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EXECUTIVE SUMMARY 

 

Rotor-bearing system characteristics, such as natural frequencies, mode shapes, stiffness and 

damping coefficients, are essential to diagnose and correct vibration problems during system 

operation. Of the above characteristics, accurate identification of bearing force parameters, i.e. 

stiffness and damping coefficients, is one of the most difficult to achieve.  Field identification by 

imbalance response measurements is a simple and accurate way to determine synchronous speed 

force coefficients.  

 An enhanced method to estimate bearing support force coefficients in flexible rotor-bearing 

systems is detailed. The estimation is carried out from measurements obtained near bearing 

locations from two linearly independent imbalance tests. An earlier approach assumed 

rotordynamic measurements at the bearing locations, which is very difficult to realize in practice. 

The enhanced method relaxes this constraint and develops the procedure to estimate bearing 

coefficients from measurements near the bearing locations.  

An application of the method is presented for a test rotor mounted on two-lobe hydrodynamic 

bearings. Imbalance response measurements for various imbalance magnitudes are obtained near 

bearing locations and also at rotor mid-span. At shaft speeds around the bending critical speed, 

the displacements at the rotor mid-span are an order of magnitude larger than the shaft 

displacements at the bearing locations. The enhanced identification procedure renders satisfactory 

force coefficients in the rotational speed range between 1,000 rpm and 4,000 rpm. The amount of 

imbalance mass needed to conduct the tests and to obtain reliable shaft displacement 

measurements influences slightly the magnitude of the identified force coefficients. The effect of 

increasing the number of rotor sub-elements in the finite-element modeling of the shaft is noted. 

Sensitivity of the method and derived parameters to noise in the measurements is also quantified. 
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NOMENCLATURE 

DM Measurement data matrix, equation (27) 

fB   Vector of forces on the shaft at bearing location 

f1, f2 Generalized rotor force vectors at bearing locations 1 and 2  

H   Dynamic rotor-bearing system impedance matrix 

HB, HR  Bearing impedance and rotor impedance matrix 

KB, CB ,MB Bearing support stiffness, damping and inertia matrices 

K,C, M Rotor-bearing system stiffness, damping and inertia matrices  

mu  Calibrated imbalance mass (g) 

nf  Free-free natural frequencies 

Q(t), q(t) Generalized force vector and displacement vector  

q0, f0  Vector of amplitudes of response and excitation forces 

q1, q2 Measured support motion at bearing 1 and bearing 2 

RF  Reactive force matrix in the identification procedure 

r  Radius at which imbalance mass is placed (m) 

t  time (sec) 

u  Imbalance in terms of C.G displacement 

(x, y) Rotor linear displacements in two orthogonal directions (m) 

z  Response vectors containing x and y displacements stacked at each speed 

( yx ββ , ) Rotor rotational displacements (rad) 

φ   Third-order interpolation functions 

ϕ   Phase angle with respect to reference line (rad)  

ρ  Density of lubricant (kg/m3) 

Ω   Rotor speed (rad/sec) 

ω   Excitation frequency (rad/sec) 

 

Subindices 

1, 2  Indicates bearing locations (drive-end and free-end bearings) 

b  Refers to bearing dimensions 

d  Refers to disk dimensions 

r  Refers to rotor dimensions 

s   Refers to shaft dimensions 
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CHAPTER I 

INTRODUCTION 

 

1.1 FOREWORD  

Bearing dynamic force characteristics greatly influence the performance of a rotor bearing 

system. Accurate identification of bearing dynamic stiffness and damping coefficients is 

essential in condition monitoring and trouble shooting of rotating machinery. Experimental 

identification is the best way to identify bearing dynamic force characteristics since the 

condition of the bearings is not usually fully predictable.  In particular, identification by 

imbalance response measurements retains several advantages, such as simple excitation and 

uncomplicated instrumentation for measurements.  

In a typical test rotor-bearing set up for extracting the dynamic stiffness and damping 

coefficients of bearings using imbalance as a forced excitation, shaft motions are measured 

along two orthogonal directions with non-contacting displacement probes mounted 

orthogonally. Another displacement probe used as the Keyphasor, relates the phase angle 

between the excitation force (imbalance) and the vibration response.  

The parameters of a bearing supporting a well balanced rotor can be characterized by 

introducing a known imbalance at a location in the rotor and recording the shaft motions over a 

speed range. Nevertheless, the rotor motion includes responses to other forces (sources) than 

those due to imbalance, thus requiring calibration and vectorial subtraction of the residual 

response over the speed range of interest.  

Experimental identification algorithms to determine bearing force coefficients from 

imbalance measurements are particularly sensitive to accuracy in the measurements, the 

magnitude of calibrated imbalance masses, the condition number of the effective impedance 

matrices1 in the identification algorithm, the measurement locations of shaft motion, to mention 

a few.  Hence, it is important to asses the effect of these conditions on the identification 

algorithm to obtain reasonably accurate bearing force coefficients.  

