterential pressure equations (10, 11) to be reduced into an al gebraic

system of linear equations. The Galerkin formulation of the zeroth-order pressure

equations becomes
YRR =g+ (15)
=l

where T s the closure of the element domain Q' and

k= Jj( - J A2 LI
o) e & e s [T e

gy = <j' ¥ig, dr'* (16.h)
P

Q. ¥
£ = B= [[h, =rdtrtr (16.¢)
i ,!J a0

Note that once the nodal pressures are known, the flow rates can be obtained from the

equation above by solving for 1:;;_ ; along the element boundaries. These equations are

condensed by enforcing the corresponding boundary conditions. The result isa
symmetric system of equations that are then decomposed and solved to obtain the discrete

pressure field.

The first-order equations are obtained and solved in a similar manner. For finding

P,. the corresponding first-order element equations become:



DB =g +f - Z%F (17)
=l

where
= t{"I“'z dl™ :
JI'i'rl 0 fr_r_. (18-&]
s Q8¢ i 2
fi= I B?rﬁé —jm&Fl“]r'a'ﬁh'r: i=v-1 (18.b)
2 ? A

+—= L '}r‘ﬁf&fr (18.¢)

Compressible Fluid Analysis
If the fluid within the seal is considered as an (compressible) ideal gas at constant

temperature, the density is directly proportional to the pressure of the fluid. or

P=pT (19)

P
where the quantity R, 1" is constant if the temperature (7) does not change. The Reynolds

equation in cylindrical coordinates for an isoviscous and newtonian fluid sustaining

isothermal. laminar, inertialess fluid flow on the seal face is

1 r,'-*'[_frh! @] li[ﬁhj lﬁ} _Ph_Qh
ra\ 12u &) ré0\2urdd) a 2 0 (20)
0<f=@, .. R<r=R,

The same film thickness expressions and boundary conditions as in the incompressible

case applv. (See Egns. 4 through 6.) The method for solution of this non-linear partial

differential equation is detailed in Reddy and Chu (1970) where a successive



approximation scheme is proposed. Equation (20) can be rewritten in dimensionless form

a5
it | i s B 7 o 7 AP
v" » - —— g 4 e,
|l PVP) — (AFRP) o= (Ph) (21)

where the speed number (A) and the frequency number (o) are described with

6,40 Rf]
A=—2 :
= @2
_1"1(3}_11}“”(&:} A
7=No/T e K =)

and the subscript (*) denotes characteristic values. (Bars indicating dimensionless values
are dropped in subsequent parts of the compressible analysis for simplicity.) Considering
a perturbation in space of the speed number. i e..

A=A, +AA (23)

the linearization of pressure (as a function of speed) about this point gives

P
PlA)= PIA —| AA 24.
[ } ( rl} + ﬂ"'lu _\_Illl { a’
ar
P=P +AP (24.b)

where P, satisfies the steady-state form of Eqn. (21) for speed number A,. Neglecting
derivatives of time for steady-state operation, substitution of the perturbed speed and

pressure (Eqns. 23 and 24) into the dimensionless Reynolds Equation (21) glves

e .
; Erﬁ(;‘t“f + E,h) (25)
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which is now a linear partial differential equation. For two sufficiently close values of
(A. A,). the successive approximation determines a sequence of pressures until the steady
state form i3 satished, i e,

B 7

ir{h\ﬁpl}‘_;_ﬁ

[rh(2AP)] (26)

Once this equilibrium pressure is determined. the forces and force coefficients can then

be obtained.

Perturbation Analysis (Dimensionless Variables)
If the rotating surface deseribes small axial motions (Az) from an equilibrium
position (/) at a frequency (@), the film thickness is equal to
Wr.0.t)=h(r.0)+nz e ; i=y/-1 (27)
where t= @+ is the dimensionless time. The effect of these small amplitude motions is
to bring perturbations in the pressure about an equilibrium field (Py). described by the
superposition of zeroth- and first-order pressure fields:
P(r.6.1)= £(r.0)+ P(r.0)Az " (28)
where Py is the zeroth-order pressure field, and P, is the perturbed first-order pressure.
With substitution of the perturbed film thickness (Eq. 27) and pressure (Eg. 28)
into the dimensionless Reynolds equation (Eq. 21), the first-order non-linear partial
differential equation of pressure becomes

L& ... A (U T
—\r, ] } ;E(m"] J+1c:'.r{F’|h,j +P)=0

080, _; R/rnsrs HIH/;'.

