COMPUTATIONAL ANALYSIS OF SPIRAL GROOVE
THRUST BEARINGS AND FACE SEALS

by

Nicole Zirkelback
Dr. Luis San Andrés

May 1998

TRC-SEAL-7-98



Texas A&M University
Mechanical Engineering Department

COMPUTATIONAL ANALYSIS OF SPIRAL GROOVE THRUST BEARINGS

AND FACE SEALS

NICOLE LISA ZIRKELBACK

P.1. Dr. Luis San Andrés

TRC-5eal-1-98

April 1998

A Research Progress Report to the
Turbomachinery Research Consortium



il
EXECUTIVE SUMMARY

COMPUTATIONAL ANALYSIS OF SPIRAL GROOVE THRUST BEARINGS AND FACE SEALS

Analyses for incompressible and compressible spiral groove thrust bearings
(SGTBs) and face seals (SGFSs) are presented. A successive approximation linearizes the
partial differential equation of pressure that arises in the compressible fluid analysis. The
zeroth- and first-order equations giving the static and dynamic performance of SGFSs,
respectively, are solved using the finite element method for both incompressible and
compressible (ideal gas) fluids. Favorable comparisons with the Narrow Groove Theory
and a FEM analysis validate the incompressible fluid case for SGTBs without inward
radial flow. A parametric study indicates effects of changing face seal geometry on the
opening force, force coefficients, leakage rate, and power loss and gives the optimum
SGFS geometry. Validation of the isothermal compressible fluid model occurs by
comparison of the static and dynamic SGTB and SGFS behavior with previous NGT
analyses. The optimum compressible fluid SGFS geometry follows from a parametric
study, indicating the advantages of using grooved face seals with seal dams over
traditional mechanical face seals and oil lubricated seal rings.

A skyline profile method for efficient storage of the sparse matrices arising from
the FEM model allows a very fast numerical solution of the unsymmetrical system of
equations for compressible fluid SGFSs and SGTBs. The PC Fortran programs SPIRAL and
SPIRALC for the analysis of incompressible fluid and ideal gas SGFSs and SGTBs are
availabe to TRC members. The programs are adequately documented and include a

User's Manual with relevant examples
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Relaxation parameter for successive approximation

Groove rotation direction (See Appendix A for definitions.)

Ridge clearance [m]

Groove depth [m]

Axial damping coefficient [N-s/m]: C_ = C_/C, (See Appendix A.)
Outer, inner, groove inner diameter [m]: D, = 2-R,;: D;=2-R;; D,y = 2-Ry
Film thickness [m]

Axial stiffness [N/m]; K. = K_/K. (See Appendix A.)

Radial seal dam extent; = (&, — R} /(1-R)
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r Element boundary

i) Groove depth ratio, d= ¢ e

E: Dimensionless eccentricity; . = 1-¢/e,

g Circumferential coordinate attached to rotating face
© Circumferential coordinate fixed to stationary face, © = 8+ Qi
e,, Arc length of a groove-ridge pair, © _ =%,

A Speed number A = "4, (Ry;/ )_'. (See Appendix A.)
i Fluid viscosity [Pa-s]

Je Fluid density [kg/m’]

o Frequency number; o= Eh(mfﬂ)

{"P,. }:T Shape functions within the finite element
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v -{‘? .;i') Divergence of a gradient in cylindrical coordinates;
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INTRODUCTION

With the advent of strict mandates from environmental protection laws requiring
virtual elimination of harmful leakage in industrial processes, better sealing technologies
must be developed to prevent release of these volatile and potentially dangerous process
fluids into the atmosphere. The spiral groove face seal (SGFS) offers numerous
advantages over conventional contacting mechanical seals. Grooves etched on the
mating ring of the sealing surfaces do not wear from contact while rotating, greatly
lessening the need to overhaul machines for seal replacement. Dry (gas lubricated)
operation allows the face seal to perform with less complicated and expensive external
support systems like those required for oil lubricated seals. The use of tandem and
double sealing arrangements with inert buffer pases allow application of the SGFS in
machines handling highly volatile process fluids with virtually zero leakage 1o the
atmosphere.

The first analyses adopted to model thin-film grooved bearing geometries use the
Narrow Groove Theory (NVGT) where an infinite number of grooves is the primary
assumption. This analysis. as initially applied to parallel, helically grooved
configurations. is mostly found for herringbone grooved journal bearings (HGJBs). A
detailed review of the pertinent literature for HG.JBs can be found in Zirkelback and San

Andrés (1997). In general. the NGT is limited to performance prediction for concentric

This thesis follows the style and format of ASME JOURNAL OF TRIBOLOGY.
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journal operation. and although few advances have been made for modeling turbulent
flow, the NGT is mainly limited to prediction in the laminar flow regime.

The groove shape became the primary concern when applying the NGT to spiral
groove thrust bearings (SGTBs) due to the logarithmic spiral contour of the grooves.
Muijderman (1966) presents an extensive NGT analysis for various spiral and
herringbone groove thrust bearing configurations including flat. spherical, and conical
bearings, and approximate formulae are given for pressure, load capacity, friction torque,
and the coefficient of friction for each bearing type. Experiments are also recorded for
flat aerostatic SGTBs, and comparisons with the given analyses are provided. Although
the analyses represent only incompressible fluids, the comparisons prove favorable.
Finite differences are applied to solve the Reynolds equation for compressible fluids with
constraining jump equations providing flow continuity at the groove-ridge interfaces in
SGTBs as presented by James and Potter (1967).

Afttempting to better represent the specified pressures at the boundaries of SGFSs,
Sneck and McGovern (1973) introduce the narrow seal theory since the original NGT. as
presented by Muijderman (1966), considers an infinitely wide thrust bearing face without
specified boundary pressures. Despite the simplification of straight paralle] grooves. the
predictions using the narrow seal theory without pressure gradients compare well with
results from Muijderman (1966). Constantinescu and Galetuse (1992) also consider
extension of the NGT to calculate leakage in face seal applications with various groove

types including straight grooves. spiral grooves, and herringbone grooves.
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The shortcomings of the NGT warranted extensions of the original analyses for
various theoretical aspects. Pan and Sternlicht (1967) present a simple heat transfer
study that models thermal distortion of flat, ungrooved thrust bearing surfaces, where the
drag-induced frictional power is conducted through the bearing faces. The analysis
assumes that heat flow through the faces is uniform and purely axial: however. effects of
the groove geometry are neglected in the thermal model since the viscous shear stress is
calculated between two flat plates. Considering both SGFSs and Rayleigh step seals,
Cheng, et al. (1969) discuss the relative placement of grooves and seal dams within the
context of a NGT analysis that uses the Reynolds equation for compressible fluids. The
authors conclude that seal dams on the low pressure side of the SGFS minimize leakage
at the expense of axial stiffness, while seal dams on the high pressure side give higher
values of stiffness. Hsing (1972) extends the NGT to include slip flow and flow
turbulence using generalized coordinates to model most groove bearing peometries (e. g..
flat, spherical. conical. and cylindrical). Using results obtained previously, Hsing (1974)
presents analytical solutions for force coefficients in spiral groove viscous pumps.
Considering the same grooved geometries, Smalley (1972) submits the NGT in
generalized coordinates and solves the governing equations with finite differences to
give load capacity, power loss, leakage, and stiffness coefficients. Furthermore, Sato, et
al. (1990) present an incompressible fluid NGT analysis in the generalized coordinates
provided in Hsing (1972) to obtain the optimum groove geometry for both the SGTRB and

HGJB configurations handling viscous, incompressible fluids.




Malanoski and Pan (1965) analyze the static and dynamic characteristics of
inward and outward pumping SGTBs operating with compressible fluids. The total
dynamic force, given by frequency dependent equivalents of stiffness and damping,
determines the thrust bearing stability and dynamic performance. Two stability analyses,
given in Constantinescu and Galetuse (1987), use the NGT to provide dynamic stability
limits for SGTBs operating with compressible fluids. While the first analysis provides a
critical mass parameter to determine the stability limit, a simpler approach furnishes an
analytical formula that shows good agreement with the former limits rendered.

Special considerations necessary when dealing with cryogenic fluids are noted for
the design of a particular SGFS in Shapiro, et al. (1984). The analysis implemented
applies enhancements to Muijderman’s NGT in turbulence, fluid inertia, and thermal and
elastic deformations to make predictions of film thickness. axial stiffness, leakage,
power loss, and temperature rise for increasing rotational speeds. Salant and Homiller
(1992) present a finite difference solution of the Reynolds equation for incompressible
fluids that accounts for fluid cavitation in upstream pumping SGFS operating in both
single and double seal configurations. A parametric study reveals instability due to
negative stiffness when a SGFS operates as a single seal; however, properly designed
SGFSs remain stable in double seal configurations. Lastly. Kowalski and Basu (1995)
optimize the SGFS geometry for reverse rotation and forward rotation simultaneously by
solving the Reynolds equations for compressible fluids with finite differences. Tests
verify the feasibility of meeting the design demands; however, an expected increase in

leakage accompanies the optimized bidirectional design (23° groove angle).




Experimental studies in addition to that presented by Muijderman (1966) include
tests by James and Potter (1967) performed on a test rig that employs ceramic SGTBs
and spiral groove compressors with air, The experiments involve measurements of
outlet pressure and air flow rate. Static loads with 10% possible error and an optimum
geometry are determined from the tests. In a series of reports, DiRusso (1982, 1984,
1985) presents measurements of the film thickness and drag torque for various SGFS
configurations operating with air. The latter two reports (DiRusso. 1984, 1985)
concentrate on the dynamic axial oscillations of the seal face and the effects of
misalignment while reporting instabilities for outward pumping SGFS when the
hydrodynamic pressure forces overcome the spring force at seal liftoff. DiRusso (1983)
also presents a parametric study using a previous NGT study to analytically determine the
optimum geometry of SGFSs. Experiments presented in Furuishi. et al. (1985) fora
SGTB operating with water give the load carrying capacity and corresponding minimum
film thicknesses for geometries with varying groove depths and support configurations.
Different support configurations lessen thermal coning so that experiments match more
closely with the simplified NGT analysis presented. However, the softer support
configurations also diminish the load carrying capacity of the spiral groove thrust
bearing.

