

TURBOMACHINERY & PUMP SYMPOSIA

AM | TEXAS A&M

TURBOMACHINERY LABORATORY

**FLOW RATE ON THE** STATIC AND **DYNAMIC PERFORMANCE OF A TILTING PAD JOURNAL BEARING RUNNING IN BOTH FLOODED AND EVACUATED CONDITIONS** 

**EFFECT OF REDUCED** 

**Funded by Turbomachinery Research Consortium** 

### **Presenter/Author Bios**



Andy Alcantar BS Mechanical Engineering

MS student at Turbomachinery Lab Aggie Class 2019

### Luis San Andres

**Mast-Childs Chair Professor** 

Fellow of ASME, STLE and GPPS PhD Mechanical Engineering Aggie Class 1985



J. MIKE WALKER '66 DEPARTMENT OF MECHANICAL ENGINEERING TEXAS A&M UNIVERSITY

TURBOMACHINERY PUMP Symposia

## Abstract

#### EFFECT OF REDUCED FLOW RATE ON THE STATIC AND DYNAMIC PERFORMANCE OF A TILTING PAD JOURNAL BEARING: FLOODED AND EVACUATED

The lecture presents measurements of the static and dynamic load performance in a tilting pad journal bearing running under flooded and evacuated conditions, and lubricated with flow rates ranging from a nominal rate to over flooded (150% nominal), and then to a starved flow (25% or lesser of nominal). A reduction in flow rate makes both bearings operate more eccentrically. The evacuated bearing operates at a larger eccentricity, which for the lowest flow rate (25% or so of nominal) does not align with the direction of the applied load, hence displaying a sizable attitude angle. Pad temperatures are similar for both bearing configurations, although the evacuated bearing is colder by a few Celsius degrees; and its oil exit temperature is much lower, in particular for an over flooded condition. Drag power losses derived from the oil exit temperatures show the evacuated bearing produces up to 40+% lesser power loss. The bearings direct stiffnesses increase with load and show little dependency on shaft speed. Direct damping coefficients reduce in magnitude as the supplied flowrate decreases. For sufficiently small flow rates, operation at 6 krpm and under a low load (0.345 MPa) produced SSV Hash.

# **Control of flow in bearings**

More cost and energy efficient bearings demand reduced flow rates and acceptance of hotter pad temperatures. Lesser flow reduces equipment footprint and cost.

how low is a low flow rate enough to maintain reliability (and energy efficient) TPJB operation ?



### **Prior art** – not exhaustive



Flow reduction shows savings in drag power and increased oil and pad temperatures with magnitudes depending on specifics of application.

# Objective

Obtain experimental data for flooded & evacuated bearings with flow rate from 150% to 25% of nominal.



- Quantify the effect of flowrate on TPJB performance:
  - Load capacity and drag power
  - Pad metal temperatures
  - Force coefficients (K, C, M)

# Test Rig



#### Industrial test rig for oil-lubricated bearing



# Test Rig

# nsert Video (480p)

TURBOMACHINERY & PUMP SYMPOSIA

## **Test Rig Features**



| ITEM NO. | PART NO.               |
|----------|------------------------|
| 1        | Test-rig pedestal      |
| 2        | Hydraulic shaker       |
| 3        | Air turbine motor      |
| 4        | Test rotor             |
| 5        | Bearing stator         |
| 6        | Endcaps                |
| 7        | Collection chambers    |
| 8        | Static loader yoke     |
| 9        | Bed plate              |
| 10       | Pitch stabilizer bolts |
| 11       | Bellow coupling        |
| 12       | Torque meter (rotor)   |
| 13       | Torque meter (stator)  |
| 14       | Torque limiter         |
|          |                        |



#### **Test-Rig Capability**

| Max. rotor speed          | 16 kRPM        |  |
|---------------------------|----------------|--|
| Max. applied static load  | 20 kN          |  |
| Max. measurable torque    | 100 Nm         |  |
| Max. supply oil flow rate | ~20 GPM        |  |
| Available shaft OD sizes  | 3.5", 4", 4.5" |  |
| Max. bearing length       | 3.5"           |  |

Strain gage torque meter & coupling directly measures drag torque.

