
The 8th IFToMM International Conference on Rotor Dynamics
September 12-15, 2010 / KIST, Seoul, Korea

[WeE3-2]

NONLINEAR ROTORDYNAMICS OF VEHICLE TURBOCHARGERS: 
PARAMETERS AFFECTING SUB HARMONIC WHIRL FREQUENCIES AND 

THEIR JUMP  

ABSTRACT
Turbochargers (TCs) increase internal combustion 

engine power and efficiency in transportation vehicles. TC 

rotors are usually supported on engine oil lubricated floating 

ring bearings (FRBs) or semi-floating ring bearings (SFRBs), 

both inexpensive to manufacture. However, these bearing 

types are highly nonlinear and determine a complex 

rotordynamic behavior of the entire rotor-bearing system 

(RBS) which shows large amplitude sub harmonic motions, 

notable bifurcations, whirl frequency jumps, even mechanical 

hysteresis. Whirl frequency jump phenomenon is of concern 

due to the increased levels of TC induced noise generation.  

This paper details progress on assessing the effects of inlet oil 

conditions (pressure and temperature), imbalance distribution, 

and rotor acceleration on the TC RBS dynamic forced 

response. A fluid film bearing model is integrated into a FE 

rotordynamics model for numerical prediction of the TC 

linear and nonlinear (time transient) forced response. Since 

vehicle TCs operate at varying speed ranges, predictions are 

obtained for realistic shaft acceleration/deceleration 

conditions. Over most of its operating speed range, TC rotor 

nonlinear response predictions display two subsynchronous 

whirl frequencies 1 and 2 associated to rotor conical and 

cylindrical bending modes, respectively.  At low shaft 

speeds 1 is present up to a threshold shaft speed ( b) at 

which there is a whirl frequency jump to 2. Motions with the 

second whirl frequency may persist up to the highest shaft 

speeds, depending on the operating conditions. A single 

parameter variation study shows that reducing the oil supply 

pressure, and to a lesser extent, increasing the oil inlet 

temperature, brings the whirl frequency jump to occur at a 

lower threshold rotor speed ( b). Hence, TC operation 

becomes noisier for operation at higher shaft speeds, > b.

Most notably, there is a pronounced hysteresis phenomenon, 

since as the rotor decelerates from its maximum speed, the 

threshold speed for the jump in whirl frequency is markedly 

distinct than when the rotor accelerates. Operation with the 

fastest rotor acceleration (deceleration) rate produces the 

strongest hysteresis. In addition, the rotor imbalance 

distribution greatly affects the location of the threshold speed 

b and the amplitude of total rotor motion.  

INTRODUCTION 
Turbochargers (TCs) increase both the efficiency and 

power of internal combustion engines (ICEs), also aiding to 

reducing ICE size and weight. TCs also improve air/fuel 

ratios for cleaner combustion, hence helping to reduce CO 

emissions [1]. Thus, passenger and commercial turbocharged 

vehicles, European and Asian in particular, have a lesser 

environmental impact than other vehicles. In the US personal 

transportation market, a turbocharged vehicle is presently 

welcomed as a green technology and not just a power 

boosting, luxury type mechanical component.  

TCs are supported on engine oil lubricated bearings, 

floating and semi-floating. Low cost production and operation 

determines the choice of bearings. However, oil lubricated 

TCs  typically are highly nonlinear systems evidencing 

complex rotordynamic response with multiple whirl 

frequencies –mainly sub harmonic, and showing whirl 

frequency jumps that result in increased levels of noise 

generation, thus affecting the mechanical reliability of the TC 

and its engine while also promoting passenger discomfort [2-

8].   

Figure 1 depicts a TC rotor supported on a semi-floating 

ring bearing system (SFRB). Oil, supplied through the center 

housing, flows into the compressor and turbine side bearings; 

each with two fluid films in series;  an inner film separating 

the shaft from the ring inner side, and an outer film  

separating the ring outer side from the housing. A loose pin 

prevents the rotation of the floating ring. SFRBs offer lesser 

power losses that floating ring bearings [9]; and most 

importantly, allow for a compact rotor bearing system (RBS) 

where a single mechanical element integrates both radial and 

thrust bearings.  

Until recently TC performance qualification involved 

rigorous testing, both costly and time consuming. The process 

often produced delays and severe economic losses. Hence, in 

2001 a TC manufacturer established a long term effort with 

the author’s laboratory to develop accurate and efficient 

virtual computational tools for prediction of TC nonlinear 

rotordynamic forced response [2-8].  Presently, the physics 

based computational model, experimentally benchmarked, has 

demonstrated a 70% cycle time reduction in new TC 

development with significant economic savings in product 

qualification and field verification [7].  

San Andrés and Kerth [2] detail the elastohydrodynamic 

lubrication and thermal energy transport models for prediction 

of the forced performance of semi-floating and fully floating 

ring bearings and include predictions compared to measured 

film temperatures, power losses and ring rotational speeds. 