With its ability to easily represent complicated geometries and any number of
grooves, the Finite Element Method (FEM) has been the more recent choice for solving
the Reynolds equation applied to spiral groove bearing and seal designs. Reddi (1969)

and Reddi and Chu (1970) discuss application of the FEM to incompressible and




compressible fluid spiral groove bearings, respectively. Finite element solutions for load
capacity and axial force coefficients are referred to by Someya (1989) for an
incompressible fluid SGTB having a pressure dam on the bearing inner diameter.
Bonneau, et al. (1993) present a finite element model of SGFSs that uses upwinding to
allow solution of the nonlinear Reynolds equation for compressible fluids. Graphs
showing load and leakage rate illustrate the effects of mesh refinement and increased

speed numbers.




OBJECTIVE

The present work includes analyses of isothermal, incompressible as well as
compressible fluid SGFSs using the finite element method to solve the partial differential
equations of hydrodynamic pressure. Analytical perturbations are performed for both
cases, determining the dynamic axial force coefficients. To allow solution of the non-
linear partial differential equation describing compressible fluids in SGFSs, the analysis
utilizes the successive approximation approach described in Reddi and Chu (1970) to
obtain solutions for the zeroth-order (equilibrium) pressure distribution. The lack of
meaningful experimental data in the archival literature for this particular grooved
configuration makes comparison with previous analyses the primary means to verify the
current model. Comparisons are made with the NGT (Muijderman, 1966) and with
another FEM model (Someya, 1989) to validate the present incompressible fluid model
with SGTBs. A parametric study for SGFS operating with incompressible fluids shows
the effect of changing the face seal geometry and gives the optimum configuration.
Confirmation of the compressible fluid model occurs by comparison with Lebeck (1991).
Malanoski and Pan (1965), James and Potter (1967), and Bonneau, et al. (1993). The
effect of adjusting compressible fluid SGFS geometry as obtained from a parametric

study renders the geometry for optimum gas face seal performance.




ANALYSIS
GENERAL DESCRIPTION

Figure | shows two configurations of the spiral groove face seal (SGFS). In
Figure 1.a, the grooved surface is stationary while the flat mating surface rotates
(clockwise) with speed Q. The (r, ©, z) coordinate system, connected Lo the stationary
grooved surface, 15 used to describe this seal geometry. Figure 1.b shows the second
configuration of the SGFS where the grooved surface rotates at speed Q
(counterclockwise) opposing a stationary, flat mating surface. This configuration is
described with the (r, €, z) coordinate system attached to the rotating, grooved surface.

The coordinate transformation between the two configurations is given by
0 =8+Q1 (1)
and groove rotation direction (B) of %1 implies stationary or rotating grooves depending
on the configuration. (See Appendix A.) The seal has inner radius £, denoting the
beginning of the inner seal dam and outer radius R, indicating the end of the outer seal
dam. The inner and outer radii for the grooved portion are defined with R,; and R,,.
respectively. It is assumed that the rotating surface can only move axially so that tilt
angles can be neglected. Several descriptive parameters characterize the groove
geometry. The ridge clearance (¢) plus the groove depth (¢;) give the maximum clearance

(¢ + ¢,), and the groove depth ratio () is described with d= c/e. The width ratio (a) is

the fraction of the arc length of a groove-ridge pair (EJ' = E%rt) that is occupied by a

=y
groove. The equation governing the logarithmic shape of the grooves is (Muijderman,

1966)
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r=R el 2)

|
where the circumferential coordinate is represented by #and the helix angle (/) is the
angle of the groove from the tangent. with = 90° giving radial grooves as illustrated in

Figure 2.

INCOMPRESSIBLE FLUID SGFS ANALYSIS
The lubricating fluid is regarded as incompressible. isoviscous, and newtonian,
The appropriate Reynolds equation in cylindrical coordinates describing isothermal,

laminar, inertialess fluid flow on the seal face is

lﬂ(ii}gi[h_wﬁ]_ﬁ 52
ra\12ucr) rd@\12ur o8 2

2
2 (3)
0<6<0©,,: R <r<RQg,

I
where the groove rotation direction (8) of +] implies stationary or rotating grooves
depending on the configuration. (See Appendix A.) Refer to the Nomenclature for
proper definitions of all variables. The film thickness A in the equations above is
described with

h=c (4.a)
in the ridge region and

h=c+e, (4.b)

in the groove region.

The pressure for the seal is specified at the inner and outer radius as, respectively,




P(R.6.t)=P (5.a)

P(R,,0.1)

7 &)
Since azimuthal thermal distortion and misalignments of the faces are neglected, the

circumferential pressure distribution for each groove ridge pair is periodic.

Pr.6,+n0,,.t) = P(r.6,) ©

Ir=|...,.'|n'|r

PERTURBATION ANALYSIS FOR INCOMPRESSIBLE FLUID SGFSs

If the rotating surface describes small axial motions (Az) from an equilibrium
position (/g), the film thickness is equal to
A(r.0.0)=h,(r.8)+ Az e™ ; i=—1 (7
The effect of these small amplitude motions is to bring perturbations in the pressure
about an equilibrium field (Py), described by the superposition of zeroth- and first-order
pressure fields:
P(r,6,t)= P)(r.0) + PAz ™ (8)
where Py is the zeroth-order pressure field, and P, is the perturbed first-order pressure.

With the following definition for the linear differential operator,

1 & rid ﬂ“} 1;.1[;:3 IEPJ
=—— — | f— (1]
L(p) rci“(l?,;rd' +r§§ 12p4r o @

and the substitution of Equations (6) and (7) into the Reynolds Equation (2) gives the

zeroth- and first-order equations as



Zeroth-Order Equation

Q A,
L(f;}:BEﬁ} (10)
Firsi-Order Equations

18(3rki aP) 1 &(3k ér
-5 2 ).

(7) ra\12u &) r eo\12uae) ¢ (11)

If Az is arbitrary, it follows that £, =0 on the seal boundaries since the inlet and outlet
pressures are invariant.
The equilibrium fluid film seal forces (static) acting on the mating surface are

obtained from the integration of the zeroth-order pressure field over the area of the seal

face:
R,

F=N, | [(B-B,)rdeir (12)’
o0

while the stiffness and damping are oblained from real and imaginarv parts of first-order

pressure field integration,

&,
Z=K.+ioC.=-N, [ [P rdodr (13)
R0
Note that the partial differential equations from which the stiffness and damping
coetlicients result are not coupled. Hence. the force coefficients are frequency ()

independent.

" P,.cdenotes a reference pressure to account for force from on the other side of the face seal. P is
explicitly noted in the caleulations given in Appendix A,
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To utilize these expressions for forces and force coefficients (Eqns. 12 and 13),
the respective pressure fields must be solved. This is accomplished using the finite
element method. The program spiral,for uses the finite element method to solve the
zeroth- and first-order pressure equations for a spiral groove face seal with an
incompressible fluid using FORTRANT7 in the WiNDOWS NT operating system. The finite

element method applied to this analysis will now be discussed in more detail,

FINITE ELEMENT FORMULATION FOR INCOMPRESSIBLE FLUID SGFSs
The flow domain is discretized into a collection of 4-noded isoparametric finite
elements. (Reddy, 1993) The pressure over a finite element is a linear combination of

nodal values and shape functions {¥,}* given by

Bi=Y WPr (14.a)

Pi=)¥E (14.b)

This allows the differential pressure equations (10, 11) to be reduced into an algebraic
system of linear equations. The Galerkin formulation of the zeroth-order pressure

equations becomes
DA (15)
=] )

where ['* is the closure of the element domain (° and




hy ]ﬁ[é‘*}' ¥ 1o¢ )
k:t: ( - - s +.—:————4.___J_
Gl e ag}’ﬁ&k (16.)
i = f¥ig, o
2
. Qo O
15 = 85 [ —5raer (16.¢)
3 B

Note that once the nodal pressures are known, the flow rates can be obtained from the
equation above by solving for {q,j J along the element boundaries. These equations are

condensed by enforcing the corresponding boundary conditions. The result is a
symmetric system of equations that are then {LL"} decomposed and solved to obtain the
discrete pressure field.

The first-order equations are obtained and solved in a similar manner. For

finding P|. the corresponding first-order element equations become:

D KEB =g+ [ =Y 8P (17)
=1 a=1
where
q; = 4‘1‘:“%;!1“ (18.a)
L
fe=]] BN _uiawe | vl i=-1 (18.b)
AT a

} rel&Gdr (18.c)
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Since the finite element equations are symmetric. certain techniques allow storage of the

banded matrix in a single vector with fewer zero elements occupying computer memaory.

CoOMPRESSIBLE FLUID SGFS ANALYSIS
If the fluid within the seal is considered as an (compressible) ideal £as at constant
temperature (1sothermal model), the density is directly proportional to the pressure of the

fluid, or
p=e (19)

where the quantity T is constant if the seal characteristic temperature (7)) does not
change. Since gases have very low fluid viscosities, little temperature change between
the inner and outer seal diameters is expected. The limited thermal capacity of gases
justifies use of an isothermal, ideal gas for modeling, although other thermal aspects,
such as thermal coning of the seal faces, become important. The Revnolds equation in
cylindnical coordinates for an isoviscous and newtonian fluid sustaining isothermal,

laminar, inertialess fluid flow on the seal face is
2r 69 % (20)

The same film thickness expressions and boundary conditions as in the incompressible
case apply. (See Eqns. 4 through 6.) The method for solution of this non-linear partial

differential equation is detailed in Reddi and Chu (1970) where a successive
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approximation scheme is proposed. Considering a perturbation in rotational speed (€2).
Le,
Q=0 +4A0 (21)

the linearization of pressure (as a function of speed) about this point gives

- P
P(Q)= PO, |+ = . AQ (22.a)
or
P=P +AP (22.b)

where P, satisfies the steady-state form of Eqn. (20) for speed Q,. Neglecting
derivatives of time for steady-state operation, substitution of the perturbed speed and

pressure (Eqgns. 21 and 22) into the Reynolds Equation (20) gives

TG R
v.[ﬂvpﬂj 2 ;ﬁ—;[m(mum 20 (23)

which 1s now a linear partial differential equation. For two sufficiently close values of

(£2, €2,,), the successive approximation determines a sequence of pressures until the

steady state form is satisfied. 1. e.,

o [ op| B2
v-[-l-ﬂw J_ zrﬁg[m{:ﬂp}] (24)

Once this equilibrium pressure is determined. the forces and force coefficients can then

be evaluated.
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PERTURBATION ANALYSIS FOR COMPRESSIBELE FLUID SGFSs
If the rotating surface describes small axial motions (Az) from an equilibrium
position (fp) at a frequency (@). the film thickness is equal to
Hlr.6.t) = h(r.6)+ Az e™ ;. i=J-1 (25)
where @ is the axial excitation frequency. The effect of these small amplitude motions is
to bring perturbations in the pressure about an equilibrium field (Py). described by the
superposition of zeroth- and first-order pressure fields:
P(r.6.t) = P(r.0) + A (r.0)Az ™ (26)
where Py is the zeroth-order pressure field, and P, is the perturbed first-order pressure.
With substitution of the perturbed film thickness (Eqn. 25) and pressure (Eqn.
26) into the Reynolds equation (Eqn. 20), the first-order partial differential equation of

pressure hecomes

1 & 1.8
;ﬂ}[.’ mI]ﬂ-:E(m )+Iﬂ}{Phn—rP)=ﬂ (2'}"_.
0<B<O, : R<r<R
where the first-order mass flow rates are
P
. A (hf’ +;*é( )] (28.a)
< 12 ar a
| 1. é(PP B
o 1 'Jh{:- 0 {?15' hy 50 5 (P hﬂP} (28.b)

Integration of the first-order pressure field gives stiffness (real part) and damping

(imaginary part) coefficients, together representing a complex impedance
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R,0,..
Z=K_+iaC.=-N, [ [P rdedr (29)
R O
Note that once the first-order pressure field is solved and integrated, the stiffness and

damping coefficients will be coupled and dependent on the excitation frequency ().

