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ABSTRACT . Further advancements in high performance turbomachinery operating at extreme 
temperatures mandate the development of gas film bearing technology to procure compact 
units with improved efficiency in an oil-free environment. A novel finite element (FE) procedure 
to model thin film gas bearings follows. The FE model incorporates a novel class of high order 
shape functions ensuring computational efficiency and numerical stability even at (infinity) high 
speed bearing numbers. The method does not rely on cumbersome schemes for evaluation of 
advection flow terms in the Reynolds equation nor introduces artificial diffusion into the 
numerical solution. A computational FE program forwards predictions for the static 
performance and dynamic force coefficients of an externally pressurized gas bearing for ready 
application to an automotive turbocharger.   The predictions show the strong effects of 
excitation frequency on the dynamic force coefficients and the onset of a hydrodynamic 
instability at moderately low rotor speeds. The analysis of predictions evidences the benefits 
and limits of rigid surface gas bearings for oil-free turbomachinery.   
RÉSUMÉ. Les futures avancées technologiques concernant les turbomachines à haute 
performance opérant à d’extrêmes températures obligent au développement de la technologie 
des paliers à gaz afin d’obtenir des unités compactes à l’efficacité améliorée dans un 
environnement sans huile. Une nouvelle procédure par éléments finis (EF) est présentée dans 
cet article. Le modèle EF incorpore une nouvelle classe de fonctions de forme d’ordre élevé 
assurant l’efficacité du calcul et la stabilité numérique même à nombres de vitesse élevé (infini) 
pour le palier. La méthode ne repose pas sur d’encombrants schémas numériques pour 
l’évaluation des termes de l’écoulement par advection dans l’équation de Reynolds et 
n’introduit pas non plus de diffusion artificielle dans la solution numérique. Un programme de 
calculs EF donne des prédictions pour les performances statiques et les coefficients de force 
dynamique d’un palier à gaz à pressurisation externe pour l’application directe à un 
turbocompresseur automobile. Les prédictions montrent les effets importants de la fréquence 
d’excitation sur les coefficients de force dynamique et la limite de stabilité hydrodynamique à 
vitesse de rotation modérée. L’analyse de ces prédictions met en évidence les avantages et les 
limites des paliers à gaz à surface rigide pour les turbomachines fonctionnant sans huile. 
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1. Introduction 
 

Gas turbines and turbochargers currently use oil lubricated rolling element and 
fluid film bearings as rotor support elements providing adequate stiffness and 
damping for vibration dissipation and mount isolation with fractional power losses. 
However, strict environmental concerns and further needs for low emissions and 
improved efficiencies mandate the development of proven gas film bearings to 
procure compact units in an oil-free environment. Eliminating the requirement for oil 
lubrication can also reduce all the plumbing, scavenging and sealing, lessen weight 
and complexity, and improve reliability.  

Current research thus focuses on the development of computational mechanic 
models, validated by relevant experimental results, to demonstrate the reliability and 
limitations of gas bearings for implementation in high performance oil-free 
turbomachinery. The operating characteristics include exceedingly high speeds, 
minute film clearances, with the process fluid (air or gas) at relatively low pressures 
relative to ambient. Foil gas bearings are a certain configuration, proven successful 
in micro power systems. However, their proprietary nature, high initial high cost and 
lack of (published) analyses and manufacturing process prevents the widespread 
deployment into competitive turbomachinery markets, such as in automotive 
turbochargers, for example. For this application, inexpensive rigid surface gas 
bearings with an appro priate coating on the rotor to reduce drag friction and limit 
wear on start up and shut down cycles are being considered as viable alternatives. 

The archival literature shows copious analyses for gas bearings with early 
applications of grooved bearings and seals to gyroscopic (positioning) systems and 
buffer gas sealing arrangements [GRO 62, HAM 94]. Later advances detail improved 
numerical procedures for expedient analysis and design encompassing operating 
speed regions on which the character of the flow nonlinear (Reynolds) equation 
changes from elliptic to parabolic. 