(29)



where the first-order mass flow rates are

» g Gy e G R o
"= —( 3k, P, ;L +h P T; +h, P, (Tl] (30.a)
) i G - -
1, = —( 3k, P, ,-,:Ié +h P rc%" +h P, %J + Bﬁr{ﬂ + ﬁrn!’,) (30.b)

Integration of the first-order pressure field gives stiffness (real part) and damping
(imaginary part) coefficients, together representing a complex impedance

R

Z=K_+ioC.=-N,

L5, e
[ [p ragar (31)
! 0

B
Note that once the first-order pressure field is solved and integrated. the stiffness and
damping coefficients will be coupled and dependent on the excitation frequency (o).
Like in the incompressible fluid analysis. the zeroth- and first-order pressures are
integrated to obtain the load capacity and dynamic force coefficients, respectively, of
compressible fluid SGFSs. The finite element methed is again applied to solve the non-
linear partial differential equations of pressure in the program spiralc,f90 (currently under

development) written in FORTRANSD within the WiNDOWS NT operating system.

Finite Element Formulation

The finite element analysis develops for the compressible case in the same manner
as before. However. it should be noted that the flow equations are non-linear though
effectively linearized by the successive approximation method. The Galerkin formulation

of the zeroth-order pressure equations becomes



1 =

==

==

L

Doki B =—q; + 1 (32)

=l

where [ 15 the closure of the element domain 2" and

[(Av &, 1 op &
o E] T | 4 ki f d
b ”{h”[[ & 5 f:‘-'f}Jﬁ‘

i (33.a)
. > o
[ﬂﬁ‘_u Lﬁﬂiﬂh ey Laan
& a A '
i = o, ar 63
rl'
. M’ _
i = If A, Zgrdoi B
where
2= WP, (33-4)

-

The result of these equations due to fluid compressibility renders an asymmetric system
of algebraic equations that are then decomposed and solved to obtain the discrete pressure

field.

The first-order equations are obtained and solved in a similar manner. For finding

P\. the corresponding first-order element equations become:
> ki P =g+ (34
=]

where
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[ &Y, oY, 1.4Y %) [ a1 oF h) W
-[j' . J 1|_. 5 — e ., _,‘. L-P-
5 r a6 & A r‘ a0 i/
(35.a)
s S
[ e
q, :‘El’qiruﬁl'f} dl™ Sy
e
AL 1 8
o= (ffn[ L2, L2 R
' = & g F v (35.¢)
B b I
A
+ P{Hﬁ—+ icg't, J}»rd&fr
ot
where
p=3 P, (35.d)

Naote that Py in these equations is the zeroth-order discrete pressure field previously
solved with the successive approximation approach at speed number A. Like in the
zeroth-order finite element equations, the resulting algebraic system of first-order

equations is also asymmetric.

A Simple Model for Thermal Coning
Thermal coning is accounted for in the present analysis for SGFSs by following

the procedure given in Pan and Sternlicht (1967) where the radius of curvature due to

purely axial heat flux (g") due to conduction is

I B
jes wi—| q;l'i' g._'- . ff_-l\-r {36]
Jel K, K,
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where the subscripts 1 and 2 denote differing seal and mating surface materials each with
thermal expansion coefficient ( @) and thermal conductivity («). Equation (38) assumes
that the thrust bearing or face seal plate 1s a hollow disk and radial lines deform into
circular arcs with radii (o.).

Since the amount of convective heat transfer i1s insignificant in a gas bearing, all
heat transfer is assumed to occur due to conduction through the seal surfaces. The total

heat flux through the seal surface is

| o
T =R -R) (

where o = J42 is the power loss due to friction torque (J). Defining the radius ratio R

as (KR, and applyving the following definition,

Ah=—2 (38)
20

substitution of Eq. (37) into Eq. (38) gives the change in film thickness at the outer radius

(Ah) due to curvature of the seal face as

i rr,__"‘[ i
Ah=| == =22 o (39)
Uk T x| 2al-w) |

RESULTS AND DISCUSSION
Comparison with Muijderman (1966)