San Andrés et al. [5] observe that feed oil pressure exerts a 

significant side load on small TCs, account for the hydrostatic 
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load in the computational model, and obtain predictions of 

shaft motions showing a remarkable agreement with TC test 

stand rotordynamic measurements [5-7].   

Fig. 1 Cutaway of passenger vehicle turbocharger rotor 
supported on semi-floating ring bearing 

Engine-induced forced motions easily excite a TC center 

housing through the IC exhaust gases connecting manifold, 

invariably flexibly mounted. San Andrés et al. [8] further 

refine the predictive tool by including TC casing motions, 

transmitted forces into the rotor through the lubricated 

bearings. Note that the time scales for rotor motions arising 

from shaft rotation at high speeds, typically above 2 kHz (120 

krpm), and those induced by IC engine rotation (typically < 

200 Hz) are vastly different; the later being much longer. 

Hence, a model performing the time domain integration of the 

RBS equations of motion needs to last long enough to capture 

changes occurring at low frequencies, and yet keep a 

sufficiently small time step to catch high frequency content 

(mainly synchronous) without any distortion or signal 

leakage. Ref. [8] shows TC response predictions agreeing 

well with test data that shows multiple frequency responses 

containing multiples of the ICE firing frequency, self-

excitation of natural frequencies, and synchronous response. 

In most cases, the response amplitudes due to rotor imbalance 

are just a small fraction (20% or less) of the total amplitude of 

motion, quite rich in frequency content. 

Linear rotordynamic analyses, in general, predict natural 

frequencies and damping ratios from an eigenvalue analysis 

of the RBS equations of motion. Instabilities associated to the 

loss of damping are found at a certain threshold rotor speed; 

alas their effect on the system response is not quantified; i.e. 

the ensuing amplitude and frequency of the response are left 

unknown. A nonlinear analysis of the RBS can determine the 

threshold of instability as a bifurcation from a stable point 

into a limit cycle of single frequency, into a quasi-periodic 

orbit, or even into chaos. The bifurcations can be either stable 

if supercritical, or unstable if subcritical [10,11]. Subcritical 

bifurcations can show hysteresis where during rotor 

acceleration, the rotor onset speed of instability1 is higher 

                                                           
1 Here the word instability has a broad meaning, i.e., for example 

transition from an operating region with distinctive whirl frequencies 

into another region with also a unique set of whirl frequencies and 

associated amplitudes. 

than the rotor speed at which the instability disappears during 

rotor deceleration. Refs. [3-7] and [12-16] present examples 

of this peculiar behavior. Wang and Khonsari [16] find that 

setting the appropriate lubricant temperature; ergo its 

viscosity, can control hysteresis in a lubricated RBS. 

Internal and combined resonances are also common in 

non linear multiple degree of freedom mechanical systems. If 

at a certain operating speed, two (or more) of the natural 

frequencies are rational multiples of each other, an internal 

resonance may occur [17,18] A combined resonance couples 

two or more natural modes of a system and can cause an 

abrupt exchange of energy among the modes; at times large 

enough to determine mechanical system failure  [18].  

Holt et al. [3] and Schweizer and Sievert [19] report 

whirl frequency jumps and bifurcations in TC motion 

responses recorded during rotor speed up tests. Frequency 

domain analysis of the shaft motions displays, at a threshold 

rotor speed ( b),  a jump from a 1st subsynchronous whirl 

frequency ( 1) to a 2nd higher ( 2) frequency, and at times to 

a 3rd (lower) whirl frequency. Typically, shaft motions at the 

2nd frequency ( 2) are quite severe in amplitude [3].  Rotor 

motions at the 1st and 2nd whirl frequencies, subsynchronous 

in character, relate to instabilities of the inner film exciting 

the RBS conical and cylindrical-bending modes, respectively. 

The 3rd subsynchronous frequency, typical of fully-floating 

ring supported TCs, is due to the instability of the outer film 

that also excites a conical mode of whirl motion. 

In TC operation practice, the frequency jump 

phenomenon, i.e. a sudden change from shaft motions with a 

dominant whirl frequency to motions with a higher whirl 

frequency and (even) larger amplitudes, results in increased 

levels of noise generation. Figure 2 shows two recorded 

instances of the whirl frequency jump phenomenon [20]. Note 

that increasing the oil inlet temperature from (a) 30 C to (b) 

100 C decreases, from 108 krpm to 84 krpm, the shaft 

threshold speed ( b) for frequency jump.  Note, however, 

that the severity of whirl amplitude motions is somewhat 

larger for operation with a hotter lubricant.  