Fuller [FUL 69] reviews the major advances in gas bearing modeling appearing in 
the 1960’s. Since then, several techniques for the efficient numerical solution of 
Reynolds equation and analyses addressing the major issue of rotor-bearing stability 
have evolved. Castelli and Pirvics [CAS 68] introduce block solvers for finite 
difference models, and Castelli and Elrod [CAS 65] forward the perturbation method 
for linearization of Reynolds equation and evaluation of fluid film reaction forces due 
to small amplitude motions about an equilibrium state. Castelli and Elrod [CAS 65], 
and Elrod, McCabe and Chu [ELR 67] implement the orbit and step-jump methods for 
fast evaluation of the nonlinear equations of motion governing the dynamic 
response of a rotor supported on gas bearings. The analyses go beyond the limits of 
the perturbation model, which cannot represent the strong non linearities and self-
excited instabilities apparent in gas bearings. 

Design charts for prediction of the performance and stability conditions in simple 
hydrodynamic and hydrostatic gas bearings are readily available. Elrod and 
Malanoski [ELR 60], Lund [LUN 68], Gunter et al. [GUN 64], and Castelli and Vohr 
[CAS 67] present graphical results for plain cylindrical and lobed bearings, tilting pad 
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bearings and herringbone configurations, respectively. Lund [LUND 64] also 
advances the first approximate analysis and results for hybrid (hydrostatic / 
hydrodynamic) gas bearings. Recently, Czolczynski [CZO 96] using the orbit method 
reports dynamic force coefficients representative of a full period of motion in a simple 
rotor-gas bearing configuration. Note that the design charts displaying static 
performance and dynamic force coefficients for gas bearings are limited to either 
centered journal operation, or low surface speeds (small compressibility numbers), or 
external pressurization with a large number of feed orifices. 

Fixed geometry gas bearings are prone to show a (self-excited) hydrodynamic 
instability at sufficiently large operating speeds. Hydrostatic pressurization brings 
forward a characteristic pneumatic hammer that more severely limits the safe range of 
rotor speeds, feed pressures and excitation frequencies where gas bearings remain 
stable (Majumder and Majumdar [MAJ 88], and Lund [LUN 67]). Pneumatic hammer, 
characterized by a sudden loss of damping even at low frequency excitations, is 
controlled by the flow-versus-pressure time lag in the gas supply restrictors. 
Inherent type orifices, i.e. a feed condition with no trapped gas volumes, alleviate the 
problem at the expense of decreasing the bearing load capacity. 

Presently, a FE computational analysis for high-speed gas bearings including 
external orifice pressurization follows. FE procedures in gas lubrication are generally 
based on either the Galerkin or the Petrov-Galerkin weighted residual methods. The 
Galerkin method demands fine meshes to provide stable numerical solutions for 
operating conditions with large bearing speed (compressibility) numbers. The 
Petrov-Galerkin FEM method is efficient and stable at high speed numbers, although 
it requires of ad-hoc procedures, such as upwinding, for modeling the advection flow 
terms in the Reynolds equation [HEI 77]. Faria and San Andrés [FAR 00] introduce a 
set of high order shape (weight) functions to overcome the numerical limitations and 
need of special integration procedures in the classical techniques. The family of high 
order interpolation functions is analytically obtained from an approximate solution to 
the Reynolds equation within an element domain.  

Numerical predictions for the static performance and dynamic force coefficients 
for a three pad hybrid gas bearing follow as a function of journal speed. The bearing 
geometry and operating conditions reproduce those found in an existing commercial 
automotive turbocharger. The predictions evidence the importance of excitation 
frequency on the dynamic force coefficients and their ultimate effect on the 
rotordynamics of high speed rotors supported on air bearings, including regions of 
unstable response with potentially harmful subsynchronous motions. 
 