 

 

 

 
1 Impedance matrix in the final identification equation (Chapter V, equation (26)) to determine 

bearing stiffness and damping coefficients 
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The objectives of this work are: 

• To develop a procedure for accurate identification of bearing force coefficients 

from imbalance response measurements taken near bearing locations 

• To conduct a noise study sensitivity on the algorithm and derived parameters, and  

• To quantify the effect of calibrated imbalance mass on the resulting coefficients. 

 An extension to the original identification method in [1] to work with measured responses 

away from the bearing locations is advanced and validated successfully. An application is given 

for a test rotor supported on cylindrical journal bearings. 

Chapter II provides brief account of the procedures utilized for identification of bearing 

parameters in journal bearings based on the methods of excitation.  Finite elements for 

modeling of rotor systems are detailed. The discussion focuses on identification of speed-

dependent bearing coefficients for flexible rotor-bearing systems. Assumptions in various 

identification procedures are emphasized to further improve the accuracy of the identified 

coefficients.  

Chapter III describes in detail the test setup used for conducting the rotor imbalance 

measurements including the type and the orientation of displacement sensors, the lubricant 

properties, shaft and bearing dimensions, the data acquisition system used, and the vibration 

response of the rotor. Measured free-free natural frequencies and mode shapes are compared to 

analytical predictions of eigenvalues and eigenvectors of the rotor model. Chapter III also 

details the preliminary balancing of the test rotor before conducting the imbalance 

measurements.  

Chapter IV details the configuration of the test rotor for imbalance response measurements, 

quantifies the amount and locations of imbalance masses used in identifying the synchronous 

bearing force coefficients. Chapter IV includes notes on transformation of the responses from 

the experimental coordinate axes to the coordinate axes used for identification. It also shows 

the effect of linearity on the synchronous responses for increasing imbalance mass values.  

Chapter V reproduces the scheme developed for identifying synchronous bearing force 

coefficients in flexible rotor-bearing systems. The procedure is derived from basic equations of 

motion for a typical rotor-bearing system to solve for eight unknown bearing force coefficients 

at each bearing location. The method derived in this section is an extension to the procedure 

developed in [1] to extract synchronous bearing force coefficients. The bearings are assumed to 

be identical and the equations are derived using least squares formulation to obtain the bearing 

coefficients matrices in terms of the measured rotor responses.  
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Chapter VI includes a numerical validation of the developed identification method by 

assuming a set of bearing coefficients to predict the responses. In turn, estimating the bearing 

force coefficients using the predicted responses reproduces the force coefficients assumed 

apriori.  

Chapter VII depicts the estimated bearing synchronous force coefficients from test 

measurements due to various imbalance masses.  The effects of parameters like number of rotor 

sub-stations and increasing imbalance mass on the estimated coefficients are studied. The 

importance of the condition number for the identification matrix, (derived from test data) on the 

identified coefficients is ascertained. A least squares approach is used to identify the bearing 

coefficients for identical bearings. A preliminary study is conducted on noise sensitivity of the 

identification procedure and derived bearing parameters.  

Chapter VIII presents conclusions on the research for identification of bearing dynamic 

coefficients from synchronous imbalance responses. Appendix A provides comparison of 

bearing dynamic coefficients from the enhanced method to those obtained from the original 

identification procedure [1].    
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CHAPTER II  

LITERATURE REVIEW 

 

The dynamic motions of rotors supported on fluid film journal bearings are significantly 

influenced by the stiffness and damping characteristics of the bearing supports. Thus, it is 

important to determine the forced characteristics of the bearings to a good level of accuracy to 

predict the behavior of the rotor-bearing system. Numerous procedures have been proposed to 

identify bearing coefficients using experimentally obtained data, for development and 

validation of predictive models.  

 

2.1 BRIEF REVIEW OF PARAMETER IDENTIFICATION 

Experimental identification of bearing impedances always requires measurements of the 

rotor response and force excitation. Bearing impedances are complex functions, whose real 

parts represent dynamic stiffness and whose imaginary parts are proportional to the damping 

coefficients. Goodwin [2] reviews experimental techniques for identification of bearing 

impedances. The paper provides a concise account of those techniques, classifies them in terms 

of the type of experimental measuring equipment required, time available to carry out testing 

and the reliability of the results. Finally Goodwin [2] concludes that measurements made using 

multi-frequency test signals provide more reliable data. Most of the methods mentioned in [2] 

are applied in the time-domain, at a particular frequency.  

Excitation sources such as harmonic forces, pseudo-random periodic force excitation, rotor 

imbalance and impulse loads allow estimation of the bearing impedance functions. Morton [3] 

uses electromagnetic shakers to apply a sinusoidal excitation to a test journal bearing and 

measures receptance frequency response functions resulting from unidirectional loading. 