This paper presents progress on quantifying the effects of 

oil inlet temperature and supply pressure, remnant imbalance 

distribution, and shaft (de)acceleration rates on the onset or 

the whirl frequency jump and on the ensuing severity of sub 

harmonic motions in a typical small passenger vehicle TC 

system.    Frequency domain analysis of the predicted RBS 

motion responses reveals the complexity of the frequency 

jump phenomenon and points out to conditions for lower 

noise generation. Vistamehr [21] gives a complete account of 

the study, further detailing the effects of other parameters, not 

discussed here for brevity.  

OVERVIEW OF ANALYSIS FOR PREDICTION OF TC 
ROTOR-BEARING SYSTEM RESPONSE 

San Andrés et al. [2,4,8] develop the thermo-

hydrodynamic fluid film bearing model predicting the (S)FRB 

static and dynamic forced performance characteristics (i.e. 

operating bearing clearances,  effective film viscosity, fluid 

films temperature rise, ring and journal eccentricities, power 

losses, film flow rates, and dynamic fluid film force 

                                                                                                      



coefficients).  The model accounts for shear thinning (non 

Newtonian) lubricant viscosity [22] and film bearing 

clearance variations due to shaft and ring thermal growths and 

rotating shaft centrifugal expansion.  An empirically based 

temperature defect correlation delivers the shaft OD 

temperature at the turbine and compressor bearing locations 

[23].   

Fig. 2 Test data: waterfall of TC center housing 
acceleration. Whirl frequency jump noted. Lubricant 
supplied at 4 bar, oil inlet temperature varies. Ref. [20] 

In the current analysis, the rotor bearing system (RBS) 

comprises of a TC rotor supported on a semi-floating ring 

bearing (SFRB), see Figure 1. The SFRB is a long and hollow 

bronze cylinder making two radial bearings, one at the 

compressor side and another at the turbine side. Each bearing 

comprises of an inner film between the shaft OD and ring ID 

and an outer film between the ring OD and casing ID. The 

compact design integrates thrust fluid film bearings, tapered 

pads type, on the axial ends of the hollow cylinder. A metal 

pin fits loosely into the SFRB preventing its rotation. Engine 

oil flows into the TC center housing to fill the outer films. 

Lubricant impinges directly into the compressor side bearing 

through a small hole, and a ½ moon groove or arched recess 

feeds lubricant to the turbine side outer film whilst creating a 

larger hydrostatic side (push) load than that on the compressor 

side bearing. Radial holes in the ring route lubricant from the 

outer films into the respective inner films. The lubricant is a 

light viscosity (multi-grade) mineral oil supplied at the 

nominal condition of 4 bar and 30 C inlet temperature.  

Figure 3 depicts the TC rotor structural model consisting 

of 43 finite elements and the SFRB with 13 finite elements. A 

spring connecting the steel shaft to the brass ring denotes the 

inner film, and a spring connecting the ring to ground 

represents the outer film. As is common in rotor modeling, the 

turbine and compressor wheels are represented with added 

lumped mass and mass moments of inertia (polar and 

transverse) [24].  In the analysis, mass imbalance 

distributions follow common practice, for example at nose 

and/or back plane of compressor impeller, and at back and/or 

front faces of turbine wheel.   

Fig. 3 TC structural finite element model of rotor and 
(semi) floating ring bearing 

The fluid film bearing impedance model [2-8] is integral 

to the finite element (FE) Timoshenko beam rotor dynamics 

model for numerical prediction of the TC time transient 

forced response, linear and nonlinear [24,25].  Component 

mode synthesis [26] is used throughout the various analysis 

types available in the computational tool, including the time 

step numerical integration to obtain the nonlinear forced 

response of the RBS. A structural FE has left and right nodes, 

each with four degrees of freedom; two lateral displacements 

(x, y) and two rotations ( x, y). The nonlinear rotordynamic 

analysis applies the instantaneous fluid film bearing reaction 

forces into the RBS equations of motion (EOM).  

The floating ring bearing reaction forces are general 

functions of the geometry and operating conditions, such as 

shaft ( ) and ring ( R) rotational speeds, lubricant supply 

pressure and inlet temperature, viscosity of the inner and 

outer films,  actual inner and outer film clearances affected 

by temperature gradients and centrifugal expansion, among 

others. The shaft and ring kinematics also determine the 

bearing forces, of course. In simplified form, the inner film 

(Fi) and outer film (Fo) reaction forces are expressed as [2] 
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where
( )

,J J t
x y ,

( )
,R R t

x y  denote the dynamic 

displacements of the rotor and ring  at the bearing location, 

(a) 30 C, 4 bar 

(b) 100 C, 4 bar 



respectively, and 
( )

,B B t
x y  represent the bearing casing or 

center housing specified motions. All rotor displacements are 

absolute, i.e. referenced to a fixed coordinate system.  The 

equations of motions for the RBS operating with a varying 
rotor speed ( (t)) are [24] 

, t t

R

S imb ext B

M u + C + G u + K u =

F F , F + F u, u,
 (2) 

where , , ,T
x yx yu  is the vector of generalized 

rotor and ring displacements, M, K, C and GR denote the 

RBS mass, stiffness, damping and gyroscopic matrices. FS is 

a vector of generalized static loads such as weight and 

hydrostatic pressure loads; textF  is a vector of specified 

external excitation forces and moments; and  

, timbF , and BF u,u, represent the vectors of 

forces from a mass imbalance distribution and the fluid film 

bearings reaction forces, respectively. Above, the notation 

() intends to represent the collection of lateral and 

rotational displacements at each node of the FE model of the 

RBS. 