2. Analysis  
 

Figure 1 shows a characteristic hybrid (hydrostatic/hydrodynamic) gas bearing 
composed of a number of bearing pads, each with one or more feed orifices for 
external pressurization. The journal rotates at an angular speed (Ω) and the 
displacements ( )YX e,e  denote its position within the bearing clearance.  The film 
geometry is described relative to the coordinate system (x=R ⋅θ , y) located on the 
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bearing plane. A pad extends from Θ l to Θ t, the leading edge and trailing edges, 
respectively, and Θ p is the pad offset angle. The pad film thickness is given by  

 
( ) ( ) ( ) θθΘθ sintecostecosrCh YXpp ++−−=  = H C   [1] 

 
where C and rp are the nominal clearance and pad preload, respectively. 

 

 
In an ideal gas undergoing an isothermal process, the density and pressure are 

related by
T

P
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=ρ , with gℜ  and T representing the gas constant and operating 

temperature, respectively. The compressible fluid Reynolds equation describes the 
inertialess and isoviscous flow within the thin film. This equation establishes the 
balance of pressure and shear driven mass flow rates and the mass flow rate ( ORm& ) 

from an external pressure source, i.e. 
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In the analysis, the pressure is ambient (Pa) on the sides of a bearing pad. 

Dimensionless coordinates, film thickness and pressures are defined as 
 

Figure 1. Geometry of hydrostatic /  hydrodynamic gas 
bearing. 
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where a* PP =  is a characteristic pressure, and ( )ltx RL ΘΘ −=  is the pad 

circumferential length.  
The feed source mass flow rate ( ORm& ) is a function of the pressure ratio 

P =P/Ps and the orifice geometry, see Figure 2, i.e. 
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where k is the gas specific heat ratio, and (a’)  is a non-isentropic loss coefficient. 
The function 

 
2

122 )H(
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2

∆        [6] 

 
defines the characteristics of the feed source. Most externally pressurized gas 
bearings are designed with inherent feed restrictors to avoid pneumatic hammer 
effects. In this case, the pressure drop occurs at the curtain area ( hdπ ), and thus 

the geometric ratio 1>>∆  renders 2a/hdg = . 

 

Ps

2a
d POR

C curtain area

Figure 2. Geometry of feed orifice in gas bearing. 
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Consider small amplitude journal motions ( )YX e,e ∆∆  of frequency (ω ) about an 

equilibrium position ( )
00 YX e,e , i.e. Y,X

ti ,eeee =
⋅+≅ α

ω
ααα ∆0 . The journal dynamic 

motions cause corresponding perturbations in film thickness and pressure about an 
equilibrium or zeroth-order field (h0, P0). Thus,  
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Substitution of equations [7] into Reynolds equation [2] leads to the zeroth- and 
first-order (dimensionless) equations for the equilibrium and perturbed pressure 
fields, i.e. 
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are the speed (or compressibility) and frequency numbers, and feed orifice parameter, 
respectively1. ( ){ }Y,Xp,p === αα 010  at the pad boundaries. Fluid film reaction forces 

(FX, F Y) for each pad are defined as 
 

                                 
1 Equation [9] is strictly valid for unchoked flow through the feed orifice. 
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The real and imaginary  parts of the impedance functions (Zαβ) define the 

stiffness and damping coefficients {Kαβ , Cαβ} Y,X, =βα  , i.e. 
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Note that fluid compressibility renders frequency dependent force coefficients. 

Bearing reaction forces and force coefficients are obtained by summation of the 
components from each pad.  

  
3. Finite element model 
 

The flow domain in a pad is divided into four-noded rectangular finite elements 
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These equations are substituted into [8] and [9], which are further multiplied by 

an identical set of weight functions and integrated over an element domain. The 
Petrov-Galerkin method leads to the following set of zeroth- and first-order finite 
element equations (not including a source of external pressurization) 
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[k]e represents the element fluidity matrix, and (r}e and (q}e denote the vectors of 

shear and squeeze flows, and nodal mass fluxes ( emη& ) through the element boundary 

eΓ , respectively.  