# Floating bearing on rigid rotor.

# **Test Rig Load Devices**





Hydraulic Actuator



- Pneumatic cylinder applies static load.
- Pair of hydraulic actuators deliver dynamic loads via stingers.

# Test Bearing







# Test bearing – load between pads



| Load, W        | 2.13, 6.40, 12.8 k | N.     |
|----------------|--------------------|--------|
| Specific Load, | 345, 1,034,        | 23     |
| W/(LD)         | 2,068 kPa →        | 303 ps |

| L/D                         | 0.6                      |       |
|-----------------------------|--------------------------|-------|
| Shaft diameter              | 4.0 in (101 mm)          |       |
| Length                      | 2.4 in (61 mm)           |       |
| B radial cold clearance     | 4.50 mil (0.115 mm)      |       |
| Hot clearance (6 & 12 krpm) | 4.20 mil (0.106 mm)      |       |
| Design pad preload          | 0.3                      |       |
| Spherical Pivot Offset      | 0.5                      |       |
| Pad Arc Length (°)          | 72°                      |       |
| AISI 1018 Pad Thickness     | 0.75 in                  |       |
| Pad surface                 | Babbitt                  |       |
| Configuration               | Flooded (with end seals) |       |
|                             | Evacuated (no end so     | eals) |

#### ISO VG 46 oil at 60C 16.4 cPoise & 837 kg/m<sup>3</sup>

# **Flooded bearing configuration**



# **Evacuated bearing configuration**





Spray bar 5 mm from pad edge

#### End plates guide pads

**Five orifices** diameter =5/64 inch (2 mm)

# **Flooded Bearing**



End Seals accumulate oil in groove between pads – more churning losses and excess oil can cool pads.

## **Evacuated Bearing**

No accumulation of oil in between pads – less churning losses and lesser heat convection to cool back of pads.



## **Oil supplied flow rate - theory**

#### flow rate ~ shaft speed

VARY Flow from 150% → 100% (nominal) → 20% or less (if safe)

 $Q = N_p \frac{1}{2} (\frac{1}{2} \Omega D) L C_r (1 - \lambda)$ 60 12 KRPM 50 100 ° 6 FIOW 150% Flow Rate (LPM) 05 05 05 06 05 6 KRPM  $N_p$  = number of pads o Nominal  $\Omega$  = shaft speed (rad/s) 50 % Flow D =shaft diameter (m) L = bearing axial length (m)25 % Flow  $C_r$  = bearing radial clearance (m) 25%  $\lambda$  = Oil mixing carry over coefficient. 0 16 32 80 96 48 64 0

Low  $\rightarrow$  rotor speed (krpm)  $\rightarrow$  High

~ 28.8 LPM

Rotor Surface Speed (m/s)

#### Tests at two shaft speeds 1. 6 krpm (32 m/s) ~ 14.4 LPM

2. 12 krpm (64 m/s surface speed)

# 6 & 12 krpm

# Test Results



#### Load between pads (LBP)

Specific Load, W/(LD)

345, 1,034, 2,068 kPa

Flooded (with end seals)

**Evacuated (no end seals)** 

**ISO VG46** inlet T = 60C

# Eccentricity vs. speed vs. flow



## Journal locus vs. speed vs. flow



# Eccentricity vs. speed vs. flow



Eccentricity is nearly parallel to load direction and increases with load. Flooded bearing shows smaller eccentricity.

Journal eccentricity increases slightly as flow rate decreases → small impact on film thickness. Note side displacement as flow reduces.

## Test bearing – thermocouples



#### Maximum (Loaded) pad temperature rise



#### Maximum (unloaded) pad temperature rise



### **Oil exit temperature rise**



25

### Maximum (Loaded) pad temperature rise



Evacuated B shows slightly larger pad temperatures (5 C) but much colder oil exit temperatures.

Oil exit temperature increases quickly as flow rate decreases. More pronounced effect in Flooded B.

