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A METHOD FOR IDENTIFICATION OF FORCE COEFFICIENTS IN FLEXIBLE
ROTOR-BEARING SYSTEMS

Executive Summary
Field identification of bearing support parameters is important for adequate

interpretation of rotating machinery performance and necessary to calibrate predictions
from restrictive physical models. Field identification is also promising for condition
monitoring and troubleshooting, and in the near future for self-adapting rotor-bearing
systems.

A simple method for estimation of (bearing) support force coefficients in flexible
rotor-bearing systems is detailed. The method requires of two independent tests with
known mass imbalance distributions and the measurement of the rotor motion (amplitude
and phase) at locations close to the supports. The procedure relies on the modeling of the
rotor structure and finds the bearing transmitted forces as a function of observable
quantities. Solving a simple set of algebraic equations identifies synchronous stiffness
and damping force coefficients. Numerical simulations demonstrate perfect parameter
identification for a model rotor-bearing system.

Imbalance response measurements conducted with a two-disk flexible rotor supported
on two-lobe fluid film bearings allow validation of the identification method estimations.
Predicted (linearized) bearing force coefficients agree reasonably well with the
parameters derived from the test data. Note that the rotor motions at the support locations
are of large magnitude, close to the fluid film bearing radial clearance. Thus, the
estimated test coefficients do not correspond with conventional linearized force
coefficients.

The method advanced does not add mathematical complexity nor requires of
additional instrumentation than that already available in most high performance
turbomachinery.
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Nomenclature

D, Lb, cb, rp Two lobe bearing length, diameter, clearance and preload [m].
Cαβ,  Kαβ, Bearing support damping and stiffness coefficients [N/m, Ns/m] αβ=x,y
Fx, Fy , Mβx, Mβy Lateral forces [N] and moments [Nm] at rotor stations
(m, u, φ ) Imbalance mass [kg], radius [m], and phase angle [rads]
(x,y), ( yx ββ , ). Rotor displacements [m] and rotations [rads] at each station
Ne, Ns Number of elements and stations in rotor
t Time [s]
µ Lubricant viscosity [Pa-s]
Ω Rotor speed [rad/s]
ω Excitation frequency [rad/s]

Vectors/matrices
fB Rotor forces [N] at support locations
HB Bearing support impedance matrix [N/m]
HR Rotor impedance (dynamic stiffness) matrix [N/m]
HRab  a,b=1,2,3 Partitions of rotor impedance matrix HR [N/m]
Me, Ke, Ge Rotor element mass, stiffness and gyroscopic matrices
M, KR, G Global (rotor) mass, stiffness and gyroscopic matrices
Q, q Vectors of generalized forces and rotor displacements.
zB (x,y) complex rotor displacements at supports
zu Complex rotor displacements

Subindices
B1, B2 Bearings supports, 1 and 2
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Introduction
Experimental identification of fluid film bearing parameters is critical for adequate

interpretation of rotating machinery performance and necessary to validate or calibrate
predictions from restrictive computational fluid film bearing models. Parameter
identification in the field is also promising for condition monitoring and troubleshooting,
and in the near future for self-adapting rotor-bearing control systems.

De Santiago and San Andrés [1] describe a method suitable for field implementation
that allows identification of synchronous bearing support parameters (force coefficients)
from recorded rotor responses to known imbalances. The experimental validation is
conducted on a test rotor supported on two dissimilar bearing supports, both
mechanically complex, each comprising a hydrodynamic film bearing in series with a
squeeze film damper and elastic support structure.  The identification procedure requires
a minimum of two different imbalance distributions for identification of force
coefficients from the two bearing supports. The recorded rotor responses show minimal
cross-coupling effects, as also predicted by analysis, and the identification procedure
disregards cross-coupled force coefficients thereby reducing its sensitivity to small
variations in the measured response. The procedure renders reasonably accurate force
coefficients in the speed range between 1,500 and 3,500 rpm, enclosing the rotor-bearing
system first critical speed. The identified direct force coefficients are in accordance with
those derived from the impact load excitations presented in a companion paper [2].

De Santiago and San Andrés [2] also introduce a simple procedure, with potential as a
field resource, for identification of bearing support parameter from recorded transient
rotor responses due to impact loads. The method is applied to a test rotor supported on a
pair of mechanically complex bearing supports, each comprising a tilting pad bearing in
series with an integral squeeze film damper. Identification of frequency dependent
bearing force coefficients is good at a rotor speed of 2,000 rpm. Stiffness coefficients are
best identified in the low frequency range (below 25 Hz) while damping coefficients are
best determined in the vicinity of the first natural frequency (48 Hz) of the rotor bearing
system. The procedure shows that using multiple-impact frequency averaged rotor
responses reduces the variability in the identified parameters. The identification of
frequency-dependent force coefficients at a constant rotor speed is useful to assess rotor-
bearing system stability. Note that the procedures introduced in [1] and [2] are restricted
to a rigid rotor configuration.