Practical difficulties arise in exciting a rotating shaft by an external harmonic force. Fritzen [4] 

presents a procedure to calculate the mass, damping and stiffness matrices of mechanical 

systems from measured input/output data. It works on the basis of the IVF method, well suited 

for the estimation of models from data with superimposed noise. Diaz and San Andrés [5] use 

the flexibility matrix as a weighing function to improve the minimization procedure near 

system resonance where dynamic flexibilities show maximum values. 

 Transient loading of rotor-bearing systems (impact loading) represents another method of 

bearing parameter identification. An impulse excitation covers wide range of frequency 

characteristics thereby increasing the reliability of the estimated bearing coefficients. 

Nordmann and Schollhorn [6] present a method in which a rigid rotor supported on journal 
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bearings is excited by a hammer (impulse testing). Recorded forces and displacements of the 

rotor are transformed into the frequency domain, and then complex frequency response 

functions are derived. Analytical frequency response functions, which depend on the bearing 

coefficients, are fitted to the measured functions. Resulting stiffness and damping coefficients 

correlate well when compared to theoretical predictions. Reference [7] describes a procedure 

for identification of bearing support force coefficients from measured rotor responses due to 

impact loads at constant running speed. 

Another simple excitation load is due to calibrated imbalances distributed at recorded 

angular and radial locations on the rotor. Burrows and Sahinkaya [8] identified squeeze film 

dynamic force coefficients from synchronous excitation, but failed to identify all the force 

coefficients. In most cases, estimation procedure depends on the test signal being more 

significant compared to the inherent imbalance distribution in the system.  Lee and Hong [9] 

present a new method for identifying bearing dynamic coefficients by using imbalance 

measurements, though confining the procedure to a rigid rotor. The procedure also fails for 

isotropic bearings since the identification matrix encounters a singularity. De Santiago and San 

Andrés [10] present a procedure that allows identification of synchronous bearing parameters 

from recorded rotor responses to calibrated imbalance mass distribution. The identification 

procedure requires a minimum of two linearly independent imbalance tests for identification of 

force coefficients from two bearing supports. The method is confined to rigid rotors.  

 Most industrial rotors are flexible and not symmetrical. Flexible rotor-bearing systems have 

been analyzed by many different mathematical methods. Finite element methods were 

introduced in the rotordynamic analysis to model slender shafts, disks, and discrete bearings.  A 

brief review of these methods with reference to specific contributors is presented below.  

 

2.2 FINITE ELEMENT METHODS FOR MODELING OF FLEXIBLE ROTORS AND 

IDENTIFICATION OF FLEXIBLE ROTOR-BEARING SYSTEMS 

Ruhl [11] and Booker [12] introduced the finite element method (FEM) for rotor-dynamic 

analysis. Polk [13] later presented a study on natural whirl speed and critical speed analysis 

using Rayleigh’s beam analysis. Nelson and McVeigh [14] also presented a formulation for 

dynamic modeling of rotor-bearing system using distributed parameter finite rotor elements and 

it included rotary inertia, gyroscopic moments and axial load using a consistent mass approach. 

This work was generalized by Zorzi and Nelson [15] to include internal viscous and hysteric 

damping. Nelson [16] generalizes the previous works by utilizing Timoshenko beam theory for 

establishing shape functions for the beam element and thereby including the transverse shear 
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effects. Chen and Lee [17] used FEM for flexible rotors and obtained unbalance responses at 

two close speeds to identify the bearing coefficients of ball bearings. However, this method 

requires measurements of responses at all nodal points of the shaft model.  

The system of equations of motion generated by imbalance excitation tends to be ill-

conditioned and most experimental identifications show considerable scatter of results [18]. 

Despite these limitations, this method is easily implemented on site if a good data acquisition 

system is available. The responses are directly fed from the data acquisition system into the 

identification code which renders the bearing synchronous force coefficients.  

De Santiago [19] proposes an identification scheme similar to that in [17] and presents 

experimental evidence showing the robustness of the method. Two imbalance planes are 

mandatory for identification of all sixteen bearing force parameters. Since the bearing locations 

do not exactly coincide with the measurement locations, linear interpolation is performed to 

obtain the responses at the bearing locations from the measured responses. Tieu and Qiu [20] 

utilize unfiltered responses and forward a numerical procedure to minimize the influence of 

noise. The identification procedure used in [19] can use filtered synchronous responses, and is 

therefore not affected by (high frequency) noise from the measurements. 

Yang and Chaung [21] develop an identification method using receptance matrices of 

flexible shafts from FEM modeling and imbalance forces of trial masses to derive 

displacements and reaction forces at the bearing locations. The authors introduce a Total Least 

Squares (TLS) procedure to identify eight bearing coefficients, besides, the method handles 

noise effectively. San Andrés [1] developed a procedure for identifying bearing support force 

coefficients in flexible rotor-bearing systems. The identification algorithm programmed in 

MATHCAD models the rotor using a Finite Element Method developed by Holt [22]. The 

procedure can identify bearing synchronous force coefficients at a specific operating speed, 

which make it suitable for measurement of hydrodynamic bearings which show speed-

dependent characteristics. The position of the displacement sensors limits the competence of 

the approach to industrial systems.  