6 krpm

## **Drag power loss**



# Force Coefficients

Load between pads (LBP)

Shaft speed

6 & 12 krpm Specific Load, W/(LD) 345, 1,034, 2,068 kPa

Flooded (with end seals) **Evacuated (no end seals)** 

**ISO VG46** inlet T = 60C



## **Dynamic load excitations**



### **Bearing parameter identification**

#### Step 1: Apply loads and measure bearings motion

Apply forces with shakers  $\rightarrow$  pseudo-random frequency

$$\mathbf{F}^{1} = \operatorname{Re}\left(\begin{bmatrix} F_{X}^{1} \\ 0 \end{bmatrix} e^{i\omega t}\right)$$



$$\mathbf{F}^2 = \operatorname{Re}\left(\begin{bmatrix}0\\F_Y^2\end{bmatrix}e^{i\omega t}\right)$$



ω is a set of frequencies =(1, 2, 3,..., 17) x 9.77 Hz.

**Record bearing displacement z and acceleration a** 

$$\mathbf{z}^{1} = \begin{bmatrix} x_{(t)}^{1} \\ y_{(t)}^{1} \end{bmatrix} = \begin{bmatrix} X^{1} \\ Y^{1} \end{bmatrix} e^{i\omega t} \qquad \mathbf{a}^{1}$$

$$\mathbf{z}^{2} = \begin{bmatrix} x_{(t)}^{2} \\ y_{(t)}^{2} \end{bmatrix} = \begin{bmatrix} X^{2} \\ Y^{2} \end{bmatrix} e^{i\omega t}$$

**EOM: Frequency domain** 

$$[\mathbf{K} + i\omega\mathbf{C} - \omega^2\mathbf{M}]\overline{\mathbf{z}} = \overline{\mathbf{F}} - M_s\overline{\mathbf{a}}$$

**Find parameters:** 

$$\rightarrow \mathbf{H} = \mathbf{K} - \omega^2 \mathbf{M} + i\omega \mathbf{C}$$

 $\mathbf{a}^2$ 

### **Estimations of complex stiffnesses**

#### **Step 2: Estimate dry structure parameters**

**NO lubricant** 

$$[\mathbf{K}_{s} - \omega^{2}\mathbf{M}_{s} + i\omega\mathbf{C}_{s}]\overline{\mathbf{z}} = \overline{\mathbf{F}} \qquad \rightarrow \mathbf{H}_{s} = \mathbf{K}_{s} - \omega^{2}\mathbf{M}_{s} + i\omega\mathbf{C}_{s}$$

#### Step 3: Bearing force coefficients = Lubricated system – Dry system



# Real & imaginary parts of bearing complex stiffnesses



$$\rightarrow \mathbf{H} = \mathbf{H}_{R} + i \mathbf{H}_{I} = \begin{bmatrix} H_{xx} & H_{xy} \\ H_{yx} & H_{yy} \end{bmatrix}$$



## Real (H<sub>yy</sub>) vs. frequency at 12 krpm & 2 loads



Small change with frequency, except for lowest load and lowest flow (25%) with <u>evacuated bearing</u>

Χ

## Real (H<sub>xx</sub>) vs. frequency at 12 krpm & 2 loads



#### *H<sub>xx</sub> < H<sub>yy</sub>*. Small change with frequency,

X

## Ima (H<sub>vv</sub>) vs. frequency at 12 krpm & 2 loads



H<sub>yy</sub> proportional to frequency → viscous damping to 150 Hz

o a d

Χ

#### **Evacuated bearing: odd data for lowest** load and lowest flow (25%) – starved!

## Ima (H<sub>xx</sub>) vs. frequency at 12 krpm & 2 loads



 $H_{xx} < H_{yy}$ . Mostly proportional to frequency  $\rightarrow$  viscous damping

# **Curve fits of complex stiffnesses**



# Stiffness coefficients K



#### **Flooded Bearing**



 $K_{yy}$  is mainly a function of load. For largest load:  $K_{yy}$  (flooded) >  $K_{yy}$  (evacuated)



At largest load,  $K_{XX}$  decreases compared to  $K_{YY}$ . Evacuated B has slightly lesser stiffness.