De Santiago [3] reviews the literature relevant to bearing and rotor support force
parameters. In most cases, methods are restricted to the laboratory environment and
strictly applicable to rigid rotor configurations and identical bearing supports. Time and
frequency domain based parameter identification procedures are based on the seminal
works of Goodwin[4] and Nordmann [5] and consider the bearing or support as a two
degree of freedom system (x,y) with readily available (measured) support transmitted
forces and rotor displacements from which impedances (or mobilities) are obtained.
Curve fits to the appropriate transfer functions evidence the support parameters, stiffness
and damping.
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Actual rotating machinery often features bearing supports that are different on each
end of a rotor. Furthermore, nearly all rotors are flexible and not symmetrical, and the
bearings on both ends carry different static loads. In overhung rotors, the load differences
can be dramatic. Thus, bearing force coefficients differ largely between the drive and free
ends of a rotor (even in the case of identical bearings). Thus, it is necessary to extend the
previous methods by including the effect of rotor dynamics if in-situ identification is to
become viable (without means to measure transmitted forces through the bearings).

Ctiwari and Vyas [6] and Maslen et al. [7, 8] introduce complicated non-linear
iterative procedures to extract parameters in flexible rotor - bearing systems. These
procedures relying on rotor displacement measurements acknowledge the difficulties on
accurate and reliable measurements of transmitted loads at the bearings, for example, in
actual rotating machinery systems. This limitation may change in the near future with the
application of relatively inexpensive non-intrusive micro strain gauge & fiber optic smart
sensors for measurement of transmitted loads.

Lees et al [9] and Feng and Hahn [10, 11], on the other hand, forward simple direct
methods to identify rotor support (bearing and pedestal) force coefficients from running
machine data, i.e. response to synchronous imbalances. The procedures rely on a
reasonably good model of the rotor (elastic and mass properties) and accurate
measurements of the rotor response (amplitude and phase) at the locations of interest.
Parameter identification follows from estimations of the rotor forces at the supports, and
in conjunction with recorded synchronous filtered rotor responses. In general, the system
of equations generated by imbalance excitations tends to be ill conditioned; and most
experimental identifications show considerable scatter of estimated parameters [3, 4]. In
spite of the known limitations, this method continues to appeal as an in-situ identification
procedure since it does not require external load excitation and is ready for
implementation in instrumented rotor bearing systems (vibration sensor conditioned).

The key features of a successful method for ready field implementation are minimal
external equipment, little or no changes to existing hardware, and the use of measuring
instruments commonly used in machine protection and monitoring. The present
development extends the model introduced by de Santiago [3] to flexible rotor bearing
systems and advances a simple methodology to identify bearing or support (pedestal)
parameters from imbalance response measurements. A good rotor model (elastic and
mass properties) is mandatory to represent correctly the (non observable or not measured)
degrees of freedom. Two (known) linearly independent rotor imbalance distributions and
the measurement of the rotor motion near the bearing supports provides sufficient
information to accurately estimate synchronous bearing force coefficients (stiffness and
damping).



3

Equations of motion for flexible rotor – bearing supports
Figure 1 depicts the configuration of a flexible rotor supported on two bearings. The

rotor is partitioned into a number (Ne) of finite elements. Rotor motion coordinates at the
ends of each element (stations) are defined by lateral displacements (x,y) and rotations
( yx ββ , ). Indices B1 and B2 denote the stations location of the bearing supports.

In its most general form the equations of motion for a rotor-bearing system are [12]:

(t)QqKqGqCqM =+Ω−+ DDDD (1)

where M, C, G, and K are the global matrices of inertia, damping, gyroscopics and
stiffness coefficients, respectively. Q and q denote the vectors of generalized forces and
displacements and Ω represents the rotor speed.

Timoshenko beam finite element matrices [13, 14] are defined in terms of the rotor
elasto-massic properties. Appendix A details these matrices for each rotor finite element.
The global rotor mass, M, stiffness, KR, damping, CR, and gyroscopic moments, G,
matrices are assembled as
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The support stiffness KB and damping CB matrices contain the following (yet
undetermined) coefficients:



4

2,1; =







=








= i

iyyyx

xyxx

iyyyx

xyxx

CC
CC

KK
KK

iBiB CK (5)

The (bearing) support force coefficients are functions of the operating conditions
(rotor speed, static load magnitude and orientation), geometry (length, diameter,
clearance), and lubricant feed conditions and material properties in a thin film bearing.

KYY, CXX

rotor

bearing

Y

X

KXY, CXY

KYX, CYX

KXX
CYY

Figure 1   Schematic view of elastic rotor on flexible-damped (bearing) supports
and idealization of support force coefficients

Flexible rotor and
disks

Bearing support
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Consider periodic forced excitations with frequency (ω). Rotor imbalance is typical
with the frequency of excitation coinciding with rotor speed, i.e. ω=Ω. At rotor station
(s), an imbalance mass (m) at radius (u) generates lateral forces equal to
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In general, ti
u et ωQQ =)( , and the rotor response has the same frequency as the

excitation, i.e. ti
u et ωqq =)( . Then, the equations of motion (1) reduce to the algebraic

form:
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Procedure for identification of support force coefficients
The method to identify the support parameters, stiffness and damping, is based on the

measurement of the rotor displacements due to known imbalances at locations near to the
supports. The imbalance distribution (m, u, φ )a=1..k determines the displacements at the
bearings supports
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where { }sc xx ,  are the displacements related to the harmonic functions cos(ω t) and sin(ω
t), respectively.