Most of the identification methods developed [1, 21] for flexible rotor bearing systems 

require imbalance response measurements at the bearing locations, which are hard to obtain in 

actual systems. A scheme for an identification method to work with measurable responses 

obtained away from the bearing locations is hereby proposed and tested successfully. An 

investigation on the effects of various parameters that may affect the identification accuracy is 

also performed. An application is given for a test rotor supported on hydrodynamic journal 

bearings.  
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CHAPTER III 

EXPERIMENTAL FACILITIES AND PROCEDURES 

 

3.1 DESCRIPTION OF THE TEST RIG FOR IDENTIFICATION OF SYNCHRONOUS 

BEARING FORCE COEFFICIENTS 

This chapter describes the test facilities and measurement procedures for accurate 

identification of bearing force coefficients from imbalance measurements in flexible rotor-

bearing systems. The test rig and the data acquisition system used are located in the Turbo- 

machinery Laboratory of Texas A&M University.  

The test rig consists of a slender shaft supported on a pair of two-lobe cylindrical bearings. 

The shaft has three annular inserts for placement of rigid disks which enables the rotor to render 

different configurations. Tests were conducted to demonstrate the applicability and efficacy of 

the proposed identification method. Figure 1 shows a two-disk steel rotor supported on a pair of 

two-lobe journal bearings. A DC motor drives the rotor through a coupling up to a speed of 

8,000 rpm. The bearings are mounted on aluminum housings which are in turn fixed to a steel 

base plate as shown in the figure. A hinged casing covers the test rig and provides safety during 

the rig operation.     

 

      

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Test rig rotor for measurement of imbalance responses 
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Free-end 



 8

The rotor is a steel shaft 640 mm long with a diameter of 25.4 mm. Four massive disks can 

be mounted on the rotor. For experiments presented here, two disks 31.8 mm wide, diameter 

equal to 165 mm and 280 mm apart from each other are mounted on the shaft. Each disk 

weighs around 3700 gram. Threaded holes spaced at an angle of 150 apart on both sides of each 

disk serve for placement of imbalance weights.  The disks are clamped to the shaft by means of 

semi-circular plates and bolts. Motor drives the rotor by means of a coupling with very high 

rotational stiffness.  

The pair of test bearings is identical, two-lobe fluid film bearings split horizontally for the 

easy installation of the rotor in the rig. The bearings are bronze with a liner material of soft 

babbitt. Continuous wear makes it difficult to determine the actual value of the preload in the 

bearings; and hence, a nominal dimensionless value of 0.05 is used in the predictions.  

The cylindrical hydrodynamic bearings are lubricated with ISO VG 10 Turbine oil. An oil 

pump delivers the oil through the pipelines into the bearing housings through rectangular 

grooves machined at the partition line. The valve opening near the oil pump governs the inlet 

pressure, which is measured by a pressure gauge. The temperature of the lubricant entering the 

bearing housings can be controlled by a built-in heater inside the test rig, and is measured by 

means of a thermocouple. Table 1 presents the specifications of the rotor-bearing system. For 

the experiments presented, the inlet pressure of the lubricant is 0.42 bar (7 psig). 

The rotor displacements are measured near each bearing location and at the center of the 

shaft by three pairs of eddy current displacement sensors. The bearing housings have threaded 

holes for the installation of the sensors in two orthogonal directions. Figure 2 shows the angular 

positioning of the displacement sensors. The displacement probes designated as X1, Y1 are 

located near the drive end bearing, X2, Y2 are positioned near the free end bearing and CX and 

CY are located at the rotor mid-span.  
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Table 1. Specifications for rotor-bearing system for the imbalance experiments 

 

Shaft 
 Ls = 640 mm    Ds = 25.4 mm      Ms = 3.581 kg    
 ρs =7733 kg/m3          E = 2.07 x 107 Pa   
 
Disks (2 identical) 
M = 3.86 kg      Dd = 165 mm   Ld = 32 mm 
Locations from the drive end    L1 = 205 mm,  L2 = 485 mm  
Radius of attachment of imbalance mass   rd = 70 mm 
 
Bearings (2 identical) 
Bearing radial clearance    Cb = 0.092 mm Lb = 28.5 mm Db = 25.4 mm  
 
Location of bearing centerline from the sensor locations 
 
Sensors 1 S1 = 40 mm from bearing 1 (drive end bearing) 
Sensors2 S2 = 23 mm from bearing 2 (free end bearings) 
 
ISO VG 10 Lubricant 
 
Average inlet lubricant temperature (Tin) = 280 C 
Viscosity (µk) = 16.5 cST 
Viscosity (µk) at 400 C = 10.4 cST 

_____________________________________________________________________ 
 

Eddy current displacement sensors near the bearing locations are installed at an angle of 450 

through threaded holes in the bearing housings with their median pointing up in the vertical 

direction. Displacement sensors near the center of the shaft (CX and CY) are each located at an 

angle of 450 with a median pointing down in the vertical direction. An additional eddy-current 

displacement sensor, vertically mounted at the shaft end senses a keyway while the rotor spins, 

to provide a reference signal for measuring the shaft speed. 