FINITE ELEMENT FORMULATION FOR COMPRESSIBLE FLUID SGFSs

The finite element analvsis develops for the compressible fluid case in the same
manner as before. However. it should be noted that the zeroth-order flow equations are
non-linear though effectively linearized by the successive approximation method. The

Galerkin formulation of the zeroth-order pressure equations becomes
kB =g + [y (30)
ul

where I'" is the closure of the element domain ¥ and

- | (G5 s

(31.a)
a1 éP'] BHQ, OV
i [ - ) [ L L i 'd
+(a~ ﬂi+r'c9ﬁ?rﬂf?¥] 2 aﬂw*}’w‘"
ql‘; = c_[‘{;remfj.diwe (31-]}]
k!
BhGQ, AV

s = ([ n rdadr (31.¢)

o

where




P=yup (31.d)

The result of these equations due to fluid compressibility renders an asymmetric system
of algebraic equations that are then decomposed (LU) and solved to obtain the discrete
pressure field.

The first-order equations are obtained and solved in a similar manner. For

finding P|. the corresponding first-order element equations become:

2B =g + [ (32)
i=1
where
h 12¢ & e 1P
= A L SR A
IE,H_ r'ﬁﬂﬁﬂ & a r o8 a8) !
(33.3)
BQ ¥
TE—I&J"P f;l'ﬂq""l el Gy
= Juei -7 dr (33.)
4
3hy (4P, & 1 ¥ .-.s‘-PE,] _ BQ &¥
H{ { 11;;( o e it a&}rd&# (53)

Note that g in these equations is the zeroth-order discrete pressure field previously
solved with the successive approximation approach at speed Q. Like the zeroth-order

finite element equations. the resulting algebraic system of first-order equations is also
asymmetric, Storage of entire [kf] matrices in both the zeroth- and first-order becomes

necessary in this case, effecting much demand on computer memory.




As in the incompressible fluid analysis, the zeroth- and first-order pressures are
integrated to obtain the load capacity and dynamic force coefficients, respectively, of
compressible fluid SGFSs. The finite element method is again applied to solve the
partial differential equations of pressure in a computer code written in FORTRANSO within
the WiNDOWS NT operating systen.

Parameters of importance in the analysis with compressible fluids are the speed

number (A)
_60( &
a-20(% ) N

that describes the level of compressibility as a function of speed (Q) for a given spiral

grooved thrust bearing or seal geometry, and the frequency number (o)

Fa
o= m[ﬁj =%{R—:J (35)

C

used to show the frequency dependence of the force coefficients.

NUMERICAL CONVERGENCE AND MESH DEPENDENCY

In using the successive approximation, convergence of this method to the
solution of the pressure field becomes difficult considering that at a given successive
approximation step, the new pressure field is based on the previous pressure field. The
pressure field solutions may then oscillate between two contrasting pressure fields, each

time reacting to the extreme density variation (or lack of) in the previous pressure field.
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To hasten convergence, the successive approximation employs an under-relaxation
parameter (@) in the following manner:

P, =aP,+(1-a)P, (36)
for a given step n of the successive approximation. where P, is a vector containing the
solution of the finite element equations calculated for step n. A typical value of the
under-relaxation parameter (a) is 0.5 in the present work.

Mesh dependency in a given case must be closely observed from many aspects.
When spiral angles approach either 0° or 180° grooves become exceptionally long since
they verge on circumferential extension around the seal face. Thus, more elements in the
radial direction are required with these cases lest the quadrilateral elements become ill
conditioned from containing angles that are too obtuse (Reddy. 1993).

Seal dams also play an important role in determining face seal performance since
flat-ungrooved regions help dissipate much of the pressure buildup from the grooves or
due to the pressure ratio between the inner and outer diameter. When large pressure
drops may occur radially, such as in the case of a face seal. more radial elements in this
region can aid in predicting all of the pressure decrease across the seal dam.

The change in film thickness at the groove-ridge interface causes the fluid to
contract, inducing a large pressure buildup and density changes (similar to a Rayleigh-
step bearing). Higher rotational speeds greaten these effects. Consequently, the
circumferential pressure drop over a groove-ridge pair occurs in the ridge region alone.

A subsequent discussion will address this fact in more detail. Elements concentrated
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circumferentially aid in fully and accurately accounting for the pressure drop in this

region.

NOTE ON NUMERICAL METHOD OF SOLUTION

The successive approximation itself maintains many advantages and
disadvantages. This method operates quickly within a relatively simple finite element
Galerkin formulation with 4-noded quadrilateral elements. However, the price of not
using higher order elements. such as in Bonneau, et al. (1993), is the need to refine the
mesh (A-refinement) at higher speeds. When the speed number becomes very high
oscillatory behavior in the calculated pressure field near the end of the ridge results due
to film discontinuity and the large changes in density at this location. Discussing this in
detail. Bonneau, et al. (1993) eliminated much of this problem through the use of
upwinding and higher order elements (p-refinement) in the necessary locations. Asa
result, accurate solutions at much higher speeds become possible. In the present model.
computations for load capacity may converge on a pressure field containing these
fluctuations in the ridge region and give results that vary little with mesh refinement.

However. the force coefficients are highly influenced by a refined mesh in these cases.



RESULTS AND DISCUSSION

INTRODUCTION

The need to validate the present analysis against published works arises both to
ensure that predictions given by the model are correct and to indicate the advantages of
the present research over that performed previously. The observation of previous
findings also serves to identify topics of concern with thrust bearing and face seal
configurations of this type. These topics become the focus of reported predictions from

the present model.

VERIFICATION OF THE INCOMPRESSIBLE FLUID SGFS MopeL'

Comparison with Muijderman (1966). Muijderman (1966) provides analytical NGT
solutions for SGT8Bs that operate with incompressible, isoviscous lubricants. In the
model, pressure variation between grooves and ridges is simplified into an average,
smoothed pressure. Additionally. the supposition that there is no radial (inward) flow
arises since the thrust bearing configurations as studied by Muijderman (1966) have the
inward pumping spiral groove thrust plate underneath a flat rotating thrust collar, thus
contributing a pressure buildup at the inner diameter (rather than a specified inner
diameter pressure) and an additional reaction load (due to the plenum pressure)

generated within the inner diameter area of the thrust plate. A modified version of

" Characteristic values for making parameters dimensionless are provided in Appendix A while specific
geomerry and FEM parameters reside in Appendix B.




spiral.for (incompressible fluid) restricts the {low rate at the inner diameter to zero to
enable comparison. (A sample calculation of the pressure and load calculations
according to Muijderman (1966) can be found in Appendix C.) The results of the
comparisons between the NGT and present FEM computations for dimensionless
optimum load capacity (W) as the radius ratio (R = R/R,) increases are shown in Figure
3. Each point in the figure represents the conditions for maximum load capacity as given
in Muijderman (1966), and the dimensionless parameters are provided for each case,
Note that the total load capacity is the sum of the hydrodynamic load generated by the
grooves and the load from the pressure buildup within the inner diameter (zR*P,).
Although comparisons are very close. the NGT tends to slightly overpredict the load
capacity of the SGTB, a fact well reported in the literature.

As well as providing analytical calculations for load capacity. Muijderman (1966)
gives an estimation of the mean inner diameter pressure using the NGT. The actual
pressure variations between grooves and ridges as calculated by the FEM program is
given in Figure 4 with NGT pressure calculations included. As expected, the variation in
pressure is large for smaller numbers of grooves. As the number of grooves nears
infinity (~50), the pressure variation is practically negligible.

Dimensionless dynamic force coefficients are given in Figure 5 for the same

geometries. As shown. the stiffness (f_] remains virtually constant while the damping
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coefficients (Ez) decrease as the radius ratio increases. indicating that using narrower

thrust bearing plates may be an undesirable practice. A smaller number of grooves is
preferred since the thrust bearing exhibits more stiffness and damping as the number of

grooves decreases.

Comparison with Someya (1989). Figure 6 presents comparison of the present FEM

analysis against FEM calculations of dimensionless eccentricity (&= 1 - cleg) as the
Sommerfeld number S (: ;LMij(Rn i ) / WJ increases given in Someya (1989) for

SGTBs with pressure dams on the inner diameter. As defined. the Sommerfeld number
(:5) represents the inverse of load () while the inverse of the ridge (minimum) clearance
(c) is designated by the eccentricity (&). The trends show that as the load increases
(decreasing 5) the ridge clearance decreases (increasing &). Comparisons give very little

discrepancy with an average difference of 5.75%.

PARAMETRIC STUDY OF INCOMPRESSIBLE FLUID SPIRAL GROOVE FACE SEALS
Introduction. Variation of the dimensionless force coefficients. leakage rate, and power
loss with changes in the SGFS geometry is given in Figures 7 through 11. Table | shows
how the geometry varies in each case. Although the analysis used to compute the results
is for incompressible fluids only, nitrogen gas was used in these cases at low speed
numbers (A < 6), where this gas acts as an incompressible fluid. These cases are distinct

from those presented by Muijderman (1966) since there exists a pressure differential
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Table 1. Parametric study variations for SGFSs operating with an incompressible fluid.