Muijderman (1966) provides analytical solutions for SGT'Bs that operate with
incompressible, isoviscous lubricants using the NGT. where the pressure variation

between grooves and ridges is simplilied into an average, smoothed pressure.
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Additionally. the supposition that there is no radial (inward) flow arises since the thrust
bearing configurations as studied by Muijderman (1966) have the inward pumping spiral
groove thrust plate undemeath a flat rotating thrust collar, thus contributing a pressure
buildup at the inner diameter (rather than a specified inner diameter pressure) and an
additional reaction load (due to the plenum pressure) generated within the inner diameter
of the thrust plate. Problems result since the present analysis usually requires specified
pressures at the inner and outer diameters a priori, and for present applications of SGFSs
in tandem and double seal configurations, specified boundary pressures at the inner ard
outer diameters depict a more realistic {luid flow representation. However, a modified
version of spiral.for (incompressible fluid) restricts the flow rate at the inner diameter to
zero to enable comparison. (A sample calculation of the pressure and load calculations
according to Muijderman (1966) can be found in the Appendix.) The results of the
comparisons between the NGT and present FEM computations~ for dimensionless
optimum load capacity as the radius ratio (1/% = R/R,) increases is shown in Figure 3.

The characteristic load is defined in this figure as

1
pot e (40)

a7 ol

c

so that the dimensionless load (W_m] represents the quotient of the calculated load (W) and
the characteristic load (W, ). Each point in the fipure represents the conditions for
maximum load capacity as given in Muijderman (1966). and the dimensionless
parameters are provided for each case. Note that the total load capacity is the sum of the

hydrodynamic load generated by the grooves and the hydrostatic load from the pressure

' FEM parameters used for computations: Radial clements = 50; Circ. Elements (aroove, ridge}= 10, 10,
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buildup within the inner diameter (7R’ P,). Although comparisons are very close. the
NGT tends to slightly overpredict the load capacity of the SGTB. a fact well reported in
the literature.

As well as providing analytical calculations for load capacity, Muijderman (1966)
gives an estimation of the mean inner diameter pressure using the NG7. The actual
pressure variations between grooves and ridges as calculated by the FEM program 1s
given in Figure 4 with NGT pressure calculations included. As expected. the vanation in
pressure is large for smaller numbers of grooves. As the number of grooves nears infinity
(~50), the pressure variation is practically negligible.

Dimensionless dynamic force coefficients are given in Figure 5 for the same
geometries. Since in SGTB load is generated over the entire bearing area. the

characteristic load used in making the force coefficients dimensionless is

W, = a2 (R, e, ) (41)

-

As shown, the stiffness (.ﬁ.:) remains virtually constant while the damping (__]
coefficients decrease as the radius ratio increases, indicating that using narrower thrust
bearing plates may be an undesirable practice. A smaller number of grooves is preferred

since the thrust bearing exhibits more stiffness and damping as the number of grooves

decreases,

Comparison with Someya (1989)
Figure 6 presents comparison of the present FEM analysis against FEM

calculations of dimensionless eccentricity (&) as the Sommerfeld number (§) increases



given in Someya ( 1989) for SGTEs with pressure dams inside the inner diameter. As
defined. the Sommerfeld number (5) represents the inverse of load (W) while the inverse
of the ridge (minimum) clearance (¢) is designated by the eccentricity (&). The trends
show that as the load increases (decreasing §) the ridge clearance decreases (increasing

&). Comparisons give very hittle discrepancy with an average difference of 5.75%.

Parametric Study of a Spiral Groove Face Seal

Variation of the dimensionless force coefficients, leakape rate. and power loss
with changes in the SGFS geometry is given in Figures 7 through 11. Table 1 shows how
the geometry varies in each case. Although the analysis used to compute the results is for
incompressible fluids only, nitrogen gas was used in these cases at low speed numbers (A
< (), where this gas acts as an incompressible fluid. These cases are distinct from those
presented by Muijderman (1966) since there exists a pressure differential from the outer

to inner diameter, i, e., P, > P;. lt should be noted in the figures that the dimensionless
leakage rate (E =0/ Q.F is multiplied by 100 so its order is about unity, which indicates

the leakage in SGFSs is 100 times less that the leakage of two flat plates with the same

order of clearance. The results present the obvious advantage of grooved geometries over

conventional non-grooved configurations.