The forces due to an imbalance mass (m) with offset 

displacement (e) acting at a distance (l) from a node are of the 

form [24] 

,
T

X Y Y Xt me l limbF ,   (3) 

where 
2 2cos sin , sin cos ,

and

X Y

dt
 (4) 

The bearing reaction forces are only lateral (radial), not 

inducing local bending moments in the elastic system2. The 

bearing forces are written as  

0 0

and 0 0

T

X Yi i

T

X Yo o

F F

F F

BF u, u,

  (5) 

for nodes with connections to the inner and outer films, 

respectively. Zero entries in Eqs. (4) and (5) denote null 

moments about the X and Y axes.

Note that the bearing reaction forces are highly nonlinear 

and calculated at each time step during the numerical 

integration of the RBS equations of motion. The 

rotordynamics analysis computational tool offers a choice of 

standard numerical algorithms for the integration of the 

EOMS recast in state-space form, i.e. as a set of first order 

differential equations. Presently, a stiff ODE solver [27] is 

selected since the code does not offer a choice for physically 

realistic initial condition, one consistent with the rotor elastic 

configuration under the action of the static load vector, for 

example. All analyses start with a zero initial state 

                                                           
2 The assumption is fully justified for short axial length fluid film bearings.  

u = u = 0  that leads to rapid accelerations in the very first 

initial instants of motion as the numerical integration begins. 

Hence, the method chosen automatically sets a variable time 

step to avoid (obvious) numerical difficulties. 

PREDICTIONS OF NONLINEAR ROTOR-BEARING 
SYSTEM RESPONSE 

Predictions follow for the TC rotor response as the shaft 

accelerates with a 500Hz/s ramp rate from 30 krpm (0.5 kHz) 

to 240 krpm (4 kHz); and next, as it decelerates to 30 krpm 

(0.5 kHz). Seven seconds (7s) elapse for the shaft to reach the 

highest (lowest) shaft speed while accelerating (decelerating). 

In the numerical integration, the sampling rate is 10,000 

samples/s ( t = 0.1ms). For analysis, the predicted whole 

time domain response over 7s, 70,000 data points, is divided 

into segments of 211=2,048 points (time span of each segment 

~102 ms) and applying the DFT (discrete Fourier Transform) 

to each time segment. The maximum frequency and 

frequency step ( f) in the DFTs are 5,000Hz and 4.88 Hz, 

respectively. Ref. [21] lists pertinent physical dimensions and 

materials for the TC rotor and semi-floating ring.  Below, 

predicted rotor response amplitudes are shown in 

dimensionless form with respect to the maximum physical 

displacement at the compressor end, as is common practice 

[4-8].   

Baseline Case
The baseline analysis case accounts for nominal oil 

supply conditions (4 bar and 30 C), shaft acceleration rate at 

+/-500 Hz, and operation with a typical static -all in phase- 

imbalance distribution.  

Figure 4(a) depicts the predicted waterfalls of TC shaft 

motion along the vertical direction (gravity plane).  The 

synchronous response is labeled as 1X. Figure 4(b) shows the 

contour map of shaft motions; a yellow arrow marks the 

synchronous line. The amplitude of synchronous motions is 

quite small relative to those amplitudes at the distinctive 

subsynchronous whirl frequencies, labeled as 1 and 2,

irrespective of the rotor acceleration, up or down.  

From low shaft speeds up to 165 krpm (2.75 kHz), the 

TC rotor motions show mainly whirl at frequency 1. At shaft 

speed b=165 krpm there is a jump of the whirl motions with 

frequency 1 to motions with a second whirl frequency, 2,

whose notorious influence persists to the highest shaft speed, 

240 krpm (4 kHz). As the rotor decelerates from its top speed, 

whirl motions at 2 disappear at b=182 krpm (~3 kHz), with 

1 suddenly appearing and enduring to the lowest shaft speed, 

30 krpm (500 Hz). 

Note that the motions with the 2nd whirl frequency persist 

over a longer shaft speed span during the ramp up motion 

( >165 krpm) than when the rotor decelerates (  >182 

krpm). The difference in speeds for whirl frequency jump 

while the shaft accelerates and decelerates is hereby termed as 

hysteresis, see its vivid details in the contour map of Fig. 4(b). 