The algebraic system of equations (7) is reordered to bring the recorded support
motions (

21 BB z,z ) into the upper rows, 1 through 4. Matrix permutation operations, i.e.
exchange of rows and columns, lead to the following set of equations
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where

[ ]GCMKH RRRR Ωωω ω2
),( ii −+−=Ωω  (10)

is the dynamic rotor stiffness matrix (over bars denote the reordered matrix),  and

222111 BBBBBB CKH;CKH ωω ii +=+= (11)
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represent the supports impedance matrices. The generalized load vector Qu is known
from the imbalance distribution, while the vector zu represents the vector of unknown
rotor displacements. These rotor displacements are not observable or measured, i.e. at the
stations not coinciding with the bearing supports.

The rotor impedance (dynamic stiffness) matrix HR, depending on both excitation
frequency (ω) and rotor speed (Ω), is partitioned into the following six submatrices
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For example, T
R12R21 HH ≠ , due to the gyroscopic and viscous damping effects in the

rotor. Substitution of (12) into equation (9) gives
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The support motions (
21 BB z,z ) and the load vector { }uQ  are known. Thus, from the

third of equations [13], the (internal) rotor displacements zu are:

{ }
21 BR32BR31u

1
R33u zHzHQHz −−= − (14)

Now, define the following generalized rotor forces at the bearing locations

uR23BR22BR21B

uR13BR12BR11B

zHzHzHf
zHzHzHf

21

211

++=−

++=−

2

(15)

and write the first two equations in (13) as

222111 BBBBBB fzH;fzH == (16)

Each of these equations represent two algebraic equations (x,y). However, the number
of (complex) bearing parameters is four at each support location. Two (known) mass
imbalances at selected rotor positions will produce two rotor responses. These imbalances
must be linearly independent, as defined in (2). The imbalance distributions
( )[ ] 2,1,, =jkum φ  produce the support displacements { } { }

22122111 BBBB z,zz,z and, , and
corresponding reaction forces { } { }

22122111 BBBB f,f,f,f and .
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Hence, the equations for each support impedance become

[ ] [ ] [ ] [ ]
222122212121112111 BBBBBBBBBB ffzzH;ffzzH == (17)

, and the support impedance coefficients are determined by solving
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for bearing support 1. A similar equation arises for bearing 2.

A further simplification follows in the case when both bearing supports provide
identical force coefficients, i.e. HB1=HB2. This case results when both bearings have the
same geometry, including film clearance, lubricant properties, and support the same static
load. Adding equations (17) leads to the following identification equation

  [ ] [ ] 1
BBBBBBBBBB 221221112212211121

zzzzffffHH −++++== (19)

Note that the reliable support parameter identification depends on the accuracy of the
rotor mass imbalance distribution and the measurement of the rotor response at locations
near to the bearing supports. De Santiago [3] details the do’s and don’ts for appropriate
identification, including a discussion of on the signal amplitude/noise ratio, the matrix
conditioning assuring proper inverse calculations, etc.

A computer program in MATHCAD® was created to model the rotor and bearing
supports, to calculate free-free and pin-pin mode rotor natural frequencies, and to predict
the imbalance response for varying rotor speeds. A second program collects the rotor
model information and the (predicted or measured) imbalance responses at the bearing
supports and proceeds to identify the support coefficients over a range of rotor speeds.
The MATHCAD software imbalance response predictions are verified against XLTRC2

model and response predictions.

A description of the test rig used for measurement of imbalance response from a
flexible rotor supported on two identical cylindrical fluid film bearings follows. De
Santiago [3] conducted the measurements and reported bearing force coefficients using a
simpler lumped parameter flexible rotor model. The following section is reproduced with
permission from [3].
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Description of test rig
The test rig used for identification of bearing force coefficients from imbalance

response measurements comprises a two-disk steel rotor supported on a pair of two-lobe
journal bearings, as shown in Figure 2. Aluminum housings accommodate the test
bearings and are bolted to a 50.4 mm (2 in) thick aluminum table. A 0.74 kW (1 HP), DC
motor provides power to the shaft through a multiplier belt and pulley mechanism, and is
able to drive the rotor up to 8,000 rpm. An electronic controller built-in to the rig allows
for speed and torque control. A hinged plate covering the test rotor and bearing housings
provides safety during the rig operation. The rig is bolted to a steel plate laying on
padding material for isolation from the laboratory floor.

The test rotor consists of a shaft, 25.4 mm (1.0 in) of main diameter and 640 mm
(25.2 in) long, with a bearing span of 532 mm (20.95 in). Figure 3 details the rotor
geometry and Table 1 summarizes the rotor main dimensions and measured inertia
properties. The shaft has three annular inserts mounted along the shaft within the bearing
span. Massive disks can be fitted onto the annular inserts rendering different rotor
configurations. For the experiments herein presented, the rotor features two disks
attached to the shaft, 280 mm (11.0 in) apart from each other and centered in the bearing
span. The shaft has rectified surfaces at the bearing locations and a notched groove at one
end where a flexible coupling drives the shaft.