 

 Figure 2. Angular position of eddy current displacement sensors 
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X1 , X2  
sensors 
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3.2 DATA ACQUISITION SYSTEM 

Signals from the eddy current displacement sensors are directed to the data acquisition 

system (ADRE®). An analog oscilloscope is also connected to display the unfiltered real time 

orbit. Seven simultaneous data acquisition channels process signals from three pairs of 

displacement sensors and a tachometer. Table 2 details the channels, keyphasor and transducer 

configurations, and trigger event for data acquisition.  

 
Table 2.  Configuration for data acquisition system (ADRE®) 

______________________________________________________________________ 
 
Channel Configuration Angle Rotation Designation 
1  (Near Bearing 1) Brg 1 X 45 R CW 
2  (Near Bearing 1) Brg 1 Y 45 L CW Drive-end bearing 

3  (Rotor mid-span) CX 135 R CW 
4  (Rotor mid-span) CY 135 L CW 

 

5 (Near Bearing 2) Brg 2 X 45 R CW 
6 (Near Bearing 2) Brg 2 Y 45 L CW Free-end bearing 

 
Transducer Configuration 
    

Type Units Scale Factor  F/S Range B/W 
All 

Transducers 
mils p-p 7200  206 mv/mil 20 volts 120 rpm 

______________________________________________________________________ 
B/W = Bandwidth   F/S = Full-scale range 

 

The procedure developed to identify bearing synchronous force coefficients requires 

accurate imbalance response measurements. The rotor is balanced by the two-plane influence 

coefficient method before conducting imbalance response measurements. The resulting 

vibration due to remnant imbalance is to be compensated from the displacements obtained with 

calibrated imbalances. The data acquisition system (ADRE) used for measurements has a built 

in feature that vectorially compensates the remnant imbalance from measurements.  

Figure 3 depicts the test rotor configuration, with axial locations of the displacement 

sensors and disks noted. Identification of bearing synchronous force coefficients is performed 

on the flexible rotor by measuring the synchronous response from calibrated imbalance mass 

distributions placed at known locations around the circumference of the disks. Three cases of 

calibrated imbalance masses are chosen. Two linearly independent tests are conducted for each 

chosen set of calibrated imbalance mass distribution to identify all sixteen bearing coefficients 

(eight at each bearing location).  
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Figure 3. Test rotor configuration and dimensions 

 

3.3 NATURAL FREQUENCIES AND MODE SHAPES OF TEST ROTOR 

Free-free natural frequencies are measured by hanging the rotor from two long vertical 

ropes and impacting the rotor in the horizontal plane. Free-free natural frequencies and mode 

shapes is a good way to assess the accuracy of the rotor structural model. Table 3 shows the 

first three measured as well as predicted free-free natural frequencies of the test rotor. Figure 4 

shows the first and second free-free mode shapes of the test rotor.  

 

Table 3. Free-free natural frequencies – experimental and predicted 
                     Experiments (Hz)        Predictions (Hz)  

nf1 196 200 
nf2 384 443 
nf3 680 772 

 

Notice in Figure 4 that nodal vibration points appear near the disk positions. Free-free 

eigenvalues and eigenvectors are calculated from XLTRC2 and a MathCAD code.  Predicted 

free-free eigenvalues and eigenvectors of the test rotor model from the computer program are 

found to be in coherence with the experimentally determined free-free natural frequencies and 

mode shapes. Note that the rotor is slender as compared to the rotor span (ratio of the rotor span 

to the rotor diameter is ~25). Eigenanalysis of the rotor-bearing system from the finite element 

model indicates that the rotor has a pin-pin natural frequency of 4,680 rpm (78 Hz).  

Units: mm 
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First measured and predicted mode shape and natural frequency
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Second measured and predicted mode shape and natural frequency
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Figure 4. First and Second free-free mode shapes of the test rotor. Measured vs. 

Analytical (XLTRC2 and MathCAD Identification code) 

 

 

2 Rotordynamic analysis software developed at Turbomachinery Laboratory, Texas A&M 

University, College Station, TX. 
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IV  IMBALANCE RESPONSE MEASUREMENTS 

 

4.1 TEST IMBALANCE MEASUREMENTS 

Identification of bearing synchronous force coefficients is conducted on the flexible rotor 

from calibrated imbalance mass distribution placed at known locations around the 

circumference of the disks. Table 4 shows specifications for the three test cases, each 

corresponding to an imbalance mass distribution. Each case requires two linearly independent 

imbalance tests. The first test places the imbalance mass in the drive end disk only; the second 

disk removes this mass and locates it in the free-end disk.  