Within a finite element 
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coordinates { } [ ]11 +−∈ ,,ηξ , the novel shape functions are: [FAR 00] 
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0 e
e

e
x

e Hp
lΛ

λ =  is a local Peclet number showing the ratio of convection (shear) 

flow to diffusion (Poiseuille) flow. At low bearing speed numbers ( 0→eλ ), the novel 

shape functions reduce to the well known bilinear interpolation functions [BAT 82]. 
For high speed numbers where fluid convection dominates the film flow, ∞→eλ , 

the shape functions produce a full up winding fluidity matrix with negligible diffusive 
terms. 

The novel finite element formulation eliminates the need of an upwind parameter 
and non-symmetrical weighting functions as in the case of the Petrov-Galerkin 
scheme. The upwinding effect is intrinsically contained in the “exact” functions 
without resort to special schemes for the advection terms. No artificial viscosity is 
therefore introduced into the solution. However the approximate solution within an 
element (e) depends on a good estimate for e

op . 
Equations [14] are evaluated over the flow domain and then condensed by 

enforcing the corresponding boundary conditions and including the source terms 
arising from any external (orifice) pressurization.  The resultant global set of 
equations is  
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global fluidity matrix [ ]Gk is nonlinear since its ele ments depend on the zeroth-order 

pressure field. 
An iterative procedure forwards the solution to the system of nonlinear (zeroth 

order) global equations [18]. Earlier developments [FAR 99, FAR 01] relied on the 
constant evaluation, assembly and decomposition of the global fluidity matrix. 
Presently, a line solver with successive under-relaxation is used. The procedure 
assembles the finite element equations along a line (constant axial coordinate) and 
solves them using the TDMA algorithm. The present method is faster than the full 
matrix decomposition procedure since new pressures are immediately updated in the 
iterative procedure. Good convergence rates are found by selecting appropriate 
under relaxation factors (0.7, typically).  

The appendix presents FE predictions for a typical hydrodynamic gas bearing. 
The FE results compare exactly with published design charts from Lund [LUN 68], 
and extend the original predictions to very large bearing speed numbers.  
 
4. Numerical predictions from FE model for gas bearings 
 

Currently, there is a pressing need to develop and implement gas bearings, 
replacing oil-lubricated bearings, in high-speed automotive turbochargers (TC). 
Environmental concerns requiring lower emissions and enhancements in operating 
efficiency drive the technology upgrade. Note that TC manufacturers are extremely 
cost conscious, and thus, as a first step in the development, a drop-in bearing type 
replacement is considered. That is, the selected gas bearing should fit the existing 
rotor and casing envelope to avoid a major redesign of the turbomachinery 
components.  

Predictions for static performance and dynamic force coefficients for a three-pad 
hydrostatic/hydrodynamic gas bearing configuration follow. Table 1 details the 
bearing geometry and operating conditions. Pressurized air bleed from the TC 
compressor discharge will be routed into the gas bearings through small radial 
orifices, two on the each pad middle plane and equally spaced at a distance (0.15 L) 
from the pad centerline. The orifice diameter noted is of the same magnitude as the 
bearing clearance, and thus proper machining procedures and adequate filtration 
measures need be addressed in an actual application. To avoid undesirable 
pneumatic hammer effects the analysis regards an inherent feed type restriction. That 
is, the flow restriction (pressure loss) actually occurs at the flow curtain area (πd h) 
since there is not a feed volume at the orifice discharge plane.  

The FE bearing model uses Nx=25 circumferential and Ny =15 axial nodes to 
describe each pad half-geometry. Numerical calculation of the zeroth and first-order 
dimensionless pressure fields proceeds until convergence is achieved within a 
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tolerance limit of 10-5, not exceeding a maximum of 500 iterations imposed as a limit to 
achieve the desired accuracy. Faria [FAR 99, FAR 01] details the analysis on the 
accuracy and convergence rate of the present FE model with extensive comparisons 
to predictions derived from a classical Galerkin formulation. 

The turbocharger weighs approximately 0.100 kg, and thus the applied static load 
(W) into each bearing is about 0.5 N (half rotor weight), thus indicating a low specific 
pressure (W/LD) of 0.04 bar (0.57 psi). The static load, directed towards the middle of 
a bearing pad (X direction), is so small that the TC rotor will run near its centered 
position for most of the operating speed range. In fixed geometry bearings this 
operating condition is potentially harmful due to the onset of (one or more) sub 
synchronous hydrodynamic instability. 