Vartation Ny A1 / O g
Figure 7. Number of grooves (V) = 18 20 0.48 .5 2
Figure 8. Groove angle (8[°]) 12 [0 —20 048 5 2
Figure 9, Seal dam extent (/) 12 20 0 —» 0.64 5 i
Figure 10. Groove width ratio (a;) 12 20 048 045 — (.65 2
Figure | |. Groove depth ratio (5 12 20 0.45 5 23
Fixed parameiers: {Rotating grooves) Fluid properties.

D,=0.0762m o= 1.1233 kg/'m’

D,=0,038]1 m 4=1.782 x 107 Pas

R =103 P,=317.1 kPa

¢=4d um £, =101.3 kPa

{2 =2000 RFM

A=3951]
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Dimensionless eccentricity (=)

._ — —
Comparison with Someya (1989)
08
(= JLUAD02 8SA|UOISUIWIP sutede (§) 1aqunu plapawwos (6861) eAawog i uosueduio])
0.6
0.4
0.2
0
0.2
04
06
0.8
: & Someya (1989)
SGTB: R = 0.5 R, =08; R 0.5, 7 =307 N, =10 —+—Present FEM
A e ; ; ; —t ; . - —
0.1 1 10 100

Sommerfeld Number (§)
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from the outer 1o inner diameter. i. e.. P, > P,. It should be noted in the figures that the
dimensionless leakage rate (O = 0/ Q.); is generally 20% of the leakage between two

flat plates with the same order of clearance. These results attest to the obvious advantage

of grooved geometries over conventional non-grooved configurations,

Effect of the Number of Grooves (V). As the number of grooves (Vg) increases in
Figure 7, the stiffness and damping coefficients (E_I_F_) and the power loss (ﬁ)

increase slightly while the leakage rate (Q) remains constant. The opening force (not

shown) does not change with an increase in the number of grooves (N,).

Effect of the Spiral Groove Angle (f). Figure 8 shows that the stiffness coefficient

f_f:) reaches a maximum at a groove angle (/) of 20° while the damping coefficient
{E____) and power loss (5_3) decrease as the groove angle (f) increases. The leakage rate

(E ] increases slightly as the groove angle (/) increases. When the groove angle
approaches radial grooves (/7 — 90°), less seal area exists over which the pressure can
develop, and the grooves do not pump fluid outward as well, explaining the drop in
stiffness and increase in leakage at higher groove angles (). On the other hand, grooves

that are nearly tangential (f — 0°) do not develop pressure efficiently.

* 0. is the Mow rate for two flat plates having the same dimensions as the SGFS with clearance ¢,.




Effect of the Seal Dam Extent (/). A relatively small seal dam (with ridge clearance. ¢)

on the inner diameter significantly influences the behavior of SGFSs as shown in Figure

9. The opening force (i), direct stiffness cocfficient (K.), and damping coefficient

(E“.-L_J increase significantly with the introduction of a seal dam. The direct stiffness

coefficient reaches a maximum value at a seal dam extent (/) of 0.18 (18% of the seal

radial width) and falls as the seal dam extends over more of the seal face. The leakage
rate (_E) drops somewhat with increasing seal dam extent (/) while the power loss (;_:J}

significantly lowers only until a seal dam extent (f) of 0.3. Since the seal dam has the
same clearance as the ridge (minimum) film clearance (c), a more extensive seal dam

represents a reduction in the average film clearance over the entire seal. Thus, the

stiffness coefficient (f_,:] and opening force are expected to increase as the grooved

extent increases, and the leakage (Q) should increase. With less grooved area to pump

fluid outward, the stiffness coefficient { K::} decreases when the seal dam becomes too

large compared to the grooved part of the seal.

Effect of the Groove Width Ratio (). Changes in the groove width ratio (), given

in Figure 10, do not significantly change the seal parameters of interest, although the
leakage rate (@) does increase slightly as the groove width ratio () increases. Again,

this effect can be illustrated by the general increase in the seal average clearance.
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Effect of the Groove Depth Ratio (). Figure 11 shows the effect of increasing the
groove depth ratio (6). Since the definitions of the dimensional parameters depend on
the groove depth (cg). the parameters were made dimensionless using the ridge ¢learance

(c), which is held constant, rather than the groove depth (¢,), as in all other cases. Thus.

trends of the dependent dimensionless parameters are preserved. The stiffness (fz) and
damping (E __) coefficient decrease with the groove depth ratio while the leakage rate

(Q-) increases. The dependence of the parameters on the groove depth can be generally
inferred by realizing that an increase in the groove depth ratio (&) represents an increase
in the average seal clearance. The power loss (?5} remains nearly constant with the

groove depth ratio.

VERIFICATION OF THE COMPRESSIBLE FLUID SGFS MoDEeL

Comparison with Lebeck (1991). Several case studies given in Lebeck (1991) serve to
confirm the compressible fluid model for spiral groove face seals. and Table 2 provides
the dimensionless geometry for each case. Lebeck (1991) applies the equations given in
Mutjderman (1966) to SGFSs with specified inner and outer radius pressures and
accounts for fluid compressibility by considering an isentropic relationship (P o< 2.

As well as predicting load capacity and leakage rate, Lebeck (1991) employs a finite film




Table 2. Geometry for Lebeck (1991) SGFS case studies. Po=19.8.

Case Groove Angle Groove Wigth Radius Ratio  Seal Dam  Groove Depth  Speed No.

No. A7 Ratio (&) (R) Extent (1) Ratio () (A)

] 20 0.500 0.8727 0.3 1.5 160.9
2 10 0.500 0.8727 0.3 15 160.9
3 30 0.500 0.8727 0.3 1.3 160.9
4 20 0.333 0.8727 0.3 1:5 160.9
5 n 0.667 0.8727 0.3 1.5 1609
+] 20 0.500 0.9300 0.3 B 133.0
7 20 0.500 0.8250 0.3 1:5 191.5
3 20 0.300 0.8545 0.2 1.5 160.9
9 20 0.300 0.8909 0.4 1.5 160.9
10 20 0.500 0.9273 0.6 1.5 160.9
11 20 0,500 0.8727 0.3 1.0 160.9
12 20 0.500 0.8727 0.3 2.0 160.9

Number of grooves (N,) of 80 used in FEM analysis.
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thickness perturbation to obtain static® axial stiffness coefficients. Figure 12 shows
comparisons of the dimensionless load capacity (/W) from the present analysis to be in
good agreement with those of Lebeck (1991). The same assertion holds for the
dimensionless static stiffness coefficients (K. ) and leakage rate (O) given in Figures
13 and 14, respectively. Discrepancies most likely arise from differences berween the
simple NGT and present FEM solution. The fact that the two analyses use different
pressure/density relationships (isentropic vs. isothermal gas) may also account for some

of the disparity.

Comparison with James and Potter (1967) and Bonneau, et al. (1993). Comparison
of the present FEM model with results from the finite difference solution given by James
and Potter (1967) as well as the upwinding #£M model derived in Bonneau, et al (1993)
occurs in Figure 15 for load capacity in SGTBs with inner radial flow as the pressure
ratio between the inner and outer diameter (P;/P,) varies and for a speed number (A) of
175.7. The previous models tend to underpredict the load capacity although all trends
predicted are virmally identical. The present model converges to the same results
provided by James and Potter (1967) as the pressure ratio (P/F;) tends to unity.
Discrepancies may lie in the fact that the operating conditions and geometry were

difficult to ascertain from the original example given in James and Potter (1967).

¥ Sraric implies dynamic axial perturbations at very low excitation frequencies, i, ¢. & — 0 (g — 0).
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Lebeck (1991)
@ Presant FEM

Lebeck (1991) Case Number

SGFS

P w 15 = = o i
= = = = = (=] (=]
(41} 82u04 Bupusdg ssejuoisusw|g

g. 12 Comparison with Lebeck (1991) case studies, Opening force.
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Comparison with Malanoski and Pan (1965). Using the NGT for compressible fluids.
Malanoski and Pan (1965) examine the SGFS load capacity as well as frequency
dependent dynamic axial stiffness and damping coefficients. Figure 16 shows the
dimensionless load capacity (J7') and static (zero frequency) axial stiffness coefficients
{f:} versus speed number (A) to compare well with those of Malanoski and Pan
(1965). Both analyses show virtually constant dimensionless load capacity and static
axial stiffness except at high speed numbers (A) where each parameter drops slightly.
Since the characteristic load is directly proportional to the speed number (A). this
decrease suggests the considerable effect of compressibility as each dimensional

parameter reaches an asymptotic upper limit.

Figures 17 and 18 clearly demonstrate the dramatic behavior of the dynamic force
coefficients with variable axial excitation frequency numbers (o) for three different
speed numbers (A). In general. the force coefficients remain constant at low excitation
frequencies (o) implying that the fluid is incompressible. At high excitation frequency
numbers (o). compressibility largely affects the dynamic SGFS performance.

The dimensionless stiffness coefficient (fx}, shown in Figure 17, nises with
increasing axial excitation frequency (o) for the lowest speed number (A = 2),
representing a nearly incompressible fluid model. The stiffness coefficient {.f?:'} remains
almost constant with excitation frequency (o) for moderate speed numbers (A = 20),

while at the largest speed number (A = 100), the stiffness coefficient (f._.) decreases
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with excitation frequency (o). For low excitation frequency numbers (o), the stiffness
coefficients tend toward the same value regardless of speed number (A). The damping
coefficients (f :) . plotted in Figure 18 as absolute values, drop at high excitation
frequencies for the nearly incompressible fluid case (A = 2). Thrust bearing instability,
predicted by negative axial damping (LT :) at moderate excitation frequencies (o> 50),
occurs for moderate compressibility (A = 20). The damping (f_} remains negative
throughout the range of excitation frequencies ( o) for the highest value of speed number
(A =100), i.e. with large fluid compressibility effects. Note that the damping (E;,)

shows variation in orders of magnitude as the speed number (A) increases. At low speed

numbers (A), the stiffness (f?:) increase with high excitation frequencies (g) is
accompanied by a drop in damping [{:_), while at high speed numbers (A), stiffness

(f_} decreases and damping (‘(:',:} 1s negative.
Comparisons between the two models prove relatively close considering the
differences in the two numerical models and the limited treatment of fluid

compressibility in Malanoski and Pan (1965). This example cautions the use of SGTBs
at high speeds due to predicted instability from null or negative damping (E: } A

especially at low excitation frequencies (o).