As the number of grooves (N,) increases in Figure 7. the stiffness and damping
coefficients (K_.C..) and the power loss () increase slightly while the leakage rate

(O) drops considerably. The behavior of the leakage indicates the effectiveness of

" FEM parameters: Radial elements (groove, dam) = 40, 5; Circ. Elements (groove, ridge} =10, 10
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s

inward pumping grooves since more grooves contain more fluid outward. The opening

force (not shown) does not change (W = 1.19) with an increase in the number of grooves

(V).

Figure 8 shows that the stiffness coefficient (K. ) reaches a maximum at a groove
angle (/7) of 207 while the damping coefficient (f:) and power loss (,;_J) decrease as the
groove angle () increases. The leakage rate (E} increases slightly as the groove angle
(/£ increases. When the groove angle approaches radial grooves (5 — 90°), less seal arca
exists over which the pressure can develop, and the grooves do not pump fluid inward as

well explaining the drop in stiffness and increase in leakage at higher groove angles ().

On the other hand, grooves that are nearly tangential (#— 0°) do not develop pressure
efficiently.
A relatively small seal dam (with ridge clearance, ¢) inside the inner groove

diameter significantly influences the behavior of SGFSs as shown in Figure 9. The
opening force (), direct stiffness coefficient {f____) . and damping coefficient (E:)
increase significantly with the introduction of a seal dam. The direct stiffness coefficient
also reaches a maximum value at a grooved diameter ratio (9,/D,) of 0.55 and falls as
the seal dam extends over more of the seal face. The leakage rate (0) drops
considerably until a grooved diameter ratio (D,,/D,) of 0.65 where the slope of the flow
rate appears to become more level, while the power loss {F} significantly lowers only

until a grooved diameter ratio (D,,/D,) of 0.55. Since the seal dam has the same clearance

* (. is the flow rate for two flat plates having the same dimensions as the SGFS with clearance ¢,




as the ridge (minimum) film clearance (c). a more extensive seal dam represents a

reduction in the average filin clearance over the entire seal. Thus. the stiffness coefficient

{_ K. ] and opening force are expecled 1o increase as the grooved extent increases. and the

leakape (Q) should decrease, With less grooved area to pump fluid outward, the

stiffness coeflicient {E:) decreases when the seal dam becomes too large compared to

the grooved part of the seal.

Changes in the groove width ratio (e), given in Figure 10, do not significantly
change the parameters of interest, although the leakage rate [ﬁ} does increase slightly as
the groove width ratio (@) increases, Again, this effect ean be illustrated by the general
increase in the seal average clearance which may increase the amount of leakage {?} out

of the seal.

Figure 11 shows the effect of increasing the groove depth ratio (¢./c). Since the
definitions of the dependent dimensionless parameters depend on the groove depth (c.),
the parameters were made dimensionless using the ridge clearance (¢). which is held

constant, rather than the groove depth (¢,), as in all nther cases. Thus, trends of the

dependent dimensionless parameters are preserved. The stiffness (K. T_} and damping

|C..) coefficient decrease with the groove depth ratio while the leakage rate (O)

increases, The dependence of the parameters on the groove depth can be generally
inferred by realizing that an increase in the groove depth ratio (¢/c) represents an
increase in the average seal clearance. The power loss l:f]} remains constant with the

groove depth ratio.
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CONCLUSIONS

The present work analyses the incompressible and compressible fluid flows in
spiral groove thrust bearings and face seals using the Reynolds equation for laminar flow.
Since the Reynolds equation becomes a non-linear partial differential equation of pressure
in the compressible fluid analysis, a successive approximation allows an iterative solution
of an intermediate linear partial differential equation. Discretization of the zeroth- and
first-order pressure fields and integration of the partial differential equations of pressure
is achieved using the finite element method. A simple thermal coning model calculates
deformation of the seal face due to axial conduction; however. examples are not included
in the present work. Comparisons of the present analysis (for SGTBs) with the NGT
prove for load capacity and inner diameter pressure favorable, and as expected, the inner
diameter pressure variations become significant as the number of grooves lessens. In
general. damping force coefficients decrease as the ratio between seal inner and outer
radii increases. Finite element calculations given in Someya (1989) for Sommerfeld
number further validate the present work. A parametric study shows the effect of varying
the SGFS geometry on the opening force, force coefficients, leakage rate, and power loss.
For a face seal having an inner diameter that is half of the outer diameter, the optimum

geometry determined from this study is: N, = 12: f=20% Dy/D, = 0.6, = 0.45; and



REFERENCES

Bonneau. 1. I, Huitric, and B. Tournerie, 1993, “Finite Element Analysis of Grooved Gas Thrust Bearings
and Grooved Gas Face Seals,” ASME Journal of Tribology, Vol. 113, pp. 348 - 354,