 
Table 1. Three pad gas bearing: geometry and operating conditions 

Arc length: 110 °, pad offset: 50% . Ambient pressure, Pa = 1.01 bar 
 

Length L 13.8 mm L/D=1.50 
Diameter  D 9.20 mm D/Cmin=1,840 
Nominal clearance C 10 µm  
Preload rp 5 µm Cmin=C- rp 

Orifice diameter d 0.0127 mm α’ = 1.0 
  Air inlet temperature to compressor 

T=303 °K (30 °C) 
Rotor 
speed 
krpm 

Pressure 
ratio (*) 

Temperature 
ratio (*) 

Pressure 
supply, Ps      
      (bar) 

Gas 
viscosity 

Pa⋅s x 10-5 

Gas 
density at 
Pa. kg/m3 

30 1.041 1.016 1.055 1.882 1.149 
60 1.163 1.062 1.180 1.947 1.099 
90 1.368 1.132 1.387 2.044 1.031 
120 1.653 1.218 1.677 2.161 0.958 
150 2.021 1.315 2.050 2.289 0.888 
180 2.470 1.417 2.500 2.420 0.824 

(*) Pressure and temperat ure ratios refer to compressor discharge to inlet magnitudes.  
 
The results of the computational predictions are presented in dimensionless form. 

Table 2 displays the definitions for the bearing speed (or compressibility) number 
(ΛB) and conversion factors for evaluation of dimensionless orifice flow, bearing 
torque, and rotordynamic force coefficients.   

Figure 3 shows the specified supply pressure (Ps/Pa) and calculated orifice 
pressure  (PoR/Pa), dimensionless orifice mass flow rate and bearing drag torque as a 
function of the rotor speed. The figure also includes the journal eccentricity and 
attitude angle  for the operating static load. The predictions indicate that the 
hydrostatic action does not initiate until the rotor reaches a speed of 75,000 rpm, 
since the feed pressure extracted fro m the compressor is not large enough. The 
orifice flow rate then increases rapidly, although its actual magnitude is rather small.  
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Table 2. Bearing speed number and conversion factors for performance parameters  

 
Parameter Symbol Definition 

Speed (compressibility) 
number 

BΛ  3

2
6










mina c
D

P
Lµ

 

Torque 
*

orq
orq T

T
T =  Ppad

min
* N

c
L

RT ΘΩµ 3=  

Orifice Mass Flow Rate 
*

oR
oR m

mm &
&& =  )PP(

d
m as* −= ρ

π
2

4

2

&  

Stiffness 
*ijij K/KK =  3

2 







=

min
* c

D
LK Ωµ  

Damping 
*ijij C/CC =  Ω/KC ** =  

Critical mass *c M/MM =  2Ω/KM ** =  

Figure 3. Dimensionless supply and orifice pressures, orifice mass flow rate, 
drag torque, attitude angle and static eccentricity versus journal speed. (Load 
Wx= 0.5N) 
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The dimensionless torque remains nearly uniform over the entire speed range, thus 
indicating a linear dependency on the journal speed. The bearing mechanical power 
dissipated is 1.2 watts at the highest operating speed. This magnitude is a minute 
fraction of the mechanical power currently lost with oil lubricated bearings. Figure 3 
also depicts the journal attitude angle decreasing as the rotor speeds up. This effect 
indicates the rising importance of the fluid compressibility and hydrostatic feed as 
the operating speed increases. Operating eccentricity is relatively small and 
negligible (centered condition) at high speeds. 

Figure 4 displays the calculated profile of the gas film pressure along the 
circumferential and axial coordinates for two rotor speeds, 0 and 180 krpm. The 
results for the pure hydrostatic condition show a characteristic circumferential 
symmetric pressure field with a parabolic shape towards the axial discharge plenum. 
On the other hand, at the highest speed, the pressure shows a sudden pressure rise 
and drop at the feed location as a result of the large rotor surface speed, which 
advects the feed flow downstream of the supply orifice. Note also that the axial 
pressure profile is more uniform towards the axial ends, a typical characteristic for 
operation at large compressibility numbers.  