Drive motor

Test rotor

Oil tank

Return lines

Main supply line

Rig base plate Isolating material

Bearing pedestal

532 mm

Main aluminum base plate

Figure 2  Test rig for imbalance response  of flexible
rotor supported on fluid film bearings

Pulley drive box
Disk

φ

165
mm
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Table 1. Summary of test rotor geometry and inertia properties for imbalance
response measurements

Units ISO English
Rotor mass 11.8 kg 26.0 lb
Rotor total transverse moment of inertia (IT) 0.234 kg-m2 800 lb-in2

Rotor total polar inertia (IP) 0.030 kg-m2 102 lb-in2

mm in
Shaft diameter 25.4 1.00
Shaft diameter at bearing locations 25.4 1.00
Total length 640.0 25.20
Bearing span 532.0 20.94
Rotor cg location from left end 342.0 13.46
Distances from cg to bearing locations (l1,l2) 263 269 10.4 10.6
Distances from cg to planes of unbalance
excitation (d1,d2)

137 143 5.39 5.63

Radii of unbalance locations (r1,r2) 70.0 70.0 2.76 2.76
Distances from cg to location of proximity probes
(s1,s2)

302 308 11.9 12.1

The rotor steel disks have a diameter equal to 165 mm (6.50 in). Each disk has an
axial length of 31.9 mm (1.26 in) and weighs 3.86 kg (8.5 lb). There are 24 equally

Figure 7. Test rotor for experiments on bearing parameter identification from
imbalance response measurements. (Rig shown in Figure 2).

640

342

280

532

Units:
mm

205

78.7 φ 25.4

Figure 3 Flexible rotor for bearing parameter identification from imbalance
response measurements
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spaced threaded holes in each disk for attachment of imbalance weights at a radius of
69.9 mm (2.75 in). The disks are attached to the shaft by means of clamping through-
bolts and semi-circular lateral plates. The shaft (press-fitted) annular inserts provide
support for the removable disks and locate them axially.

The bearing housings are split in the horizontal plane at the bearing centerline, and
have a circumferential groove for radial oil delivery to the bearings. Split lateral covers
made of aluminum provide an enclosure to avoid spills and incorporate grooves for
custom stopper seals. The lubricant enters the bearings radially through slots in the
partition, passes through the film lands; then falls to the bottom of the bearing housings to
finally return to the main tank by gravity through the return ducts.

The rotor supports are identical, namely two-lobe, lightly preloaded, fluid film
cylindrical bearings, as shown in Figure 4. Table 2 sums the bearing dimensions and
operating clearance, and the lubricant material properties. The bearing back material is
bronze and the liner material facing the shaft is soft babbitt metal. The free end bearing
features a pair of thrust collars integral to the radial bearing. Examination of the bearings’
babitted surfaces shows uneven wear that occurred in prior experiments when the
bearings operated with pressurized air as the working fluid. Wear makes it difficult to
precisely determine the original preload of the bearing lobes. Thus, a small nominal value
of 0.05 (dimensionless) preload is used in the predictions of the bearing (linearized) force
coefficients.

The lubrication system consists of a 25-lt (6.6 gal) oil tank, a submerged gear pump,
pressure control valves and ducts. The oil tank is built integral with the test rig and is
located at its lowest level. The gear pump delivers the lubricant (ISO VG 10 turbine oil)
to the bearing housings at a supply pressure of 60 kPa (10 psig). Rigid pipelines conduct
the lubricant to the bearing pedestals and a pressure gauge indicates the main inlet
pressure. Lubricant temperature in the tank is measured with a handheld thermometer and
recorded at the beginning and at the end of each test.

28.6

φ

79.
3

φ 25.4

Figure 3. Two-lobed, cylindrical fluid film hydrodynamic journal bearings
for parameter identification experiments. (Test rig shown in Figure 2).

Units:
mm

Bearing radial clearance (cb) = 0.089 mm
Lobe dimensionless preload (rp) = 0.05

Figure 4. Two-lobe fluid film hydrodynamic bearings supporting test rotor
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.
Table 2. Two-lobe bearings main dimensions and operating conditions

Bearing nominal diameter (D) 25.4 mm 1.000 in
Bearing axial length (Lb) 28.6 mm 1.126 in
Bearing radial clearance (cb) 0.089 mm 3.5 mils
Estimated pad preload (rp) 0.05 (dimensionless)

Average inlet lubricant viscosity (µ) 15.76 cP at 24.4° C (76° F)

Operating speed range: 0-4,000 rpm

Static load
Drive end bearing 57.9 N 13.0 lb  (11.55 psi - specific load)
Free end bearing 57.9 N 13.0 lb  (11.55 psi - specific load)

Measurements of the test rotor displacements are taken with two pairs of eddy current
sensors located very close to the bearing centerlines. The bearing housings have threaded
holes for installation of the sensors in two orthogonal directions, and located at 45° away
from the vertical line, as shown in Figure 5. An additional eddy-current sensor aligned
with the vertical direction and facing the rotor shaft (downwards) provides a reference
signal for measurement of the phase angle and rotor speed.

39 mm
y

x

45°

Inboard

Bearing centerline

Figure 8. Bearing housing and location of proximity probes for measurement of
rotor response to imbalance. (Rig shown in Figure 2).

Direction of
rotation

Figure 5  Bearing housing and disposition of eddy-current sensors for
measurement of rotor response.
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Vibration signals from the eddy current sensors connect directly into a commercial
data acquisition system for industrial machinery monitoring and diagnostic (ADRE®
DAQ system). A PC hosts the acquisition system and runs the signal processing and
analysis software. A two-channel dynamic signal analyzer displays the frequency content
of the selected signals, and analog oscilloscopes display the unfiltered rotor orbits in real
time.