Figure 5 depicts the peak to peak (pk-pk) amplitude of 

shaft total motion during both rotor acceleration and 

deceleration. The total shaft motion, important for 

qualification of TCs, is an upper bound to the various 

components of motion: synchronous, subsynchronous and 

super synchronous. Note that the total amplitude of shaft 



motion remains invariant whether the rotor accelerates or 

decelerates, ranging in between ~ 20% and 40% of the 

maximum allowed. 

(a) 3D plot 

(b) contour map 

Fig. 4 Waterfalls of predicted TC shaft motions at 
compressor end, vertical direction. Baseline case:  shaft 
speed acceleration= +/- 500 Hz/s. Operation with static all-
in-phase imbalance condition

Post-processing (filtering) of the predicted shaft motions 

shows distinctive features of the complicated shaft motions. 

Figure 6 depicts the RBS (subsynchronous) whirl frequencies 

versus shaft speed during rotor acceleration and deceleration. 

In both graphs, vertical lines denote the amplitude of a whirl 

motion at the particular frequency and rotor speed. Note the 

scale mark at 10% of maximum allowed for quantifying the 

whirl amplitudes. The diamond and triangle symbols denote 

the first ( 1) and the second ( 2) whirl frequencies, 

respectively. Filtering the frequency content of the nonlinear 

response predictions obtained at five locations in the RBS 

permits the construction of the (forced) mode shapes shown. 

Each whirl frequency determines a particular mode shape; a 

rotor conical mode for 1, and a cylindrical bending mode for 

2.

As the rotor accelerates, Fig 6(a), the first whirl 

frequency ( 1) increases from ~300 Hz to 670 Hz, and the 

second frequency ( 2), suddenly appearing after b=165 

krpm, ranges from ~820 Hz to 900 Hz. High amplitude 

motions correspond to the rotor conical whirl at 1, see 

amplitudes for frequencies from ~450 Hz to 600 Hz.  Note 

that while the rotor accelerates and at speed b = 165 krpm 

(2,750 Hz), 5 1~4 2 and (3 1+ 2) ~ b. Hence, at the speed 

location of the jump in whirl frequency, the interaction 

between an internal resonance and a combined resonance is 

the reason for the jump.  

Fig. 5 Predicted TC total shaft motion (pk-pk) amplitude at 
compressor end during rotor acceleration (  500 Hz/s) 
and deceleration (  -500 Hz/s). Operation with static all-
in-phase imbalance condition  

(a) rotor accelerates at 500Hz/s   

(b) rotor decelerates at -500Hz/s 

Fig. 6 Predicted subsynchronous whirl frequencies and 
their motion amplitudes versus rotor speed. Baseline 
case: rotor acceleration at +/- 500 Hz/s. Normalized 
amplitudes at compressor end in vertical direction shown 
(scale included)  

During rotor deceleration, Fig 6(b), the subsynchronous 

frequency regions appear at first to be similar. However, the 

frequency jump, from 2 into 1, occurs at a higher shaft 



speed b =182 krpm (~3 kHz).  Here, the combined 

resonance is (2 1+2 2)~ b. Interestingly enough, the internal 

relation between 1 and 2 at b is identical to that during 

rotor acceleration, i.e. 5 1~4 2.

As the rotor accelerates, Figure 7 overlays predicted 

damped natural frequencies (obtained from a linear 
3eigenvalue analysis) on the path of the subsynchronous whirl 

frequencies obtained from the nonlinear RBS time forced 

response. Subsynchronous whirl frequencies at low shaft 

speeds, <50 krpm, are at 50% of rotor speed denoting a 

characteristic instability of the inner film. As the shaft speed 

increases, the whirl frequency is not a fixed ratio of rotor 

speed. At b, the shaft speed of frequency jump, the rotor 

whirls with a frequency close to 25% of rotor speed. The 1st

whirl frequency ( 1) follows the conical mode (with SFRB 

also in a conical mode) up to shaft speeds around 80 krpm. 

Above 80 krpm, the rotor forced modes corresponding to 

whirl frequencies 1 and 2 resemble those predicted from 

the RBS linear eigenvalue analysis. However, the RBS 

predicted natural frequencies 1 and 2 are not close to the 

whirl frequencies from the forced response nonlinear model. 

Clearly, the linear rotordynamics analysis is representative 

only of small amplitude motions about the (static) equilibrium 

condition4.

Fig. 7 Map of predicted damped natural frequencies from 
linear eigenvalue analysis and (nonlinear) 
subsynchronous whirl frequencies versus rotor speed. 
Baseline case: rotor acceleration=+500Hz/s. Operation 
with static all-in-phase imbalance condition 

Effect of Oil Supply Pressure on Whirl Frequency 
Jump

For an operating condition with a reduced oil supply 

pressure, 66% from its nominal magnitude of 4 bar, Figure 8 

depicts the TC whirl frequencies and associated displacement 

amplitudes versus shaft speed. Predictions show that the 

lesser oil inlet supply pressure reduces the shaft speed, at 

                                                           
3 Note that the linear model natural frequencies may be different 

from those determined by the nonlinear model.  
4 In general, a (linearized system) eigenvalue analysis does not do 

well in predicting the actual natural frequencies in oil-lubricated 

TCs, whose notorious large amplitude subsynchronous whirl 

motions can only be determined by a full nonlinear RBS analysis. 