Figures 5 depict in dimensionless form the effects of excitation frequency on the 
bearing stiffness and damping (direct and cross-coupled) force coefficients. The 
coefficients are graphed as a function of the excitation frequency ratio (ω/Ω) for 
three rotor speeds noted as LS (30 krpm), MS (90 krpm), and HS (150 krpm). Note that 
the physical magnitude of the excitation frequencies increases proportionately with 
the rotor (journal) speed. Unlike in incompressible fluid film bearings, gas bearings 
evidence strong effects of frequency which lead to a sharp increase in the direct 
stiffness (Kxx) and a dramatic reduction in the direct damping coefficient (Cxx). 
Incidentally, the cross-coupled stiffness coefficient (Kyx) also shows a reduction, but 
at a lower rate than the direct damping, thus leading eventually to the onset of 
hydrodynamic instability. 

At the near centered operation, Kyy=Kxx and Kyx=-Kxy, Lund [LUN 68] defines 
equivalent synchronous  stiffness and damping coefficients as Ke=Kxx + Ω Cxy and 
Ce=Cxx-Kxy/Ω, respectively. The critical mass (Mc) indicates the largest possible 
inertia the bearing may support at the threshold speed of instability (Ωc) when 
considering a simple rigid rotor. Sub synchronous motions with a typical whirl 
frequency ratio (WFR) characterize the instability. Table 3 presents the physical 
magnitude of the equivalent parameters, the critical mass and the WFR. The feed 
orifice diameter was sized to obtain an optimum (zero frequency) hydrostatic 
stiffness at 150 krpm. However, the bleed pressure available from the compressor 
discharge is not large enough to generate significant direct stiffness coefficients that 
will ensure higher rotor-bearing natural frequencies and operation free of sub 
synchronous motion.  

Figure 6 depicts the dimensionless equivalent stiffness and damping coefficients 
and critical mass versus the bearing speed number. In spite of the hydrostatic 
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pressurization, the WFR for all operating conditions is ~0.50, as in plain 
hydrodynamic bearings. The dimensionless results follow closely the trends 
presented by Lund [LUN 68] for a three-lobe hydrodynamic bearing.  Note that the 
physical parameters show a continuous increase (decrease) of the stiffness 
(damping) coefficients as the rotor speed increases, and lead to a significant 
reduction in the critical mass, which becomes lower than the actual TC ½ rotor mass, 
for rotor speeds above the threshold speed (Ωc) of 60 krpm. 
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Figure 4. Pad pressure at orifice plane (a) P/Pa vs. θ, (b) P/Pa vs. (y/R) at null and 
180 krpm rotor speeds.  
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The threshold speed noted is valid for a rigid rotor supported on two identical 
gas bearings. However, in actual practice the rotor is flexible and the actual threshold 
speed may be well below the rigid rotor speed limit. The WFR characteristic 
maintains its magnitude though [CHI 93].     

 
Table 3. Equivalent synchronous stiffness and damping coefficients, critical 

mass, and WFR for gas bearing (dimensional values). 
 

Speed 
krpm 

Speed 
Number,ΛB 

Ke 

N/m 

Ce 

Ns/m 

Mc 

kg  

WFR 

15 1.46 166425 242 0.160 0.50 
30 2.96 456266 190 0.106 ‘’ 
45 4.51 715185 154 0.072  
60 6.13 915271 133 0.050 limit 
75 7.84 1093293 118 0.036  
90 9.65 1251847 109 0.028  
105 11.56 1397309 102 0.022  
120 13.60 1526948 95 0.018  
135 15.75 1639343 90 0.015  
150 18.01 1737666 85 0.013  
180 22.87 1896594 77 0.009  

½ TC rotor mass ~ 0.050 kg 
 

5. Conclusions  
 
Oil Free turbomachinery implementing gas bearings will satisfy stringent 

environmental constraints, offer near to frictionless operation, improve reliability, and 
offer substantial savings in component and system weight and complexity. 
Successful implementation of the technology requires of adequate modeling 
techniques validated by extensive experimentation and field troubleshooting 
practice. 