Test procedure for imbalance response measurements
The first procedure prior to conduct imbalance response measurements is rotor

balancing. Rotor balancing is important because it provides a baseline for measurement
of rotor response to calibrated imbalance masses. This is particularly important for
sensitive systems because large orbital motions of the rotor at the bearings might
compromise the estimation of linearized force coefficients. For the test rotors presented
above, a standard influence coefficient method for two-plane balancing substantially
reduces the original rotor synchronous response to satisfactory small levels of vibration.

Imbalance response tests consist of taking the rotor to a top speed and then coasting it
down by shutting off the power to the drive DC motor. Measurements of rotor response
are taken while the rotor coasts downs freely at a slow deceleration rate. The measured
synchronous vibration vector (amplitude and phase, Vm) at each speed is the sum of the
remnant imbalance vector (Vr), the dynamic rotor response to the calibrated imbalance
(V) and the shaft runout vector (also called slow-roll vector, Vs). Thus,

srm VVVV −−= at each rotor speed (Ω)

Shaft runout is represented as a constant vector (Vs) that acts in all tests and for the
entire speed range. If the remnant imbalance vector is not slow-roll compensated from
shaft runout, (this is, if srr VVV += ) then the true dynamic response to calibrated
imbalance is simply rm VVV −= . This last relationship does not require a priori
knowledge of the slow roll vector, and is the form used in the compensated responses
implemented for the identification of synchronous bearing support force coefficients.

Rotor model and predicted bearing force coefficients
Figure 6 depicts the test rotor modeled as a collection of nine finite elements. The

bearing support locations and planes of imbalance are noted. Note that the solid thin disks
are modeled as integral shaft elements, not as added local inertias. The calculated
fundamental rotor free-free mode natural frequency equals 200.5 Hz, agreeing well with a
measured magnitude of 198 Hz from rap tests on the rotor. The Figure displays the static
sag line due to the rotor weight and demonstrates the shaft flexibility. De Santiago [3]
reports an experimental pin-pin first natural frequency equal to 76.3 Hz, while the
predicted value is 78.5 Hz.
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The two lobe bearings are identical in geometry and share approximately the same
static load. Thus, the bearing force coefficients are similar. Table 3 shows the predicted
stiffness and damping force coefficients over a range of rotor speeds. XLTRC2

XLTFPBRG program, based on the analysis given in [15], is used to obtain the bearing
parameters.

Note that the predicted direct stiffness coefficients in directions (x) and (y) are
different. The magnitude of the stiffness in the vertical (y) direction is about twice the
magnitude of the stiffness in the (x) direction. Increased stiffness of the fluid film in the
direction of the lobe pad is typical of preloaded bearings and usually aims to increase the
threshold speed of instability. Cross-coupled stiffness coefficients are of opposite sign
over almost the entire speed range. Rotor speed affects greatly the damping force
coefficients. Note that the magnitude of the cross-coupled damping coefficients is of the
same order of magnitude as the direct damping coefficients in the (x) direction.

Figure 6  Rotor geometry and static deflection due to weight. Bearing
locations and imbalance planes noted
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Table 3.  Predicted bearing coefficients of two-lobe bearings versus rotor speed [3]

Speed Kxx Kxy Kyx Kyy Cxx Cxy Cyx Cyy
Rpm MN/m kN-s/m
400 1.11 -0.47 -3.02 5.55 17.05 -31.18 -31.13 131.1

1,000 1.10 0.03 -2.44 3.27 10.22 -11.69 -11.68 44.68
1,500 1.12 0.26 -2.32 2.74 7.98 -7.31 -7.30 28.96
2,000 1.14 0.47 -2.26 2.38 6.77 -5.15 -5.14 21.47
2,500 1.17 0.64 -2.27 2.24 6.07 -3.90 -3.89 17.54
2,750 1.18 0.73 -2.28 2.17 5.81 -3.45 -3.43 16.12
3,000 1.19 0.82 -2.29 2.11 5.61 -3.06 -3.05 14.97
3,250 1.20 0.91 -2.33 2.12 5.48 -2.73 -2.72 14.27
3,500 1.21 1.00 -2.37 2.13 5.37 -2.45 -2.43 13.66
3,750 1.23 1.09 -2.41 2.14 5.28 -2.20 -2.18 13.14
4,000 1.24 1.19 -2.45 2.15 5.20 -1.98 -1.97 12.68
4,250 1.25 1.28 -2.49 2.16 5.13 -1.79 -1.78 12.28
4,500 1.26 1.37 -2.53 2.17 5.06 -1.62 -1.60 11.92
4,750 1.27 1.47 -2.58 2.19 5.00 -1.47 -1.45 11.61
5,000 1.28 1.56 -2.63 2.23 4.94 -1.30 -1.28 11.39

Bearing radial clearance: 89 microns
Dimensionless preload: 0.05

Measurements of rotor imbalance are conducted for rotor speeds from 1,500 to 3,500
rpm, below the first critical speed of the rotor. Table 4 shows the mass imbalance
distributions used in the two tests. Note that these imbalances will produce linearly
independent rotor responses. Positive angles on the rotor are measured opposite to its
direction of rotation and from rotating reference (i.e. keyway in rotor or reflective pick-
up mark).