This simple fact makes relevant the present analysis.

which the jump to the second whirl frequency ( 2) occurs. 

That is, presently b = 118.8 krpm (1,980 Hz) while b = 165 

krpm (2,750 Hz) for the 4 bar supply pressure condition.   

This finding is consistent with TC shaft motion 

measurements in Ref. [19], where increasing the oil supply 

pressure from 1.5 bar to 3 bar delayed b from 45 krpm to 60 

krpm. Incidentally, however, Ref. [3] reports that oil supply 

pressure, in a TC supported on fully floating ring bearings,

has an insignificant effect on b.  The discrepancy may be 

attributed to the unknown magnitude and distribution of rotor 

imbalance in the test TC. 

Refer to Table 1 for the shaft speed ( b) where the jump 

in whirl frequency, from 1 to 2, occurs while the rotor 

accelerates and decelerates. The table also provides the 

identified internal and combined resonances. 

Fig. 8 Predicted subsynchronous whirl frequencies and 
their motion amplitudes versus rotor speed. Oil supply 
pressure reduced by 33%. Shaft acceleration= +500Hz/s. 
Normalized amplitudes in vertical direction shown at 
compressor end (scale included) 

Effect of Oil Supply Temperature on Whirl 
Frequency Jump 

For an operating condition with an increase in oil inlet 

temperature, 25 C above its nominal value, Figure 9 depicts 

the TC whirl frequencies and associated motion amplitudes 

versus shaft speed.  

Fig. 9 Predicted subsynchronous whirl frequencies and 
their motion amplitudes versus rotor speed. Higher oil 

inlet temperature (Thigh=55 C). Rotor acceleration = 500 

Hz/s. Normalized amplitudes in vertical direction shown at 
compressor end (scale included) 



    In Fig.9, as the shaft accelerates, the larger oil inlet 

temperature produces a lower shaft speed ( b) where there is 

a jump from the conical whirl mode at frequency 1 to the 

cylindrical bending mode at frequency 2. That is, compare 

presently b ~150 krpm (2.5 kHz) to b = 165 krpm (2,750 

Hz) for the nominal temperature at 30 C. This result is 

consistent with the test data shown in Fig. 2.  In Fig. 9 note 

the multiple frequency jumps as a result of the reduced oil 

viscosity (higher temperature). Refer to Table 1for the internal 

and combined resonances found. 

Table 1.  Main results from analysis of nonlinear 
response of a TC RBS. Internal and combined resonances 

between whirl frequencies 1 and 2 and threshold speed 

b. [21] 

N/A: resonance not found or not followed rational number combination  

Baseline: oil inlet at 4 bar and 30 C, shaft speed ramp rate at 500 Hz/s. 

 Up:  rotor accelerates from 30 krpm (0.5 KHz) to 240 krpm (4 KHz). 

Down: rotor decelerates from 240 krpm to 30 krpm 

Effect of Rotor Acceleration/Deceleration on Whirl 
Frequency Jump

The rate of rotor speed change (acceleration) clearly has 

a pronounced effect on the RBS response, linear or nonlinear.  

Predictions of rotor motion were obtained at various fixed 

shaft speeds as well as with various shaft speed ramp rates: 

250 Hz/s, 500 Hz/s (baseline), and 750 Hz/s, see Ref. [21]. 

For brevity, results for the 750 Hz/s shaft speed ramp rate 

follow. Figure 10 depicts the whirl frequencies and their 

associated amplitudes versus shaft speed as the rotor 

accelerates and decelerates. In general, faster rotor 

acceleration delays the shaft speed b where a frequency 

jump occurs, i.e., from 1 to 2. A similar condition ensues as 

the rotor decelerates, i.e. the shaft speed at which the whirl 

frequency jumps, from 2 to 1, is much lower; and hence, 

the response hysteresis phenomenon is more marked. From 

the predictions, the difference between the rotor speeds b

where a whirl frequency jump occurs during acceleration and 

deceleration is 7, 17 and 58 krpm for shaft speed ramp rates 

equaling 250, 500, and 750 Hz/s shaft peed ramp rates, 

respectively. Table 1 presents, for each acceleration condition, 

the shaft speed ( b) where the jump in whirl frequency ( 1

to/from 2) occurs, as well as the identified internal and 

combined resonances. In some instances, internal and 

combined resonances could not be easily discerned.    

Prior (unpublished) work by San Andrés on the effect of 

shaft acceleration/deceleration on TC shaft motion response 

also shows that a higher rotor speed ramp rate, i.e. more rapid 

acceleration and deceleration, leads to a stronger hysteresis of 

the subsynchronous whirl motions (amplitude and frequency). 