A novel finite element formulation for gas bearing analysis is advanced. The 
method introduces high order weight functions that prevent the need of ad-hoc 
upwind parameters and non-symmetrical weighting functions, as in the case of the 
Petrov-Galerkin scheme. The exact weight functions naturally incorporate the flow 
character, and reduce to the well known bilinear shape functions at low 
compressibility numbers, or become full-upwind (pure advection) functions for 
operation at large surface speeds. 

The computational FE model forwards predictions of the static performance 
parameters and dynamic force coefficients of a three-pad hydrostatic/hydrodynamic 
gas bearing for application to oil-free automotive turbochargers. The dynamic force 
coefficients are highly dependent on frequency, which leads to a sharp increase in 
direct stiffness coefficient and a dramatic decrease in the direct damping coefficient. 
The cross-coupled stiffness coefficient decreases at a lower rate than the direct 
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damping coefficient, thereby leading to the onset of hydrodynamic instability at rotor 
speeds well below the design range of operating conditions. Direct air bleed from the 
compressor discharge provides the external pressurization to the bearing, effective 
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Figure 5a. Dimensionless direct and cross-stiffness coefficients versus frequency 
ratio (ω/Ω) for three rotor speeds. LS (30 krpm), MS (90 krpm), HS (150 krpm). 
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at rotor speeds above 75 krpm, thus indicating bearing operation in a hydrodynamic 
mode at low rotor speeds. The lack of enough pressurization does not allow the 
generation of higher direct stiffness coefficients that could ensure larger rotor - 
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(ω/Ω) for three rotor speeds. LS (30 krpm), MS (90 krpm), HS (150 krpm). 



FE Analysis of Gas Bearings for Oil-Free Turbomachinery     17 

bearing natural frequencies and operation free of sub synchronous motion.  The gas 
bearing mechanical power is a minute fraction of the power required by conventional 
oil-lubricated floating ring bearings.  

The FE computational model proves fast, efficient and accurate. Yet, it does not 
address to those crucial issues known to impact the practical implementation of gas 
bearings to high speed operation. Little damping is inherent to gas bearings, which in 
addition must survive intermittent rubs and lack of rotor lift while undergoing 
frequent startups and shutdowns. 
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Nomenclature 

 
a Orifice restrictor diameter [m] 
A Effective orifice area [m2]. ( 2aπ ) or ( )hdπ   

C Nominal pad clearance [m] 
Cσβ Damping coefficients; σ, β = X, Y [N/m]. 

*K/CC Ωσβσβ =  

d Orifice discharge diameter [m] 
D Journal (rotor) diameter [m]  
eX, eY Journal eccentricity components [m]  
fX, fY cos(θ), sin(θ). Perturbation circular functions. 
FX, FY  Fluid film forces [N] 
g Orifice geometry function. Equation [5]. 
h Film thickness [m]. H=h/C 
i 1− . Imaginary unit. 
k Gas specific heat ratio. (1.4 for air). γ=(k -1) / k  
[k]e, [k]G FE local and global fluidity matrices. 
Kσβ Stiffness coefficients; σ, β = X, Y [N/m]. *K/KK σβσβ =  

K* 

Stiffness conversion factor [N/m].
3

2 








minc
D

L Ωµ  

Ke, Ce Kxx + Ω Cxy ; Cxx-Kxy/Ω. Effective synchronous stiffness and 
damping coefficients [N/m, N.s/m]. 

L Bearing axial length [m]. 
Lx Pad circumferential extent [rad]. ( )[ ]ltR ΘΘ −  

Mc Rigid rotor critical mass [kg]. *cc K/MM 2Ω=  

m&  Mass flow rate [kg/s]. 
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Nem   ( )e
y

e
x NN ×  Number of elements in flow domain. 