Table 4. Imbalance distributions on test rotor for parameter identification of
bearing force coefficients

Test 1 – station 3
Drive end disk

Test 2 – station 7
Free end disk

Imbalance 10.6 gram at 0° 10.6 gram at 0°

Drive end disk: radius r1 = 0.070 m, distance from rotor CG d1 = 0.139 m.
Free end disk: radius r2 = 0.070 m, distance from rotor CG d2 = 0.141 m.

Figure 7 shows the measured synchronous (slow roll and baseline compensated)
imbalance response at the bearing locations resulting from the imbalance masses attached
at the rotor disk locations. Note that the measured rotor responses are at different axial
planes from the bearing planes and at different radial planes, thus a suitable coordinate
transformation is required from the measurements to obtain the responses presented in the
figure1. Note also that the largest magnitudes of rotor dynamic response correspond to
more than 50% of the bearing radial clearance (0.089 mm) as the rotor approaches the
critical speed. The experimental responses show different amplitudes of vibration at the
                                                          
1 This certain limitation will be removed in later developments
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two bearing locations as a result of the uneven imbalance distribution. In fact, amplitudes
of motion at location 1 (drive end) are larger than the amplitudes of motion at location 2
(free end) because the drive end disk carries the imbalance mass.

Validation of parameter identification method using predicted rotor
responses

Before proceeding to identify the force coefficients using the test data it is pertinent to
validate the predictive model advanced in an earlier section. To this end, the predicted
bearing force coefficients (see Table 3) are integrated into the rotor model and imbalance
responses calculated for two sets of imbalances identical to those used in the
measurements. Figure 8 depicts the calculated rotor responses at the two bearing planes
(B1 and B2) over a speed range from 400 rpm to 5,000 rpm.

The predictions correlate favorably (amplitude and phase angle) with the measured
responses for the speed range to 3,500 rpm. The calculated rotor responses show the
approach and passage through a bending critical speed just above 3,500 rpm. Figures 9
and 10 show the predicted rotor deflected shapes for speeds equal to 2,000 and 4,000
rpm, respectively. Note that at 4,000 rpm the rotor deflections at midspan are nearly an
order of magnitude larger than at the bearing locations, thus demonstrating the rotor
flexibility. Even at a speed of 2,000 rpm, the rotor does show elastic deflections, and
therefore rotor flexibility needs to be accounted for in a predictive model to estimate the
bearing support force coefficients. Note that the measurements could not have been
conducted for speeds above the maximum noted (3,500 rpm) due to excessive vibration
amplitudes, potentially harmful to the structural integrity of the test rig.

In general, the predicted rotor motions at the bearing locations are somewhat larger
than the measured ones, in particular at the highest rotor speeds. Recall that the predicted
force coefficients are strictly valid for small amplitude motions around the static
equilibrium position, typically 10% to 20% of the bearing clearance. The measurements
and predictions show large amplitude motions. However, the experimental values are
smaller demonstrating that the bearing reaction forces are nonlinear in character.

 Equations (14) through (18) establish the algorithm for identification of support
parameters. These equations are easily programmed into the MATHCAD computational
tool to estimate the support force coefficients from two predicted imbalance responses,
see Figure 8. Figure 11 depicts the identified stiffness and damping force coefficients at
the bearing supports  (B1 and B2) versus rotor speed. The analytical force coefficients are
also shown in each graph. Note that the estimated force coefficients using the numerical
data, i.e. predicted rotor responses, are identical to the stiffness and damping coefficients
given in Table 3. Thus, the results demonstrate the accuracy of the identification method
advanced2. More importantly, however, the procedure also forwards identical force
coefficients for both bearing supports, as was known from the outset.

                                                          
2 The reliability of the procedure depends on the quality of the responses used which must show sufficiently
large amplitudes and accurate phase angle estimations. Incidentally, the choice of linearly independent
imbalance distributions is crucial to obtain reliable support force coefficients.
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Bearing force coefficients estimated from measured rotor responses
Figure 12 depicts the estimated bearing force coefficients, stiffness and damping,

obtained from the measured rotor imbalance responses, see Figure 7.  In the identification
procedure, the supports are assumed to be identical thus providing equal force
coefficients. Equation (19) in the analysis is used to estimate the bearing parameters. The
simplification improves the reliability of the estimations, obscured at times since the
phase angles may not have been accurately recorded.

The predicted bearing force coefficients agree reasonably well with the
(experimentally derived) estimated force coefficients from the measured imbalance
responses. Note that close agreement is not expected, in particular at the largest rotor
speeds, since the rotor motions at the bearing locations are large, with orbit amplitudes
spanning more than 50% of the available bearing clearance. The direct damping
coefficients (Cxx, Cyy) decrease in magnitude as the rotor speed increases, thus
anticipating the subsynchronous instability, well known for this type of rotor-bearing
configuration. The cross-coupled damping coefficients are negative and Cxy~ Cyx, in
particular at the largest shaft speed. The test cross-coupled stiffness coefficients (Kxy, Kyx)
and the direct stiffness (Kxx) agree best with the predictions. On the other hand, the other
direct stiffness coefficient (Kyy) is negative for most speeds, thus showing the influence of
fluid inertia, i.e. significant added mass coefficients that reduce the dynamic direct
stiffness of the test bearings.