 

Table 4. Specifications for the three test cases of imbalance measurements 
 

Cases 
Mass imbalance(gram) @ 

θ0 
Imbalance displacement, 

u=m x rd/Ms 
Description 

Test 1 – u at drive-end disk 
1 3.88 gram @ 00 75.8 µm 

Test 2 – u at free-end disk 

Test 1 – u at drive-end disk 
2 7.25 gram @ 00 

 
141.7 µm 

 Test 2 – u at free-end disk 

Test 1 – u at drive-end disk 
3 10.5 gram @ 00 205 µm 

Test 2 – u at free-end disk 

 

Bearing radial clearance, Cb=92 microns    rd= 70 mm 

 

The coordinate axes for measuring the vibration of the rotor as measured from the 

displacement sensors do not coincide with the coordinate axes used in the analysis described in 

Chapter V. A linear coordinate transformation of the measured displacements is performed to 

utilize the imbalance responses in the analysis. Figure 5 shows the coordinate reference for 

measurements of rotor response and the coordinate system used in the analysis of the 

identification procedure.   
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Figure 5. Coordinate reference frames for measurements of rotor response 
 

 

The test rotor is brought up  to a speed just above the first critical speed, then run down 

tests are conducted and measurements continually recorded as the rotor decelerates to rest. Raw 

data obtained from the data acquisition contains synchronous amplitude and phase, in mils p-p 

and degrees, respectively. Phase angles measured on the rotor are positive opposite to the 

direction of rotation of the shaft from a rotating reference (mark on the rotor when the 

Keyphasor is aligned with the keyway). The transformation matrix, T, used in the 

transformation of the responses from coordinate axes used in the measurements to coordinate 

axes used in the analysis, is  

 

     T = 
sin( ) sin( )

cos( ) cos( )
x y

x y

α α

α α

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

    (1) 

 
Figures 6-8 show the measured vibration (amplitudes and phase angles) near the bearings 

and at rotor mid-span, for both imbalance tests and for each case of imbalance mass. Graphs (a) 

correspond to test cases with imbalance mass at drive-end disks and graphs (b) correspond to 

imbalance at free-end disks.   

 

 

 

 

Measurement 
Coordinates 
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Imbalance =3.88 gram at drive-end disk   

(X1,Y1) - Drive-end bearing 
(X1,Y1) - Free-end bearing 
(CX,CY) - Drive-end bearing 

  

 

Figure 6(a). Measurements of rotor vibration (amplitude and phase) for imbalance 

mass of 3.88 gram (imbalance displacement u=76 µm) placed in the drive-end disk. 
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Imbalance =3.88 gram at free-end disk   

(X1,Y1) - Drive-end bearing 
(X1,Y1) - Free-end bearing 
(CX,CY) - Drive-end bearing 
 

 

Figure 6(b). Measurements of rotor vibration (amplitude and phase) for imbalance mass 

of 3.88 gram (imbalance displacement u=76 µm) placed in the free-end disk 
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Imbalance =7.25 gram at drive-end disk 

(X1,Y1) - Drive-end bearing 
(X1,Y1) - Free-end bearing 
(CX,CY) - Drive-end bearing 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7(a).  Measurements of rotor vibration (amplitude and phase) for imbalance mass 

of 7.25 gram (imbalance displacement u=141 µm) placed in the drive-end disk 
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Imbalance =7.25 gram at free-end disk     

(X1,Y1) - Drive-end bearing 
(X1,Y1) - Free-end bearing 
(CX,CY) - Drive-end bearing 

 

 

Figure 7(b). Measurements of rotor vibration (amplitude and phase) for imbalance 

mass of 7.25 gram (imbalance displacement u=141 µm) placed in the free-end disk 
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Imbalance =10.5 gram at drive-end disk    

(X1,Y1) - Drive-end bearing 
(X2,Y2) - Free-end bearing 
(CX,CY) - Drive-end bearing 

 

 

Figure 8(a). Measurements of rotor vibration (amplitude and phase) for imbalance 

mass of 10.5 gram (imbalance displacement u=205 µm) placed in the drive-end disk. 
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Imbalance =10.5gram at free-end disk    

(X1,Y1) - Probes near drive-end bearing       
(X2,Y2) - Probes near free-end bearing 
(CX,CY) - Rotor mid-span probes 
(B1,B2) -  Drive-end and free-end bearings 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8(b). Measurements of rotor vibration (amplitude and phase) for imbalance 

mass of 10.5 gram (imbalance displacement u=205 µm) placed in the free-end disk 
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The rotor synchronous amplitudes at the rotor mid-span are 40-70% larger than the 

amplitudes near the bearing locations. Near the critical speeds i.e., around 4500 rpm, the 

difference is larger (210 µm at CY and 60 µm at the free-end bearing in the vertical direction at 

same speed), more than 150%, reflecting the flexibility of the rotor. Phase angles for different 

values of imbalance remain almost the same over the shaft speed range shown.   