Npad Number of pads. 
P  Gas absolute pressure [Pa]. s* P/PP;P/Pp ==  

P0, Pσ Zeroth- and first-order pressure fields. [Pa], σ  = X, Y [Pa/m] 
{q)e, {Q} G FE local and global nodal flow vectors 
{r)e, {R}G FE local and global shear-squeeze vectors  
rp Pad preload [m] 
R Journal radius, [m]. ( )D

2   

gℜ  Gas constant [J/kg ⋅ K] 

t Time [s] 
T Absolute temperature [K] 
Torq Bearing torque [Nm] 
W Applied load, 22

YX FF +  

x= R⋅θ, y  Coordinate system on plane of bearing. { } { } xL/y,xy,x =  

X, Y Inertial coordinate system 
Zσβ Impedance coefficients, ( )σβσβ ωCK i+ ; σ, β = X, Y [ ]N

m  

α’ Non-isentropic loss coefficient 
∆ Feed orifice geometric ratio, ∆=a2/dC  

ORδ  
Dimensionless orifice parameter. 

( ) s

**

x p
PC

L
A
a

2
13

22 12

ρ

µπ
 

θ, Θ Circumferential coordinate. Pad angular coordinate [rad]. 
Λ Pad speed (compressibility) number. 

*

x

PC
LR

2

6 Ωµ
 

λe 
Local Peclet number on FE. 2

0 e
e

e
x

e Hp
lΛ

λ =  

µ Gas viscosity [Pa ⋅ s] 
ξ ,η FE natural coordinates 
ρ Gas density [kg /m3] 
σ 

Excitation frequency number. 
*

x

PC
L

2

212 ωµ
 

τ Dimensionless time, ω t 
Φ  

sg P
A
a

T
2π

ℜ . Orifice factor [Pa.m/s] 

φ Journal attitude angle [rad]. tg -1 (-FYo/FXo). 

41..i
e
i }{ =ψ  FE shape (weight) functions 

Ω, ω Journal rotational speed and excitation frequency [rad/s].  
Ωe, Γe  FE element and boundary 
Subscripts  
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a, s Ambient and supply conditions 
e Finite element. Effective value. 
G Global 
l,t, p Pad leading, trailing and offset positions. 
OR Orifice 
0 Zeroth order field 
α , β X, Y. First order fields, direction of perturbation 
* Characteristic value at ambient conditions 
 
Appendix I: title of the paper in french 
 
Analyse par éléments finis de paliers à gaz pour turbomachines fonctionnant sans 
huile 
 
 
Appendix II: validation of FE model with published results 
 

Lund [LUN 68] presents design charts for the synchronous force coefficients 
and critical mass parameter of cylindrical gas bearings for application to vertical (no 
load) rotating machinery. Lund’s charts are routinely used to extract the dimensions 
of a particular bearing design or to estimate the critical mass (stability limit) of a point 
mass rotor mounted on a gas bearing.  

Lund implemented a finite difference computational program to prepare the 
design charts. Figure A depicts the FE predictions for the synchronous effective 
force coefficients, critical mass, and drag torque for a three lobe (hydrodynamic) 
bearing with slenderness ratio L/D=1, pad arc length of 100°, and preload ratio (rp/C) 
of 50%. The operating conditions are ambient, i.e. Pa=1 bar (ρ=1.27 kg/m3, µ=1.9 10-5 
Pa.s). The parameters are shown in dimensionless form versus Lund’s bearing speed 
number. See the Nomenclature for the parameters appropriate definition.  

Figure A. Dimensionless synchronous stiffness and damping, critical mass, and 
torque for three pad (100 deg arc) hydrodynamic gas bearing. L/D=1, rp /C=0.5 
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The FE results in Figure A reproduce exactly those advanced by Lund. The 
current results, however, extend the predictions to a higher speed bearing number 

2







 −

C
rC p

B∆ , one order of magnitude larger than the maximum value reported by 

Lund. The FE results, obtained with Nx x Ny=41 x 9 elements on each bearing pad, 
demonstrate the model accuracy and its robustness for applications to large bearing 
speed numbers. 

 
 
 

  