Cheng, H. 5., V. Castelli, and C. ¥, Chow. 1969, “Performance Characteristics of Spiral-Groove and
Shroured Rayleigh Step Profiles for High-Speed Noncontacting Gas Seals,” ASME Journal of
Li. rication Technology, Vol 91, pp. 60 - 68,

DiRusso. E., 1982, “Film Thickness Measurement for Spiral Groove and Rayleigh Step Lift Pad Self-
Acting Face Seals,” NASA Technical Paper 2058,

DiRusso. L., 1983, “Design Analysis of a Self-Acting Spiral-Groove Ring Seal for Counter-Rotating
Shafts.” NASA Technical Paper 2142.

DiRusso, E., 1984, “Dynamic Behavior of Spiral-Groove and Rayleigh-Step Self-Acting Face Seals.”” NA4SA
Technical Paper 2266,

DiRusso, E., 1985, “Dynamic Response of Film Thickness in Spiral-Groove Face Seals,” NASA Technical
Paper 25344,

Furuishi, ¥., T. Suganami, 5. Yamamoto, and K. Tokumitsu, 1985, “Performance of Water-Lubricated Flat
Spiral Groove Bearings,”" ASME Jowrnal of Tribology, Vol. 107, pp. 268 - 272.

Hsing, F. C., 1972, "Formulation of a Generalized Marrow Groove Theory for Spiral Grooved Viscous
Pumps,” ASME Jowrnal of Lubrication Technology, Vol. 94, pp. 81 - 83,

Hsing, F. C., 1974, “Analyvtical Solutions for Incompressible Spiral Groove Viscous Paomps,” ASME
Josrral of Lufirication Technolagy, pp. 1 -5.(1)

lames, 1. D, and A. F. Potter, 1967, “Numerical Analysis of the Gas-Lubricated Spiral-Groove Thrust
Bearing-Compressor,” ASME Jouwrnal of Lubrication Technology, Vol 89, pp. 439 - 444

Kowalski, C. A., and P. Basu, 1995, "Reverse Rotation Capability of Spiral-Groove Gas Face Seals,”
Tribolagy Transactions, Vol. 38, No. 3, pp. 349 - 356,

Muijderman, E.A., 1966, Spiral Groave Bearings. Philips Technical Laboratory. New York: Springer-
Verlag Inc.

Pan, C. H. T.. and B. Sternlicht, 1967, “Thermal Distortion of Spiral-Grooved Gas-Lubricated Thrust
Bearing Due to Self-Heating," ASME Jowrnal of Lubrication Technology, Vol 89, pp. 197 - 202,

Reddi, M. M., 1369, “Finite Element Solution of the Incompressible Lubrication Problem,” ASME Jonrnal
of Lubrication Technology, Vel. 91, pp. 529 - 5333,

Reddi, M. M., and T. ¥. Chu, 1970, “Finite Element Solution of the Steady-State Compressible Lubrication
Problem,” ASME Journal of Lubrication Technology, Vol. 92, pp. 495 - 503.

Reddy, I. M. Tnrraduction * the Finite Efement Method. Second Edition. New York: MeGraw-Hill, 1993;
pp. 246 - 249,

Salant, R, F.,and 5. J. Homiller, 1992, “The Effects of Shallow Groove Patterns on Mechanical Seal
Leakage,” Tribology Transactions, Vol 35, No, 1, pp. 142 - 148.