 $\mathbf{H} \to \left[\mathbf{K} - \omega^2 \mathbf{M}\right] + i(\omega \mathbf{C})$ 

# Damping coefficients C



**C**<sub>yy</sub> decreases as flow rate drops. <u>At 6 krpm</u>: Evacuated B shows large drop in damping for lowest flow.



Evacuated B produces lesser direct damping & w/o + reduction as flow decreases (except at 12 krpm).

 $\mathbf{H} \to \left[\mathbf{K} - \boldsymbol{\omega} \mathbf{M}\right] + i(\boldsymbol{\omega} \mathbf{C})$ 

# Virtual mass coefficients M

## **M<sub>xx</sub> Virtual mass coefficients**



Virtual masses are same size as bearing cartridge mass. However, effect of (-M $\omega^2$ ) on dynamic stiffness is small.

# Subsynchronous shaft vibrations

Typical in evacuated bearings operating with low flow (starved) and under a low load.

TURBOMACHINERY & PUMP SYMPOSIA

## **Evacuated bearing at 6 krpm**



## Flooded bearing 6.5 krpm

#### 6.5 kRPM, 345 kPa (50 psi) load, 0.36 LPM (4%)



SSV hash appeared for operation with very-very low flow rates (& a small load).

SSV "breathed in" and needed to be excited.

# CONCLUSION



#### EFFECT OF REDUCED FLOW RATE ON TILTING PAD BEARING PERFORMANCE: FLOODED ENDS vs EVACUATED ENDS



# Conclusion

#### 2021 TPS

#### Flow reduction results in:

- Reduced drag power loss (more for evacuated B)
- Increased pad metal temperatures. The efficiency gains depend on the bearing configuration and the acceptance criteria for increased pad temperatures.
- Flow has minor effect on bearing stiffness; damping reduces moderately as flow reduces.
- SSV did emerge under very low flow/light load operating conditions, but w/o excessive amplitudes or becoming unstable. Evacuated bearing more sensitive to SSV has when flow rate decreased below 32 % nominal.

## **Acknowledgments**

#### **TPS 2021**





TURBOMACHINERY LABORATORY TEXAS A&M ENGINEERING EXPERIMENT STATION

Thanks to Mr. Jon Toner and Mr. John Whalen









### **Experimental Results - Low Flow Limit Tests**

#### Reducing flow rate reduces power consumption. Yet How low is too low?

The minimum flow is application specific but must prevent too large pad/film temperatures to avoid:

- Babbitt failure
- Varnishing of pads or (long term) degradation of oil
- Collapse of load capacity with excessive reduction in stiffness and damping coefficients





#### Recall nominal flow rate at 6 krpm: ~ 14.4 LPM

## **Results of Low Flow Limit Tests**

Low flow limit found by reducing oil flowrate at a constant rotor speed and applied load until:

- 1) Pad Temperature exceeds 121C (250F) or
- **2) SSV vibration appears**

3) Inlet temperature below target 60°C and/or annulus temperatures not uniform  $\rightarrow$  Cannot maintain control flowrate and/or oil inlet temperature)

| Limit of Low Oil Supply           |          |               |       |  |  |
|-----------------------------------|----------|---------------|-------|--|--|
|                                   | Load     | Flow          | Limit |  |  |
|                                   | 345 kPa  | 2% (0.36 LPM) | 3     |  |  |
| 6 kRPM (32 m/s)                   | 1034 kPa | 10% (1.4 LPM) | 3     |  |  |
| Flow=14.4 LPM                     | 2068 kPa | 5% (1 LPM)    | 1     |  |  |
|                                   | 345 kPa  | 15% (4.3 LPM) | SSV   |  |  |
| 12 kRPM (64 m/s)<br>Flow=28.8 LPM | 1034 kPa | 15% (4.3 LPM) | 0     |  |  |
|                                   | 2068 kPa | 23% (6.8 LPM) | 1     |  |  |