The amplitude of rotor response at the drive-end bearing is larger than the response at the 

free-end bearing when an imbalance is placed in the drive-end disk. Maximum synchronous 

amplitudes near the two bearing locations are about 25 µm (26% of the bearing radial 

clearance) for an imbalance mass of 3.88 gram, 55 µm (58 %) for an imbalance mass of 7.25 

gram, and 65 µm (70%) for the largest imbalance mass, 10.5 gram.  

 

4.2 LINEARITY OF IMBALANCE RESPONSES 

Figures 9-10 represent the plots of amplitudes of the rotor responses (x direction) near the 

drive-end bearing and at the rotor mid-span, due to imbalance masses equal to 7.25gram and 

10.5gram, normalized to amplitudes due to an imbalance mass of 3.88gram. The amplitudes are 

normalized to reveal the effect of linearity on the responses due to the amount of imbalance 

mass. The underlying assumption is that the rotor is well balanced and the effects of rotor 

misalignment and due to other factors are negligible, and that the synchronous response is only 

due to imbalance mass excitation. 

Critical speeds are observed for both cases of imbalance masses 3.88 gram and 7.25 gram 

at 4400 rpm and 4650 rpm, respectively. The critical speed was not reached for imbalance mass 

of 10.5 gram because of large amplitudes of rotor motion at the bearing locations (70 µm), 

which are about 75% of the fluid film radial clearances (93 µm).  

  The rotor-bearing system appears to behave linearly in the frequency range from 2,200 

rpm to 3,800 rpm, where the responses due to the higher imbalance mass can be thought of as 

corresponding multiplication factor times the response due to a lower imbalance mass. As the 

shaft speed approaches the critical speed region (4200 rpm), the response amplitudes at the 

bearing locations due to greater imbalance masses are larger than the corresponding values the 

rotor would show if the system is regarded as linear. The test results do show a degree of non-

linearity in the rotor response due to the large imbalance.  
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 Figure 9. Effect of increasing imbalance on linearity of responses near the drive-end 

bearing (X1) 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Effect of increasing imbalance on linearity of responses at the rotor mid-

span (CX) 
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CHAPTER V 

IDENTIFICATION OF SYNCHRONOUS SPEED BEARING FORCE 

COEFFICIENTS 

 

5.1 IDENTIFICATION PROCEDURE FOR ESTIMATION OF SYNCHRONOUS BEARING 

FORCE COEFFICIENTS IN FLEXIBLE ROTOR-BEARING SYSTEMS 

The procedure for derivation of the equation for identifying synchronous bearing dynamic 

characteristics follows. The procedure includes a description of the equation of motion which 

includes gyroscopics, derivation of unbalance response formula, translation of the responses at 

the displacement sensor locations to the bearing mid-planes; and finally, the development of the 

identification equation.  

  Figure 11 depicts a flexible rotor composed of a slender shaft with discs mounted on it. 

The rotor is supported on anisotropic bearings. The coordinate system used to formulate the 

equations of motion and to describe lateral rotor displacements used in the identification 

procedure in [1] is also shown. Rotor displacement coordinates at the ends of each beam 

element are defined by two translational (x, y) and two rotational ( yx ββ , ) degrees of freedom. 

The equations of motion of a typical rotor-bearing system [23] with gyroscopic effects are  

  

    ( )Ω+ − + =Mq Cq Gq Kq Q t&& & &     (2) 

where M, C and K are the global matrices of rotor inertia, damping and stiffness matrices, G 

denotes the global gyroscopic matrix and Q represents the excitation force vector. The response 

vector q denotes the vector of generalized displacements and Ω represents the rotor speed. The 

global coordinate displacement vector q(t) and force vector Q(t) are  

  

 
1 1 2 1..

x yi i x yi i i N
β β

⎡ ⎤⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
= =

=

TT
q q q q q    ;   q   NB B iL L L

  (3) 

 

 

 



 24

 
 

Figure 11.  Schematic view of flexible rotor supported on anisotropic bearings 

 

The rotor is discretized into a number of elements with 4 degrees of freedom (two 

translational and two rotational) at each station. Presently, each element is modeled as a 

Timoshenko beam with Hermitian shape functions. Figure 12 shows the directional notation of 

the element degrees of freedom. 

 

   x    x 

   yβ           xβ  

     y          

                    zβ& =Ω        

       

Figure 12.  Element degrees of freedom (x, y, xβ , yβ ) shown at a station of a 

cylindrical beam element 

 

where (x, y, xβ , yβ ),are the nodal degrees of freedom. N denotes the number of nodes or 

stations and related to the number of elements (NE) by, N = NE +1.  
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The rotor-bearing system is excited with a known imbalance mass distribution. The rotor 

imbalance frequency of excitation is synchronous with rotor speed (ω =Ω ).  

 

[ ]1
1..