Sato, Y., K. Ono, and A. Twama, 1990, “The Optimum Groove Geometry for Spiral Groove Viscous
Pumps,” ASME Jaurnal of Tribology. Vol 112, pp. 409 - 414,

Shapiro. W., ]. Walowit, and H. F. Jones, 1984, “Analysis of Spiral-Groove Face Seals for Liquid Oxygen,”
ASLE Transactions, Vol 27, No. 3, pp. 177 - 188

Sneck, H. ., and 1. F. McGovern, 1573, “Analytical Tnvestigation of the Spiral Groove Face Seal,” ASME
Journal of Lubrication Technology, Vol 93, pp. 499 - 508,

Someya, T, (editor), 1989, Journal-Bearing Databook. Berlin: Springer-Yerlag, pp. |88 191,

Zirkelback, M., and L. San Andrés, 1997, “Finite Element Analysis of a Herringbong Groove Journal
Bearing: A Parametric Study,” Accepted for publication in the ASME Jowrnal of Tribology, April.



Table 1, Parametric study variations for SGFSs operating with incompressible nitrogen gas,

Variation Ny A7 D0, [o 3 &g

Figure 7. Number of grooves 6> 18 24) 74 % 3

Figure 8. Groove angle 12 1O — 30 74 5 3

Figure 9. Grooved diameter ratio 12 20 55— 82 3 3

Fipure 10. Groove width ratio 12 20 .74 A5=3 63 3

Figure 11. Groove depth ratio 12 20 T4 g 34

Fixved paramelers: [ tating =- ~oves) Fluid properties:

D,= 0762 m £=1.1233 kg/m’

D=.0381m 2= 1.782 % 107 Pas

D=3 Pi=101.3 kPa

=4 um fa=317.1kPa

C1=72000 RPM Finite elemem paramerers: No. elements rad - 40

(A=5011 Fig 11: A=5011—2227) rad. seal dam: 10 | cire. groove, ridge: 10, 10
B=0+" ]

@ ~ " (Rotation of Mating Surface}

S, = Inner Sezl Dam
= Ouler Seal Dam

J Q

Stationary
Grooved Face

Rotating
Grooved Face

Figure 1. SGFS geomeiry.
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Appendix
Sample Calculation

Load and Inner Radius Pressure for 3G TEBs without Transverse Flow

(Muijderman. 195886)

(Mames next to titles indicate which nomenc:  ireis in use.)

Fixed Parameters (firkelback)

Roo 0425m
¢, §10%m
15
]‘*~.E 13
n 3147
5€C
w1910 *Pasec
P QQH'kE—
k]
m

Nomenciature (Muijderman)

hg © Groove depth [m]
h | :Filmheight above grooves [m}h =h g h,
h 4 . Film height above ridges [m)]

H ' Groove depth ratio H=: T

k MWumber of grooves

{r.B) - Groove coordinate system

ri : Inner radius of grooved part

r- : Quter radius of grooved part [m]
W Load carrying capacity [N]

o Groove angle [rad] r=r |-e" JNSY
¥ . Ratio of ridge width to groove width

n - Dynamic viscosity [N-s/m?]

1 Angular velocity [rad/s]

Parameters for Case 1 (Zirkelback)

Rgi 0170:m

¢ 25610 m
fi 216420827247 rad

it 37037037037

r

Momenclature Conversion (M = £}

hl:l Cg
hr ¢ Cy
h: C
. c

I I:Z‘g
k M.
Hg Rg't
F3 Rgg
a P

“r
1

1 o,
m H
o 1
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Governing Eguations (Muiiderman)

Further Definitions  (Equations numbers in Muijderman (1966) listed.)

Charzctenstic Load:

nars
W =
hy

-H:'-cm JE-Hy 1 1
2 ¥ () ) 5 (2.62)

1oy y B Heotar 0y

- |
£
2 (5.8)
g 10 [ R S -u o -
eRp | (tan{a) )- - hoexp = 1 fanfa)): i
El 4 =
o3 L G E - w L=y 1
2
|
3 1-|~m'r21 5
P P U = o ()
h 2
Py =3.54763- 10° «Pa === Pressure at the inner diameter
(5.10)
2 2 |- yH ) 2 .
exp ; 1 “tan{a ) ”_1 J.q-exp R =gl -tan{ ) ! THJ
cs % s M ) k T Ly i
2 s
s ¢
3o o 3 W,
W, Te b kg€ (59) W
S = W
W = 113.72334<kg m=sec . === NGT load capacity
W=0,3829 === NGT dimensionless load capacity