Conclusions
This report presents a method for estimation of (bearing) support force coefficients in

flexible rotor-bearing systems. The research continues to advance practical and reliable
methods for identification of bearing support parameters in actual turbomachinery. The
current method requires of two independent tests (runs) with known mass imbalance
distributions on the rotor and the measurement of the rotor motion (amplitude and phase)
at locations close to the (bearing) supports. The procedure relies on the accurate model of
the rotor structure (stiffness and inertia matrices). The analysis takes the general
equations of rotor-bearing synchronous motion and reorders them to render the bearing
transmitted forces as a function of observable quantities; i.e. measurements at support
locations. Then, synchronous (bearing) support force coefficients, stiffness and damping,
are identified by solving a simple set of algebraic equations.

The present analysis extends the original work in [3] to flexible rotor-bearing
systems, does not add mathematical complexity nor requires of additional
instrumentation than that already available in most high performance turbomachinery.
The accuracy of the method is first evaluated with numerical data generated for a rotor-
bearing system emulating a laboratory test rig.  Imbalance response measurements
conducted with a two-disk flexible rotor supported on two-lobe fluid film bearings permit
to validate the identification method results. The correlation of predicted bearing
(linearized) force coefficients with the identified parameters is reasonable. Consider that
the measured rotor orbital motions at the bearings are of large amplitude, nearly
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amounting to the whole two-lobe bearing clearances; and recall that fluid film bearing
rotordynamics force coefficients are strictly valid for infinitesimally small amplitude
motions about a static equilibrium position.

Presently, the identification procedure restricts its attention to a flexible rotor with
two supports (bearings). No additional support elements, other bearings or seals for
example, have been incorporated into the rotor-bearing system model. However, the (a-
priori known) dynamic force coefficients from these elements con be easily integrated
into the general rotor model and the procedure remains identical for estimation of the
support force coefficients. Conversely, the aim could be to identify the force coefficients
from a balance piston seal, for example. In this case, measurement of the rotor response
at the seal location could be used to estimate the (third) element stiffness and damping
coefficients. Note that no more than two independent imbalance tests are required,
irrespective of the number of rotor supports whose impedances are to be determined.

The method advanced does have limitations; the most notable one is the need of rotor
motion measurements at the middle plane of the support element. Actual rotating
machinery rarely incorporates sensors at these locations. Most often, displacement
sensors are positioned on a (bearing) support side. This condition is of no consequence if
the length of the bearing is small compared to the rotor length. Further work is
recommended to extend the method for the case when the rotor response is recorded at
locations far away from the bearing supports. The extension to the present model may
require of a (yet to be defined) iterative procedure. As in [3], accurate measurement of
the rotor amplitudes of motion, and in particular the phase angle, are mandatory for a
successful and reliable identification.

Incidentally, the method, as stated, needs minimal modifications to identify frequency
dependent force coefficients. The major change, however, is the physical implementation
of a mechanism to impart external loads on the rotor with enough energy and frequency
content. Impact loads exerted on the bearing housings could be a feasible alternative to be
researched in the near future.
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Figure 7   Measured rotor displacements (amplitude and phase) at
bearing locations versus rotor speed for two imbalances (tests 1 and 2).
[3]
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Figure 8  Predicted rotor displacements (amplitude and phase) at
bearing locations versus rotor speed for two imbalances (tests 1 and 2).
Numerical example.
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Figure 9  Predicted rotor deflection (amplitude and phase) at 2000 rpm
for two imbalances (tests 1 and 2). Bearing locations noted (B1 and B2).
Imbalances (test 1) station 3, (test 2) station 7. Numerical example

IMBALANCE: TEST 1 - response 2000 RPM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
150

100

50

0

X                                                             
Y

distance [m]

Ph
as

e 
an

gl
e 

[d
eg

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1.25 .10 4

2.5 .10 4

X
Y

distance [m]

A
m

pl
itu

de
 [m

]

IMBALANCE: TEST 2 - response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1.25 .10 4

2.5 .10 4

X
Y

distance [m]

A
m

pl
itu

de
 [m

]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
200

100

0

100

200

X                                                             
Y

distance [m]

Ph
as

e 
an

gl
e 

[d
eg

]

B1 B2

Imb1 Imb2



22

IMBALANCE: TEST 1 - response 4000 RPM
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Figure 10  Predicted rotor deflection (amplitude and phase) at 4000 rpm
for two imbalances (tests 1 and 2). Bearing locations noted (B1 and B2).
Imbalances (test 1) station 3, (test 2) station 7. Numerical example
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Figure 11  Estimated bearing support force coefficients versus rotor speed
obtained from two predicted imbalance responses. Comparison with
analytical force coefficients (Table 3). Numerical example
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Figure 12  Estimated bearing support force coefficients versus rotor speed obtained from
two measured imbalance responses. Comparison with analytical force coefficients (Table 3).
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Appendix A.
Finite element matrices for rotor dynamics model

The element stiffness, mass, and gyroscopic matrix based on the Timoshenko beam
model are defined as [13]:

;GGGG

NNNM;MMMM;MMM
KKK

210e

210R210TRTe

10e

2

22

;

φφ

φφφφ
φ

++=

++=++=+=

+=

(A.1)

where

Finite Element Timoshenko Beam Stiffness matrices
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

⋅:=

Translational Mass Matrices:

M1 m l, φ,( ) m l⋅

420 1 φ+( )2
⋅

294

0

0

38.5 l⋅

126

0

0

31.5− l⋅

0

294

38.5− l⋅

0

0

126

31.5 l⋅

0

0

38.5− l⋅

7 l2⋅

0

0

31.5− l⋅

7− l2⋅

0

38.5 l⋅

0

0

7 l2⋅

31.5 l⋅

0

0

7− l2⋅

126

0

0

31.5 l⋅

294

0

0

38.5− l⋅

0

126

31.5− l⋅

0

0

294

38.5 l⋅

0

0

31.5 l⋅

7− l2⋅

0

0

38.5 l⋅

7 l2⋅

0

31.5− l⋅

0

0

7− l2⋅

38.5− l⋅

0

0

7 l2⋅





























⋅:=M0 m l, φ,( ) m l⋅

420 1 φ+( )2
⋅

156

0

0

22 l⋅

54

0

0

13− l⋅

0

156

22− l⋅

0

0

54

13 l⋅

0

0

22− l⋅

4 l2⋅

0

0

12− l⋅

3− l2⋅

0

22 l⋅

0

0

4 l2⋅

13 l⋅

0

0

3− l2⋅

54

0

0

13 l⋅

156

0

0

22− l⋅

0

54

12− l⋅

0

0

156

22 l⋅

0

0

13 l⋅

3− l2⋅

0

0

22 l⋅

4 l2⋅

0

13− l⋅

0

0

3− l2⋅

22− l⋅

0

0

4 l2⋅





























⋅:=

M2 m l, φ,( ) m l⋅

420 1 φ+( )2
⋅

140

0

0

17.5 l⋅

70

0

0

17.5− l⋅

0

140

17.5− l⋅

0

0

70

17.5 l⋅

0

0

17.5− l⋅

3.5 l2⋅

0

0

17.5− l⋅

3.5− l2⋅

0

17.5 l⋅

0

0

3.5 l2⋅

17.5 l⋅

0

0

3.5− l2⋅

70

0

0

17.5 l⋅

140

0

0

17.5− l⋅

0

70

17.5− l⋅

0

0

140

17.5 l⋅

0

0

17.5 l⋅

3.5− l2⋅

0

0

17.5 l⋅

3.5 l2⋅

0

17.5− l⋅

0

0

3.5− l2⋅

17.5− l⋅

0

0

3.5 l2⋅





























⋅:=
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with

length l Elastic modulus E
radius r Shear modulus G
Area A = π r2 Shear factor κ
Area moment of inertia I = ¼ π r4 Shear function φ
Element mass M = A l ρ Material density ρ

Rotary Mass Matrices:

N0 m r, l, φ,( ) m r2⋅

120 l⋅ 1 φ+( )2
⋅

36

0

0

3 l⋅

36−

0

0

3 l⋅

0

36

3− l⋅

0

0

36−

3− l⋅

0

0

3− l⋅

4 l2⋅

0

0

3 l⋅

l2−

0

3 l⋅

0

0

4 l2⋅

3− l⋅

0

0

l2−

36−

0

0

3− l⋅

36

0

0

3− l⋅

0

36−

3 l⋅

0

0

36

3 l⋅

0

0

3− l⋅

l2−

0

0

3 l⋅

4 l2⋅

0

3 l⋅

0

0

l2−

3− l⋅

0

0

4 l2⋅





























⋅:= N1 m r, l, φ,( ) m r2⋅

120 l⋅ 1 φ+( )2
⋅

0

0

0

15− l⋅

0

0

0

15− l⋅

0

0

15 l⋅

0

0

0

15 l⋅

0

0

15 l⋅

5 l2⋅

0

0

15− l⋅

5− l2⋅

0

15− l⋅

0

0

5 l2⋅

15 l⋅

0

0

5− l2⋅

0

0

0

15 l⋅

0

0

5

15 l⋅

0

0

15− l⋅

0

0

0

15− l⋅

0

0

15 l⋅

5− l2⋅

0

5

15− l⋅

5 l2⋅

0

15− l⋅

0

0

5− l2⋅

15 l⋅

0

0

5 l2⋅





























⋅:=

Gyroscopic Matrix:

N2 m r, l, φ,( ) m r2⋅

120 l⋅ 1 φ+( )2
⋅

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

10 l2⋅

0

0

0

5 l2⋅

0

0

0

0

10 l2⋅

0

0

0

5 l2⋅

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5 l2⋅

0

0

0

10 l2⋅

0

0

0

0

5 l2⋅

0

0

0

10 l2⋅





























⋅:=

G0 m r, l,( )
2 m⋅ r2⋅
120 l⋅

0

36

3− l⋅

0

0

36−

3− l⋅

0

36−

0

0

3− l⋅

36

0

0

3− l⋅

3 l⋅

0

0

4 l2⋅

3− l⋅

0

0

l2−

0

3 l⋅

4− l2⋅

0

0

3− l⋅

l2

0

0

36−

3 l⋅

0

0

36

3 l⋅

0

36

0

0

3 l⋅

36−

0

0

3 l⋅

3 l⋅

0

0

l2−

3− l⋅

0

0

4 l2⋅

0

3 l⋅

l2

0

0

3− l⋅

4− l2⋅

0





























⋅:=