31

PARAMETRIC STUDY OF COMPRESSIBLE FLUID SPIRAL GROOVE FACE SEALS
Introduction. A parametric study for compressible fluid SGFSs helps ascertain an
optimum face seal geometry and the resulting static and dynamic face seal behavior,
acting as design tool and benchmark for SGFS performance. The baseline geometry and
its variation are given in Table 3. The lack of published experimental data prevents
comparison of the present model with experiments. Furthermore, manufacturers.
reluctant to release information obtained in their own research facilities, refuse to
provide even the most basic information about SGFS geometries presently in use. Thus,
the present baseline geometry is derived from the example given in Lebeck (1991).

This baseline example represents a narrow width SGFS (R = (.8) having twelve
grooves with a inner diameter seal dam extending over 30% of the seal width (/ = 0.3).
The pressure ratic () of nearly 20 (P, = 19.8) represents a large pressure drop across
a typical gas face seal. The groove parameters are set to previously published values for
this type of seal configuration (groove angle: = 20°; groove width ratio: a, = 0.5;
groove depth ratio: §=2).

The choice of optimum parameters is very dependent on the particular SGFS
application, thus the following study primarily represents a design tool from which
expected SGFS behavior can be derived. In the present work, optimum geometric
parameters are chosen to provide a combination of both static and dynamic performance
characteristics with emphasis placed on obtaining higher values of stiffness and damping

while minimizing seal leakage.
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Effect of the Number of Grooves (V) with No Pressure Drop. Effects from the spiral
grooves alone, demonstrated by a SGFS without a pressure drop. demonstrate the
necessity of keeping the number of grooves (V) small and thus the benefits of having a

predictive model capable of characterizing this situation. Figure 19 indicates that the
opening force () increases only slightly with the number of grooves (N;) for two speed
numbers (A = 160.9, 321.8). The static axial stiffness coefficient (f_) shows a slight
increase with the number of grooves (N,) at the lower speed number (A) while the
stiffness (f_} increases greatly with the number of grooves (V) at high speed numbers
(A). when compressibility becomes important. Without a radial pressure drop, the axial
(zero frequency) damping coefficient (:‘1) exhibits stabilizing (positive) behavior for
only small numbers of grooves (N,). Higher speeds provide more opening force (W} and
stiffness (f_) . but the damping (f__,) at these speeds becomes more negative, further

into the unstable region. In the case with a pressure ratio (P,.,,) of unity, static or zero-
frequency force coefficients represent the asymptotic limit of the force coefficient at low

excitation frequencies. as will be discussed immediately.

Effect of the Excitation Frequency (o) and Number of Grooves (V;) with No
Pressure Drop. The frequency dependence of the force coefficients becomes apparent at
high excitation frequencies (), and the number of grooves () has a pronounced effect,

as given in Figures 20 and 21 for lower and higher speed numbers (A = 160.9, 321.8),
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respectively. Axial stiffness (f___) and damping (f:'_) remain constant as excitation
frequency (o) increases for both low excitation frequencies and a small number of

grooves (Ng). At low excitation frequencies ( ). the stiffness (f:) increases with the

number of grooves (), but the stiffness coefficients [}_i___) all tend toward the same
values at high excitation frequencies (o) for any number of grooves . While only small
numbers of grooves (N,) give consistently positive damping coefficients (E_ ) , the

damping tends toward zero independent of the number of grooves () showing marginal
stability at high excitation frequencies (). Without a pressure drop across the seal, the

present model predicts instability with large numbers of grooves (N,) since negative

axial damping coefficients {{Z_"_) oceur.

Pressure Variation between Grooves and Ridges. As stated earlier, one of the
primary advantages of the present FEM analysis over the traditional NGT is the ability to
obtain the pressure variation over a groove-ridge pair. Figure 22 illustrates this by
showing the circumferential pressure variation for one groove-ridge pair at the interface
between the seal dam and grooved portion for two different speed numbers (A = 160.9.
321.8) without a pressure drop (P = 1). Obviously, the higher speed yields higher
pressures in general. The fact that the pressure at the entrance of the groove equals the
pressure at the exit of the ridge implies fulfillment of the circumferential periodicity

condition between grooves and ridges. The entire pressure field for the lower speed
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number (A = 160.9), displayed in Figure 23. shows a peak in pressure near the end of the
grooves (or beginning of the seal dam). Figure 24 shows the similar response of pressure
with high speeds (A = 321.8). Pressures are elevated over those of the previous speed

with more pressure drop required in the ridge region.

Effect of the Number of Grooves (V). The parametric study continues with

demonstration of the effect of the different parameters on a SGFS with a large pressure
ratio (P, = 19.8). Note that in general, the leakage flow rate (@) 15 a fraction of the
flow rate for geometrically identical flat plates separated by the ridge clearance (¢)
operating with compressible fluids. (See Appendix A.) The opening force (7). power
loss {,g_'?] . and leakage rate (@) remain unchanged with an increase in the number of
grooves (N;), as shown in Figure 25,

With high pressure ratios (P,.,), the force coefficients change little with excitation
frequency (o), thus static force coefficients are representative throughout the range of

excitation frequencies (o< 5A). Figure 26 shows that the dimensionless static (o= 0)
axial stiffness coefficient (K__) rises prominently from the smallest values of N, but
becomes asymptotic as the number of grooves becomes large. The dimensionless static

axial damping coefficient (F_) reaches a minimum value at A, = 14 before rising

slightly for a larger number of grooves (Ng). Considering the previous concerns about

stability. the point at which the stiffness and damping cross (N, = 12) determines the
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optimum number of grooves since this crossing represents a good operating point of

relatively high stiffness and damping.

Effect of the Spiral Groove Angle (£). Although opening force (#) and power loss
(F} are constant with increasing groove angles (5), leakage rate (E) peaks by a groove

angle of 35°, illustrated in Figure 27. Figure 28 shows that maximum static axial

stiffness (_ ) occurs at a groove angle (/) of 18° while the static axial damping

coefficient (F :) reaches a minimum at a groove angle () of 21°. The force coefficient

lines cross when the groove angle () approaches 12°. The choice of optimum groove
angle obviously depends on many factors, the importance of which depends on the
particular application. In this case. the optimum groove angle (/) of 12° ensures low

leakape with pood dynamic force characteristics.

Effect of the Groove Width Ratio (ag). Figure 29 shows the opening force (W) and
leakage rate {E) to increase with groove width ratio (ag) while the power loss (E)
decreases. In Figure 30. the static axial damping coefficient ( ____,) also decreases as the

groove width ratio () increases, but the static axial stiffness coefficient (f:] reaches a

maximum value when the groove width equals the ridge width (@, = 0.5) determining

the optimum value of groove width ratio. Having a large number of grooves (Ng),
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indicated by symbols on each graph, contributes negligibly to the axial damping (C_"_)
and face seal static characteristics (opening force, power loss, and leakage rate) while

giving slightly larger stiffness (IT:) :

Effect of the Seal Dam Extent (/). Figure 31 shows that the opening force (W) reaches

a maximum value while the power loss (E) is a minimum when the seal dam extends

over 30% of the radial face width. The leakage rate [QJ decreases as the seal dam

extent (/) increases since the average clearance of the face seal also decreases as the seal

dam covers more of the face area. Figure 32 shows the dramatic effect of the seals dam

extent (/) on the axial stiffness coefficient ( ) with a marked peak at a seal dam extent

of 16%. The damping coefficient (f) increases with the seal dam extent (/). Since

designers usually incorporate seal dams to increase seal stiffness, the seal dam radial

extent ([) of 0.16 becomes the optimum value.

Effect of the Groove Depth Ratio (&). Figure 33 indicates a rise in leakage rate {E ) as

the groove depth ratio increases () since an increase in this parameter also indicates an

increase in the average clearance. Opening force () increases slightly with groove
depth ratio (&) while the power loss (;_:r) and damping coefficient (f:) (in Figure 34)

decrease. In this case, the stiffness coefficient (f___) determines the optimum groove
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depth ratio since it reaches a maximum value at a groove depth ratio (&) of 1.8 as

depicted in Figure 34.

Effect of the Pressure Ratio (P.,). The expected result from raising the pressure ratio

between the inner and outer seal diameters, as given in Figure 35, is an increase in the
opening force () and leakage flow rate (@) Power loss (E) remains almost

unaffected by changes in the pressure ratio across the seal. Figure 36 shows the force
coefficient behavior with an increase in the pressure ratio (P,.,). Since the force
coefficients are made dimensionless with the average pressure, trends of the original

dimensional parameters are not preserved. However, the figures are provided as a design
tool. Both axial stiffniess ( E:] and damping coefficient (f_) actually rise steadily as
the pressure ratio (P,) increases. Note that at low pressure ratios (P}, the damping

( C..) tends 1o zero, as discussed earlier.

Effect of the Radius Ratio (R). Figure 37 shows that as the ratio between the inner and
outer radii (R) increases. the opening force () drops since the face area over which
pressure can develop is greatly reduced. Since the characteristic values for leakage rate
(g) and power loss (E) use the inner radius. trends of the dimensional parameters are
not preserved. In actuality, the leakage rate increases while the power loss decreases

with an increase in the radius ratio (R). Both the stiffness (fﬁ) and damping
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coefficients (f .. ). given in Figure 38, generally drop as the radius ratio (R) increases.

No optimum is provided since this parameter depends on the specific application and
installation geometry. In general, decreasing the radius ratio (£) may provide more

stability with larger force coefficients but at the expense of higher power loss.

Summary. The example used in demonstrating SGFS behavior vields an interesting
result. With a large pressure ratio (P,,,), the virtual independence of the static
parameters, such as the opening force, with an increase in the number of grooves (Ng)
would imply that having grooves on a face seal is unimportant. This predicted behavior
is a result of pressure ratio (P,,,) having a much greater influence on the opening force
than seal hydrodynamics, which arise entirely from the grooves in the absence of
misalignments. However, the SGFS performance, both static and dynamic, is highly
influenced by changes in groove geometry itself, such as groove width ratio ( ), seal
dam extent (/), groove angle (), and groove depth ratio (4). Thus, the advantage of the
SGFS with a large pressure drop occurs as a result of having grooves of a certain
configuration, regardless of how many. However, in the absence of a pressure ratio (£,
= 1), stability concerns evidenced by negative damping at low excitation frequencies
necessitates the use of only a small number of grooves, Attention to this case (P.p; = 1)
applies both to thrust bearings and to face seals with an unexpected loss in pressure.