This phenomenon is typical to subcritical bifurcations in 

nonlinear mechanical systems. 

Effect of Imbalance Distribution on Whirl Frequency 
Jump – Out of phase condition

The baseline predictions refer to a static all-in-phase 

imbalance mass distribution. Presently, the same imbalance 

masses are kept, however their disposition on the turbine 

wheel has opposing angles at its front and back planes. This 

imbalance condition induces a bending moment on the 

turbine.  See Ref. [21] for predictions related to other likely 

combinations of imbalance distributions.  

(a) rotor accelerates at 750Hz/s  

  (b) rotor decelerates at -750Hz/s 

Fig. 10 Predicted subsynchronous whirl frequencies and 
their amplitudes of motion versus rotor speed. Operation 
with a faster rotor acceleration = +/- 750Hz/s. Normalized 
amplitudes in vertical direction shown at compressor end 
(scale included)  

Case 
b

(Hz)
1

(Hz)
2

(Hz)

Internal 

resonance

Combined

resonance 

Baseline    (up) 2,750 654 815 5 1~4 2 3 1+ 2 ~ b

(down) 3,030 674 845 5 1~4 2 2 1+2 2 ~ b

Reduce oil supply 

pressure      (up) 1,980 493 732 3 1~2 2 1+2 2 ~ b

           (down) 2,000 508 732 3 1~2 2 1+2 2 ~ b

Increase oil inlet 

temperature  (up) 2,500 620 801 4 1~3 2 N/A 

    (down) 3,030 645 840 4 1~3 2 2 1+2 2 ~ b

Low shaft accel.

+250Hz/s 2,500 635 840 4 1~3 2 N/A 

Decel.  -250Hz/s 2,620 645 811 4 1~3 2 N/A 

High shaft accel. 

+750Hz/s 3,120 713 850 6 1~5 2 2 1+2 2 ~ b

Decel. -750Hz/s 2,150 552 786 3 1~2 2 1+2 2 ~ b

Turbine back-plane 

out of phase Imb 

distribution    (up) 2,500 591 791 4 1~3 2 3 1+ 2 ~ b

 (down) 2,000 513 757 3 1~2 2 1+2 2 ~ b



Figure 11 depicts the subsynchronous whirl frequencies 

and their associated amplitudes versus shaft speed for the 

turbine back-plane out-of-phase imbalance condition. All 

other conditions are nominal and the TC rotor accelerates. 

Note that, relative to the response obtained for the all-in-

phase imbalances (see Fig. 6); presently, the shaft speed b at 

which there is a whirl frequency jump decreases as the rotor 

accelerates. Most noticeably, however, motions with the 

second whirl frequency ( 2) disappear altogether shortly after 

the threshold speed b. See Table 1 for the internal and 

combined resonances identified. 

Fig. 11 Predicted subsynchronous whirl frequencies and 
their amplitudes of motion versus rotor speed. Operation 
with turbine back-plane out-of-phase imbalance. Rotor 
acceleration = 500Hz/s.  Operation with turbine out-of-
phase imbalance. Normalized amplitudes in vertical direction 
shown at compressor end (scale included) 

Figure 12 shows the total amplitude of shaft for the 

turbine back plane out-of-phase imbalance condition. Note at 

rotor speeds above ~160 krpm the total motion is just < 10% 

of the physical limit, thus showing eminently a synchronous 

rotor response, i.e., a linear system response characteristic. To 

realize the major differences, compare the present total 

motion with that for the baseline, see Figure 5, which 

accounts for an all-in-phase imbalance condition. Due to the 

reduced amplitudes of motion and a notorious absence of 

subsynchronous whirl motion (no obvious nonlinearities), the 

out-of-phase imbalance distribution is particularly 

noteworthy.  

Effect of Imbalance Amount on Whirl Frequency 
Jump – Out of phase condition

A further prediction with twice as large mass imbalances 

should reveal if the absence of the subsynchronous whirl 

motions persists within the high speed range operation. Figure 

13 depicts the existence of a single subsynchronous whirl 

frequency with moderate amplitude, while Figure 14 shows 

the amplitude of total motion as synchronous for most of the 

operating speed range. Increasing the imbalance mass 

ameliorates the effects of the nonlinearities, and in essence 

produces a RBS response free of sub harmonic whirl over a 

wide range of rotor speeds. Alas this observation can not be 

generalized for turbocharger RBS. Nonetheless, it is well 

known that large imbalances effectively suppress lubricated 

bearing self-excited instabilities [28].  