The results presented in the parametric study are considered as mesh independent

since a refinement in the mesh (doubling each mesh parameter) does not change the
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results significantly (< 2%). Much care was taken to ensure the convergence of the
numerical scheme: by adequate mesh refinement and prevention of pressure field

fluctuation at the film thickness discontinuities in each case,

Sensitivity of Results to Changes in Groove Depth. The spiral grooves, chemically
etched on one of the seal faces, have manufacturing tolerances that are quite small.
However, the groove shape may not be completely square in profile, as is assumed in the
present analysis; and surface roughness in the groove results from the etching process.
In presenting a novel manufacturing process to place grooves on herringbone groove
Journal bearings by material deformation, Kang, et al. (1996) discuss the effects of
varying the groove shape in detail. To further quantify the effects of a non-uniform
groove depth, a 10% change in the groove depth ratio (§) from the baseline SGFS
geometry given previously with a large pressure ratio (£,4;) of 19.8 is introduced. The
effects of this change on SGFS performance as a percentage of the baseline results are:
opening force (W), 1%; leakage rate (0), 3.5%; power loss ( ), 1.5%: static axial
stiffness coefficient (K.), 0.1%; static axial damping coefficient (C.), 9%. From these
results, it is clear that slight changes in the groove depth most profoundly affects the
damping and the leakage rate. while other performance characteristics remain almost

unchanged for a seal with this large pressure ratio.
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RECOMMENDATIONS

The present model adopts many simplifying assumptions that may not entirely
pertain to the physical situation. Extensions that would elevate the present work to the
state-of-the-art among computational models of its kind include:

» Misalignments. Angular misalignment between the faces is a common feature in
most present day face seal models. The fact that soft springs hold face seals in place
entails that these seals are self-aligning elements, implying that misalignments
become unimportant. However. minute face separation distances make the smallest
amount of angular misalignment significant since this may induce a parametric
excitation, greatly affecting seal performance. Moreover. manufacturing defects
resulting in an initially deformed face seal will also influence actual seal function,

»  Thermal coning. Extremely low flow rates out of SGFSs indicate the importance of
thermal conduction through the seal faces since little convection heat transfer takes
place. Even though innovative materials used in present day applications increase
the amount of conduction that occurs, thermal coning remains a topic of great
concern to seal designers and users. The thermal coning model employed by Pan and
Sternlicht (1967) can easily be extended to the present work although simplifying
assumptions may limit its applicability. (Considering that the frictional power

dissipation is also small diminishes the importance of thermal effects.)




Pressure-Density Relationship, Employing an isentropic model (P « p'*). as in
Lebeck (1991) rather than the present isothermal model (P = p£) would vield an
improvement in representing the changes in density with pressure.

Fluid inertia and flow turbulence. Effects from fluid inertia become important in
SGFSs due to the step change in film thickness at the groove-ridge interface. At
higher speeds, when fluid inertia effects overcome the influence of viscous effects (i.
e.. high Reynolds numbers) flow turbulence also may affect seal performance.
Numerical method of solution. As mentioned earlier, the successive approximation
has limitations that may affect its predictive capabilities at high speeds.
Incorporating more elements at important locations rather than refining the mesh
over the whole groove ridge pair would result in lessening computational time.
Higher order elements at the groove-ridge interfaces can also help the present method
in obtaining a dependable solution.

Incorporating other groove types. Grooves shapes other than logarithmic spirals are
in popular use in present day applications. Most notably, the T-groove seal allows
the same sealing performance regardless of rotation direction due to radial symmetry
of the grooves. Few predictive models, if any, exist to characterize the performance

of this seal type.
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PROJECT NOTES

Many difficulties impeded progress of the present research during its
development. Most of these dealt with trying to understand the many spiral groove
configurations published previously. Often these previous works left unstated
parameters necessary to replicate the results, or the parameters stated in the work (after
some great thought) seemed clearly erroneous. The present author has made
considerable effort to remain completely explicit in stating details about each
computation, allowing application of this research to future works.

As mentioned previously, the lack of pertinent experimental data for spiral
groove configurations operating with compressible fluids does not allow physical
validation of the model and limits model verification to comparison with previous
estimates. Many current publications show the success of SGFS retrofits into existing
machines, demonstrating improved, more economical system performance. However,
works that experimentally characterize SGFS behavior alone are virtually non-existent.
With extremely small operating clearances and inevitable thermal deformation in the seal
faces, testing SGFSs presents some difficulty with large experimental uncertainties likely
to occur, Test data on force, leakage. power loss, and dynamic force coefficients in
SGFSs may allow further verification of the present model. although much caution must
be employed in interpreting any test results as completely valid. Furthermore, SGFS

manufacturers expressly refuse to provide any geometrical details on seals presently in
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use. Thus, examples used in parametric study were contrived from previous analytical
works rather than an actual SGFS.

This research has taught many valuable lessons. Early analyses (before 1970)
have proven quite useful not only for comparison with more modemn methodologies but
as the basis for the present analysis, In solving the non-linear partial differential
¢quation of pressure, the successive approximation approach compares well against
models using more complicated solution techniques, but the implementation of a finite
element model eliminates many of the simplifications adopted by the NGT., i. e.. the
number of grooves approaching infinity. However, users of the present computational
program must be cautious in trusting convergence on load capacity since this solution
may have obvious flaws such as extreme pressure fluctuations in the ridge region that

profoundly affect force coefficient calculation.
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CONCLUSIONS

The present research analyzes the incompressible and isothermal, compressible
fluid flows in spiral groove thrust bearings and face seals using the Reynolds equation
for laminar flow. Since the Reynolds equation becomes a non-linear partial differential
equation of pressure in the compressible fluid analysis. a successive approximation
allows an iterative solution of an intermediate linearized partial differential equation.
Discretization of the zeroth- and first-order pressure fields and integration of the partial
differential equations of pressure is achieved using the finite element method.

Comparisons of the present analysis (for SGTBs) with the NGT prove favorable
for load capacity and inner diameter pressure, and as expected, the inner diameter
pressure variations become significant as the number of grooves lessens. In general,
damping force coefficients decrease as the ratio between seal inner and outer radii
increases, Finite element calculations given in Someya (1989) for Sommerfeld number
versus seal clearance further validate the present work., A parametric study shows the
effect of varying the SGFS geometry on the opening force, force coefficients. leakage
rate, and power loss for incompressible fluids. For a face seal having an inner diameter
that is half of the outer diameter (R = 0.5) and operating with an incompressible fluid,
the optimum geometry determined from this study is: Ny = 12; f=20%[/=0.18, a; =
0.45; and &= 2 for a pressure ratio (P.,) of 5.].

Static load capacity, axial stiffness, and leakage rate from the present

compressible fluid analysis compare well with results from the NGT isentropic
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compressible fluid flow model given in Lebeck (1991). The present predictions show
higher static load capacity than predictions from James and Potter (1967) and Bonneau.
etal, (1993) for inward pumping SGTBys operating with a compressible fluid. The load
capacity and static axial stiffness given by the NGT in Malanoski and Pan (1965) appears
higher than predicted by the present work. However, the dramatic behavior of the force
coefficients with increasing excitation frequency compares well with those of Malanoski
and Pan (1965). This behavior is further characterized as part of a parametric study to
identify compressible fluid SGFS performance and determine an optimum SGFS
geometry. Fora pressure ratio (#,,) of unity, seal instability, predicted by negative
values of axial damping, occurs with large numbers of grooves at low excitation
frequencies and becomes more prominent at high speed numbers. At high excitation
frequencies, the seal stiffness coefficient and axial damping coefficients tend toward
asymptotic values regardless of the number of grooves. Based on predictions of the
SGFS performance characteristic as the seal geometry changes, the optimum geometry

for compressible fluid SGFSs is: Ng=12; f=12%1=0,16, 4, =0.5; and &= 1.8,
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APPENDIX A

CHARACTERISTIC VALUES USED FOR DIMENSIONLESS PARAMETERS

Dimensionless Values.

Load Capacity Force Coefficients Speed Number
7 =% K. =K./K. A4l
s=uNaR(R /e ) W c.=c.c

Leakase Rate Power Loss Pressure
0=0/0. =0/, P=P/P

Incompressible Fluid Models.

Comparison with Muijderman (1966). (SGTE., Pr=10)

Load capacity [N] W. = QR /c?

Calculated inner diameter pressures [Pa] F. = M(Rﬂ ‘.f'c)l

Force coefficients [N] W. = aRk: ,ufl(R” i CFJ_

K.=W.[e,: C.=K./]Q

Incompressible Fluid Parametric Study. (SGFS, P.s= 101.3 kPa)

Pressure [Pa] R==F

Opening force [N] W, =R} - R }m(Rﬂ Je, )!




Power loss [W] P. = (R} - R)/2ec,
Leakage [#/min] 0. =6x10°7c( 2~ P,} [6uln(*4)

Force Coefficients K. =W. f &

Compressible Fluid Models.

Comparison with Lebeck (1991). (SGFS, P..;= 101 kPa)

Pressure [Pa] F=P
Opening Force [N] 7 =W+ B (R: - )| .

W, :‘T(er _RJI)(‘Er '_"E:)

Lialkgn Rote [1)s) 0. = 7, (e+e,) (B~ ) [6uinl %)
Pavg = (‘E t RJ)/E*J{::T
Static Axial Stiffness coefficient K, =W./c

Comparison with James and Potter (1967} and Bonneau. et al. (1993),

(SGTB. P,.r= 101 kPa)

Pressure [Pa] A =F,

Load Capacity [N] W, = ?TR.(R: = R.'I)
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Comparison with Malanoski and Pan (1965). (SGTB. P,.;= 101 kPa)

Pressure [Pa] =P
Load Capacity [N] W. =z BA(R? - R?)/100
Force Coefficients Ko=W gy Co=Kl0

Compressible Fluid Parametric Studv. (SGFS, Pr= 101 kPa)

Opening Force [N] W, = =P, (R2-R?); P = (P + B)/2
Pressure [Pa] =P

Power Loss [W] .= njuﬁl{R: ~R')[2¢

Leakage Rate [kg/s] 0. = 7o, (r: L )1 (R p ) /Ery]n { %)

Py =(B+B)28.T

Force Coefficients K.=W.Je.C. =K. [Q

Table Al. Vanation of groove rotation direction with seal configuration.

Groove Angle () Range Rotating Grooves Stationary Grooves

Inward pumping grooves, iner diameter seal dams
0° < < 90° B=+1 B=-1
90° < F< 180° f=-1 B=+]
Outward pumping grooves, outer diameter seal dams
0" = F=<00° B=-1 8=+
90° < < 180° B=+] B=:]
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APPENDIX B
SGTB/SGFS GEOMETRIES AND FEM PARAMETERS FOR VALIDATIONS

Incompressible Fluid Models.

Comparison with Muijderman (1966).

Geometry: SGTB without inner radial flow. Parameters given specifically in figures.
FEM: Radial elements: 50

Circumferential elements (groove, ridge): 10, 10.

Comparison with Someya (1989).

Geometry: SGTB without inner radial flow.

R=05,R,=06, & =05, 8 =30%N, =10, p= 998 kg/m’, #= 1.90x10 Pa:s
FEM: Radial elements (groove, dam): 40, 5

Circumferential Elements (groove. ridge): 10, 10

Incompressible Fluid Parametric Study.
Geometry: Table 1. (§GFS)
FEM: Radial Elements (groove, dam): 40, 10

Circumferential Elements (groove, ridge): 10, 10

Compressible Fluid Models.

Comparison with Lebeck (1991),

Geometry; Table 2. (SGFS)

FEM: Radial Elements (groove, dam): 10, 15

Circumferential Elements (groove. ridge): 5. 10

Comparison with James and Potter (1967) and Bonneau, et al. (1993).




Geometry: SGTE with inner radial flow.

R=0.3848. 5 =6, 2 =24,000 RPM. # =70° a, = 0.8, N, =12, u=3.237x10" Pas
A=173.7, PJF;varies,

FEM: Radial Elements: 12

Circumferential Elements (groove. ridge): 12, 12

Comparison with Malanoski and Pan (1963),

Geometry: SGTB with inner radial flow.

SGTB: R=0.4,1=0.2667, 6 =3.05, f =161.2°, &, = 0.6587, N, = 50
Pai=1. g=19x10-5

FEM: Radial Elements (groove, dam): 10, 13

Circumferential Elements (groove, ridge): 5. 10

Compressible Fluid Paramerric Study.

Geometry: Table 3. (SGFS)

FEM: Radial Elements (groove, dam): 10, 15
Circumferential Elements (groove, ridge): 3, 10

(These vary slightly when the geometry deviates greatly from the baseline.)




APPENDIX C

Load and Inner Radius Pressure for SGTBs without Inward Radial Fiow

(Muijderman, 1986) Sample Calculation

(Names next to titles indicate nomenclature in use.)

Fixed Parameters (Zirkelback)

Rg:} 0425-m
Ce -810%m
Iwg 15
a 3147

s5cC
po-.19:-10 "Pa-sec
o 90K

m.‘l

Nomenclature (Muijderman)

hg : Groove depth [m]

h{ : Film height above grooves [m] h 1=hg-ha

b5 :Film height above ridges [m)

h ]
H Groove depth ratio H=—"~

h
k : Mumber of grooves |
(r.8) : Groove coordinate system
r Inner radius of grooved part
ro © Outer radius of grooved part [m]
W . Load carrying capacity [N]
i1 : Groove angle [rad] r=r l-eﬂm"m
Y : Ratio of ridge width to groove width

1 : Dynamic viscosity [N-s/m?]

w Angular velecity [rad/s]

Parameters for Case 1 (Zirkelback)

Rgi =.0170-m
#
¢ =2.56-10 -m
B = 216420827247 rad

a, -.537037037037

Momenclature Conversion (M = 7)

hU EE
I'I.! :I::—l:E
h2 = =
His B

C-Cg
k-NE
rt 'Rgi
TI REQ
a =f

oy
¥

| o,
n-§
o - L}
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Governing Equations (Muijderman)

Further Definitions  {Equations numbers in Muijderman (1968) listed.)

Characteristic Load:

'I"Iu-‘]}-i"1
W, =
ho
g : v H -cot(a)(] - !:I}- } HJ : )
I—*J--HJ = H ~H-cot{a)+(1-14)
r
E = I
F2 (5.8)
-~ .-i—]J 2 i ' 3 4 g ]
expl —iil— E (tan{a}) —— ) Lomxpi—-1 - E (tanfa)) —— |+ I—TE
n S ki = beg | 1opd| |
£y < = o e
[-4
3-11-m-r2:
Pr - - 1 -3 g€y (57)
hI_
p .y =3.54763:10" +Pa <== Pressure at the inner diameter
(5.10)
A
. 2. [+ £ Zan | - 2 1 +yH
1 TR PR x L o
C, . — |
1-4
3T ! W
T .
wt —1" 1-:‘,4 g]CE {59} W=\i‘r—
2h5° s
W, = 113.72334+kgemesec - <== NGT load capacity

W =0.3829 === NGT dimensicnless load capacity



APPENDIX D
COMPRESSIBLE FLUID SGFS CoMPUTATIONAL CoDE FLOW CHART

5GF5;
Program Qperation

S5GFs5e
Execution

[

Faad inpui data from file |
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Defne Gaussian ponis,
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APPENDIX E

[MPROVEMENTS TO SPIRALC FOR EFFICIENT STORAGE AND SOLUTION OF SPARSE
UNSYMMETRICAL SYSTEM OF EQUATIONS

Marco Faria
Graduate Student

INTRODUCTION

A sparse matrix storage procedure for unsymmetric matrices is implemented into the
finite element code SPIRALC. The procedure based on a skyline profile storage technique
reduces the computational effort in the solution of the compressible fluid Reynolds equation
for spiral groove thrust bearings (SGTBs) and face seals (SGFSs).

Non-banded unsymmetric matrices are obtained in the finite element modeling of the
non-linear Reynolds equation subject to periodic boundary conditions. In the former version
of SPIRALC, the matrices are defined in their full extent to allow the use of available canned
subroutines.

In this enhanced version of SPIRALC, unsymmetric matrices arc assembled and
stored by using skyline storage techniques [Bathe,1982]. Basically, most of the zero entries of
the matrix are not stored. Using Gauss elimination method, a direct solution method for
systems of linear equations is developed to handle the sparse matrices generated by the model.

Some performance tests are carried out in order to compare the solution times of both
versions of SPIRALC. The enhanced version is more efficient than the former one in terms of
computational effort. The code structure and the accuracy of the results remain unchanged.
UNSYMMETRIC SPARSE MATRICES

The zero-th and first-order Reynolds equations lead to sparse unsymmetric matrices.

The sparse unsymmetric matrices are obtained by superposing the finite element matrices.




|
|
|
[
|
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whose expressions are given by equations (30) and (33.a)'. Periodic boundary conditions (see
equation (6)) produce a lack of bandwidth in the global finite element matrices. Figure 1
shows schematically the matrix structure of the sparse unsymmetric matrices assembled by

SPIRALC.

E Non-zeros

Figure | — Unsymmetric sparse matrix structure with periodic boundary conditions.

' Equation numbers refer to the main text of this report.




101

Non-zero entries are located around the main diagonal and on the upper right and lower left

corners of the matrix.
MATRIX STORAGE PROCEDURE

The storage procedure stores the unsymmetric matrix into two vectors. These vectors

T

KU(j) and KL(j), store the skyline profiles of the upper and lower triangular matrices,

respectively. Index j varies from /[ to the total number of entries stored by each vector. The

entries stored by the vectors KU(j) and KL(j} are shown in figure 2.

KL

ECOOsS

LLTOS
..
KU
i
4,
i
e
- o
., )
L]
*-'
'.
', |
L J
'.‘
*.
.-
-
e
"y &
. e
L
%, .
N -,
- L4

Figure 2 — Profile of the unsymmetric matrix stored in vectors KU(j) and KL(j).

A column-oriented algorithm is used to implement the storage procedure. Vector

KU(j) stores non-zero entries of the upper triangular matrix. Two additional vectors, IPU(k)

and ISU(k), where k is the column index, are used to carry out the storage of the upper
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triangular matrix. For the k-th column, JPU(k) represents the address of the diagonal element
in the vector KU{j), while ISU{k) gives the number of entries of the matrix stored in the k-th
column .

Vector KL(j) stores the entries of the lower triangular matrix. Also two additional
vectors, IPL(k) and ISL(k), which give the address of the diagonal element and the number of
elements stored at the &-th column, respectively, are employed in the storage procedure. The

following example shows the storage procedure.

EXAMPLE: Determination of vectors KU(j), KL(j), IPU(K), ISU(k), IPL(k), and ISL(k) for the

arbitrary sparse unsymmetric matrix given below.

(1 -3 0 0 6]
2 4 2 0 0
0 -1 3 5 0
0 2 -1 7

-5 0 0 3 1

The skyline profile vectors KU(j} and KL(j} are built in the following manner.

KU={I -3 4 235 -16 007 If

KL={l 2 090 =54 =1 3 2 -1 3 IF

The wvectors used to identify both upper and lower triangular matrices are given in the

following table.
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Column | 2 3 4 5
1PU 1 3 5 7 12
ISU | 2 2 2 5
IPL 1 6 8 10 12
ISL 5 2 2 2 |

All non-zero entries of the unsymmetric matrix are stored in the vectors KU(j) and KL(j).
DIRECT SOLUTTION METHOD

Applying the successive approximation method to the non-linear Reynolds equation
results in a set of linear differential equations (cq. 23). These linear equations lead to sparse
systems of linear algebraic equations. A direct solver based on the Gauss elimination method
is used to solve the systems of equations.

Gaussian ehmination is adequate for the solution of general problems of
nonsymmetric systems of linear equations [Press et al.,1989]. This method is chosen for its
ease of implementation. An unsymmetric matrix K is factored into the product of a lower

triangular matrix L and an upper triangular matrix U, as follows.

K=LU (i)

The triangularization is performed by subtracting rows from the product of other rows by their
multipliers. In SPIRALC, during the elimination process, certain zero entries of the lower
triangular matrix L can become non-zero. Direct solvers produce this phenomenon of “fill-in”

during the solution of sparse linear systems [Wahl et al.,1996].
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AL the solver input, the vectors KU and KL store the skyline profiles of the upper and
lower triangular matrices of K, respectively. After the Gaussian elimination, vector KU stores
the decomposed upper triangular matrix in skyline profile. which is used in the back
substitution procedure. Vector KL will store the full lower triangular matrix, which contains
the multipliers computed by the elimination process [Stewart, 1996].

COMPARATIVE TESTS

Some cases of compressible spiral groove thrust bearings (SGTB) and face seals
(SGES) are selected to evaluate the performance of both versions of SPIRALC. The codes are
written in Fortran 90 for Microsoft PowerStation v.4. The tests are carried out on a computer
Pentium 586, 200 MHz, with 64 MB of RAM.