Fig. 12 Predicted TC total shaft motion (pk-pk) amplitude 
at compressor end during rotor acceleration (500 Hz/s) 
and deceleration (-500 Hz/s). Operation with turbine out-
of-phase imbalance condition 

Fig. 13 Predicted subsynchronous whirl frequency and 
amplitude of motion versus rotor speed. Rotor 
acceleration = 500Hz/s  Operation with turbine out-of-
phase imbalance; twice amount of imbalance in all planes 

Fig. 14 Predicted TC total shaft motion (pk-pk) amplitude 
at compressor end during rotor acceleration (500 Hz/s) 
and deceleration (-500 Hz/s). Operation with turbine out-
of-phase imbalance; twice amount of imbalance in all 
planes



    Incidentally, to the authors’ knowledge, (proprietary) test 

data also evidences the suppression of high amplitude whirl 

motions for operation with larger imbalances. Needless to say, 

operation without any whirl frequency generates little noise.   

CONCLUSIONS 
Rotor-bearing system motions in engine oil lubricated 

turbochargers (TCs) are extraordinarily complex. Typically, 

not just one but various subsynchronous whirl frequency 

motions, typically of large amplitude, appear at distinct shaft 

speeds. These motions are a result of the nonlinearity and 

hydrodynamic instability of either the inner film, or the outer 

film, or both films in the compressor side bearing and/or the 

turbine side bearing. At a certain threshold rotor speed ( b), 

certain operating conditions cause a jump in whirl frequency 

and its associated rotor motions. Both whirl frequencies are 

subsynchronous; the lowest is associated to a conical rotor 

motion mode shape; while the second, at a higher frequency, 

is related to a rotor cylindrical-bending mode shape. When 

the whirl frequency jumps, the rotor deflected mode of 

motion changes drastically thus generating more noise level 

in automotive TCs.  

In an effort to improve TC dynamic forced performance 

by reducing noise levels, nonlinear rotordynamic predictions 

are obtained for a small TC supported on a semi-floating ring 

bearing (SFRB). The TC unit operates to a very high speed, 

max. 240 krpm (4 kHz), and due to is small size and inertia, 

can accelerate or decelerate very fast, max. 1 kHz/s. 

Variations in oil supply conditions (pressure and temperature), 

operation with increasing shaft rotation acceleration or 

deceleration, as well as a number of mass imbalance 

configurations, determine distinct rotor motions that evidence 

the jumps in whirl frequency at different threshold rotational 

speeds while the TC rotor accelerates. Most notably, there is a 

pronounced hysteresis phenomenon, since as the rotor 

decelerates from its max. speed, the threshold speed for the 

jump in whirl frequency is markedly distinct than when the 

rotor accelerates. Operation with the fastest rotor acceleration 

(deceleration) rate, at 1 kHz/s, produces the strongest 

hysteresis.   

At low shaft speeds (< 100 krpm) and at high speeds (> 

200 krpm), predicted rotor whirl motions, sub harmonic in 

character, are similar in both frequency and amplitude 

content, for most considered operating conditions, with one 

exception. A rotor imbalance distribution known as turbine 

back plane-out-of-phase produces stable rotor motions, free of 

subsynchronous whirl, while operating at high shaft speeds. 

For the various operating conditions, differences in rotor 

motion response, amplitudes and frequency content, are most 

apparent in the shaft speed range 100 krpm to 200 krpm, 

which encloses the threshold speed b, hence revealing the 

jump frequency phenomenon.  

Relative to operation at nominal conditions (4 bar supply 

pressure and 30 C inlet oil temperature, and 500 Hz/s ramp 

speed rate), predictions show that reducing the oil supply 

pressure, and to a lesser extent increasing the oil inlet 

temperature, brings the whirl frequency jump to occur at a 

lower threshold speed ( b). Hence, TC operation becomes 

noisier5 for operation at higher shaft speeds, > b.

In most cases, at the rotor speed b where a whirl 

frequency jumps there is an internal resonance between the 

two whirl frequencies, 1 and 2. That is the ratio 1 / 2 is a 

rational number. At the threshold speed there are also 

combined resonances, i.e. A 1 +B 2 = b, combinations of 

low integers (A, B=1,2,3) of the whirl frequencies add to the 

shaft speed. The internal resonances are the same during rotor 

acceleration and deceleration. The internal and combined 

resonances are responsible for energy exchanges between the 

rotor modes of motion in a nonlinear system.  

The rotor mass imbalance distribution affects the rotor 

whirl motions -amplitude and frequency; and hence, the shaft 

speed where a whirl frequency jumps and the internal 

resonances between the whirl frequencies. In addition, 

imbalance distribution also affects the degree of hysteresis in 

the RBS nonlinear response.  One particular configuration, 

turbine back plane-out-of-phase produces stable rotor 

motions, not exacerbated by inducing larger imbalances. 

The nonlinear predictions agree (qualitatively) well with 

test data reported in the literature. See Ref. [21] for TC 

motion predictions and discussion related to other mass 

imbalance distributions as well as for changes in bearing 

length. The aim in Ref. [21] is to assess the imbalance 

condition that results in the smallest amplitudes of rotor 

motion and without excitation of subsynchronous whirl 

motions.  
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