Variable names used in the input files are described in the User's manual [Zirkelback
and San Andres, 1997]. Three examples of lubricated grooved parallel plates are chosen.
Computational efforts are determined for three finite element meshes to assess the code
efficiency for increasing number of linear algebraic equations. The former version of
SPIRALC employs the optimized subroutines DLSARG and DLSACG from IMSLIB to solve
the linear systems of algebraic equations derived from the compressible fluid Reynolds

equation.
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Example 1: Dynamic force coefficients are computed for a spiral groove face seal. Direct and
mverse problems are solved. A sample of the input file describing the seal parameters is

shown as lollows.

SGFS: 1093 Exampla 1

03/321/98B

50 Humber of Grooves

L11Z00E400 L20000E4+00 Inner,Outer Diam. [m]

L80000E-01 SA0000E+00 Inner,uter Seal-Dam Diam. [m]

L10000E-04 -30500E-04 Cr [m],Cg I[m]

LGBEBTOE+00 .16120E+03 Groove width ratio, helix angle [deg]
.29318E+05 Shaft Spead [RPM]

L10000E+06 LA00A0E+0G I.D.,0.D. pressures [Pa]

10 10 10 # rad.,circ. (groove),& circ.{ridge) elemants
10 8] f radial inner, outer =Seal-dam slem=nts

%] (0/1) traces calculations (No/Yeas)

20 L10000E-02 Max # load iterations, Max % error
L18000E-04 L13220E+01 Liguid viscosity [Pa.sl, & density [kg/m~3]
1 0 Groove rotatlion direction(+1),Thrust Eearing (0/1 = N/Y)
5 -T75000E+00 Number of s.approx steps,RPM fraction for s.a. start
L50000E+00 Under relaxation parameter

1 Number RPM fractions for Force coeff ecale
L10000E-03 REM Fractions

Three finite element meshes are used to model a scal ridge-groove pair. The meshes

are given in the following manner.

Table | — Finite Element Meshes,

Mesh (number of elements) 400 625 900
Mo of radial elements — groove regon 10 15 20
Mo, of circumfercmiial elements — groave 110 15 20
PEgion 3
Mo of circumferential elements — Adge 160 10 10
fegien
Mo, of mdial elements — inner seal dam 110 10 1L

Numerical results computed by both the original and enhanced versions of SPIRALC
are exactly the same. A sample of an output file calculated for the direct problem with a mesh

of 400 elements is given as follows.
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OPTION 4: Find the LOAD given the MINIMUM CLEARANCE (from INPUT.TXT)
Cx Force Dok FowL Pmax

[um] [m] [kmole . K/z] [W1 [MPal

10.000 g688.1 -.30534E-02 1784.7 ~BO62E

Freg No. Freg Fredg/Speaed Ezz Czz

[ -1 [Hz] [.=1 (M /] [k¥.=s/ml
LT0000E-D1 .48B363E-01 Ao000E-03 16183 ~2451 .1

Table 2 shows the CPU time for both versions of SPIRALC in the solution of the
direct and inverse problems. T}, gives the CPU time in seconds calculated for original version,

while T, gives the time for the cnhanced version. A force of 1000 N is used to solve the

inverse problem.

Table 2 - CPU times for the inverse and direct problems.

Direct Problem — CPU time Inverye Problem — CPU time
Mesh T, (s) T, (s) TJ/T, To(s) | Ta(s) T/T,
400 39.85 16.07 242 270.74 110.41 245
625 119.61 44.16 271 83641 304.41 275
900 | 31983 102.37 3.12 221238 71180 311

As the number ol elemenls increases, the superior computational efficiency of the
enhanced version of SPIRALC becomes more evident. Figure 3 depicts the computational

efforts of both original and enhanced versions of SPIRALC for the direct problem.
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Figure 3 — Computational efficiency of SPIRALC for the direct problem of example 1.

Example 2: Dynamic force coefficients of a SGFS are determined for several values of

excitation frequency. A sample of the input file used in this example is shown below.

SGF5: 1998 Example 2

D4/02/98

12 Number of Groovas

0,.11352E+00 0.I3200E+00 Inner, Cuter Diam. [m]

0.10586 ©,132 Dzi,Dso

0.40000E-05 0.80000E-05 Cr [m].Cg [m]

0.530000E+00 20.0 Groove ratio, helix angle [deg)

0.50000E+04 Ehaft Spesd [REPM]

0.10100E+06 2.00000E+06 I.D.,0.D. pressures [Pa]

10 10 10 # rad.,circ. (grocove] ,& circ, (ridae) elements

10 0 Msi,Nao

Q =l traces calculations, =0 (no)

10 0.10000E=01 Max # load iterations, Max % error

0.19000E-04 0.93760E+00 Liguid wviscogity [Pa.s], & densityv[kg/m~3]

-1 0 -l=>@rooves rotate; 1=>Crooves fixad

5 0.75000E+00 Number of s.a. steps, fraction of omega to start
0.500008+00 Helaxatlon factor

B 4 fractions of RPM for force coef. calculations
0.00000E+0D Fractions of RPM for coeff. calculation

0.0155378118
0.0310758635
0.155378157
0.310756353
0.621512706
1,553781765
3. 10756353
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The direct problem is solved by using the same finite element meshes as those used in
example 1. Both versions of SPIRALC give exactly the same results. A sample of an output

file calculated in this example for a mesh of 400 elements is given as follows.

OPTICH 4: Find the LOAD given the MINIMUM CLEARANCE (from INPUT.TXT)

Cr Force Qout Powl Pmax

[um] [2r] [kmole.K/s] (W] [MPa]
4.0000 7B12.6 - A2386E-02 17 908 2.00090

Fredg No. Freg Freg/Speed Kzz Cz
.= [Hz] [ -1 [M¥/m] [kM.s/m]
.03218 0.0833 .10000E-03 331.57 &B.138
5. 0000 1.2548 -15538E-01 33157 6E.138
10,000 2.58%96 - J31076E-01 33157 68.138
20,000 12.948 15538 331,562 68.134
Lo0.00 25.8594 .31078 331.74 68.121
200,00 51..783 62151 332.28 68068
500.00 125,48 1.5838 335.84 67.703
10000 258.986 3.1078 348.218 65.433

Table 3 gives the CPU time calculated by both versions of SPIRALC . Indexes o and n

are referred to as original and enhanced, respectively.

Table 3 — CPU time for the direct problem.

Example 2 — CPU time
Mesh T,(8) | Tals) T/T,
400 G9.08 54.52 1.82
625 322.17 152,51 2.11
| a0 867.33 365.75 137

Figure 4 depicts the computational efficiency of SPIRALC for example 2.
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Figure 4 — Computational efficiency of SPIRALC in example 2.
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Numerical results show that the new matrix storage procedure makes the enhanced

SPIRALC perform much more efficiently than the former code as the number of elements

Increases.

Example 3: The third and last test consists of computing the dynamic force coefficients for a

spiral groove thrust bearing, Three finite element meshes are selected for the computation as

shown in Table 4.

Table 4 — Finite Element Meshes.

- Mesh (number of ele ments) 360 648 800
‘Mo, of radial elements - EFOOVE reglon 15 18 mn
Mo, of circumferental clements — groove 12 18 iy

TESOn

Ma. of circumferentdal elements - rdge 12 15 0

region

An input file used in example 3 is shown as follows,
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SGTE: 1998 Example 3

04/0% /98

12 Humber of Grooves

LA2T00E-01 L33020E-01 Inmner,Outer Diam. [m]

LAZ2T00E-01 LA3020E-01 Inner,Outer Seal-Dam Diam. [m]

L2 T7500E-05 L16300E-04 Cr [0 {m]

-BOOOOE=0D L11000E+03 Groove width ratio, helix angle [deg]
L24000E+05 Shatt Speed [RPM]

LA0000E+06 LA0000E+D8 I.D.,0.D. pressures [Pa]

15 12 12 # rad.,cirec. {groove) & circ.(ridge) alements

0 0 # radial inner, outer seal-dam elements

(4] (0/1) traces calculations [No/Yes)

20 L10000E-D2 Max # load iterations, Max % error

.32370E-04 L113233E+01 Liguid viscosity [Pa.s], & density [kg/m~3]

1 0 Groove rotation direction(l),Thrust Bearing {(0/1 = 3/Y)
5 LI5000E+00 Number of s.approx steps,RPM fraction for =_.a. start
.50000E+00 Under relaxabion parameter

1 Humber BRPM fractions for force coeff calc
L10000E-03 BEPM Fractions

Both versions of SPIRALC render exactly the same results for the example. Results

computed for mesh of 360 elements are given as.

Cr Force Qout PowL Pmax

[um] NI [kmole.E/=| W] [MPa]
2.7500 3.5276 - . J6639E-04 3.8902 -431540
Freg No. Freg Freg/Spead Kzz Czz

E =71 [Hz] =4 LM /] [XM.s/m]
L35188E-01 LA0000E<01 LA0000E-03 LIB013 R i

Table 5 shows the CPU time for the three finite element meshes presented in Table 4,
The results of Table 5 show the same trend presented in the two previous examples. As the
number of degrees of freedom increases, the enhanced SPIRALC performs much more
efficiently than the former one. Figure 5 depicts a comparison of CPU time for both versions.

Table 5 — CPU time for the direct problem.
Example 3 — CPU time

_ Mesh | T,(s) Ty (5) T/,
360 3532 12.83 275
648 137,74 182 | 388
800 239.75 50.95 4.00
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Figure 5 — Computational Efficiency of SPIRALC on example 3.
FINAL REMARKS

Improvements on the computational efficiency of linear system solvers can be
achieved by developing customized algorithms for sparse matrices. This concept has been
widely used in numerical methods for engineering analysis, such as finite element, finite
difference and boundary element methods. For large-scale problems, sparsity is a property
that needs to be accounted for to reduce considerably the computing time,

A matrix storage procedure for sparse unsymmetric matrices is implemented into the
code SPIRALC to increase its computational efficiency. Also a direct solver which uses the
Gauss elimination method with the new matrix storage is implemented to solve sparse
systems of linear equations generated by the compressible fluid Reynolds equation.
Numerical tests demonstrate that the enhanced version of SPIRALC performs more efficiently
than the former one. Efforts spent in the development of the sparse unsymmetric storage

procedure and direct solver are thoroughly justified. Time savings achieved by the enhanced
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code are remarkable indicators of the computational improvement achieved by the applied

matrix storage technique.
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