N
i Nx y x yi i i i

F F M M
=

⎡ ⎤= = ⎣ ⎦
TT

U iQ Q Q Q    ;   Q   L L   (4) 

where, QU is the force vector at the plane of imbalance.  At a station with imbalance 

distribution of mass mu, its center of mass acting at a radius r from the rotor centerline axis and 

at a phase angle ofφ radians with respect to an arbitrary reference. The components of the 

centrifugal force in orthogonal directions due to imbalance on the rotor spinning with excitation 

frequency ω  are mur 2ω cos( )φω +t   and mur 2ω sin( )φω +t , respectively, i.e. 

 

   2 ( ) ( ) 0 0i t i t
u um r e ieω φ ω φω + +⎡ ⎤−⎣ ⎦

T

UQ =      (5) 

The generalized load vector Q is known from the imbalance distribution and the rotational 

speed of the rotor. For synchronous excitation (ω Ω= ), the equations of motion reduce to the 

algebraic form  

 

   2
0 0[( ) ( )]Ω Ω Ω− + + − =M K i C G q Q      (6) 

where q0 and Q0 represent the vectors containing the complex amplitudes of the response and 

excitation at each station, respectively.  

Arranging rows and columns of (6) such that the first four rows of equations of motion 

correspond to the bearing displacements zB1 and zB2 and along two orthogonal (x, y) directions, 

the matrix form of equations of motion is written as 

 

    R B 0 0[ ]+ =H H q Q                  (7) 

where HR is the rotor impedance matrix, HB, the bearing impedance matrix, and q0, the 

displacement vector, is composed of the following sub-vectors, 

 

    [ ]T0 B1 B2 u=q z z z                    (8) 

with bearing displacements defined as  

 

[ ]1 1B1 B Bx y=z T    ;    [ ]TB2 2 2B Bx y=z                  (9) 

 

and the vector of unknown internal displacements, zu, is given by 
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   (r) (r)
1 B1 B2 N⎡ ⎤= ⎣ ⎦

T

uz q q q qL L L      (10) 

where     

(t)
i

T
x yi i
⎡ ⎤= ⎣ ⎦q   ;    (r)

i i=1..

T

i i
 Nx yβ β⎡ ⎤= ⎣ ⎦q      (11) 

are defined to represent the vector of undetermined internal displacements. Hence, it is clear 

that 

    (t) (r)
i i i i=1..  N=q q qU .           (12) 

The dynamic stiffness matrix HR depends on the rotor properties (stiffness, damping, 

gyroscopics, shear deformation factor, etc.,), and frequency of excitation (ω= Ω). HB is the 

rotor dynamic impedance matrix which consists of the stiffness and damping coefficients of 

the fluid-film bearings. Both the rotor and bearing dynamic impedance matrices are partitioned 

into nine sub-matrices. i.e.,  

 

            
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R11 R12 R13

R R21 R22 R23

R31 R32 R33

H H H
H H H H

H H H

    ;     
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

B1

B B2

H 0 0
H 0 H 0

0 0 0

  (13) 

where HB1 and HB2 are the bearing impedance matrices of the first and second bearing, 

respectively. These matrices comprise of the bearing stiffness and damping coefficients 

combined in a complex form as given below, 

    

1,2

ixx ixx ixy ixy

iyx iyx iyy iyy i

K i C K i C

K i C K i C

Ω Ω

Ω Ωω
=

+ +⎡ ⎤
⎢ ⎥=

+ +⎢ ⎥⎣ ⎦
BiH    (14) 

Thus, there are eight unknowns for each bearing – four stiffness coefficients and four 

damping coefficients, resulting in a total of sixteen unknown coefficients for a two-bearing 

system. From equations (7), (8) and (11), the matrix equations of motion are written as  

 

⎡ ⎤ ⎧ ⎫ ⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

R11 R12 R13 B1 B1 B1

R21 R22 R23 B2 B2 B2

R31 R32 R33 u u 0

H H H z H 0 0 z 0
H H H z 0 H 0 z 0
H H H z 0 0 0 z Q

  (15) 
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5.2 EXTENSION TO THE IDENTIFICATION PROCEDURE 

 

A typical Timoshenko beam element is considered with end nodes Ni and Ni+1. The length 

of the beam element is Li. Using third order interpolation functions, primary displacements at 

any location (p) on the beam element are described as  

 

   1 2 3 4

1 2 3 4

1 1

1 1

( )

( )

N NN N

N NN N

i ii i

i ii i

y y

x x

x z x x

y z y y

φ φ β φ φ β

φ φ β φ φ β
+ +

+ +

= + + +

= + + +

p

p

   (16) 

The interpolation functions expressed as a function of shear parameter ν, the local axial 

coordinate (zi) and the length of the element (Li), are  

 

          

2

1

2

2

2

3

1( , , ) 1 3 2 .
1

1( , , ) 1 1
1 2

1( , , ) 3 2 .
1

i i i
i i

i i i

i i i i i
i i

i i i i

i i i
i i

i i i

z z zz L
L L L

L z z z zz L
L L L L

z z zz L
L L L

φ ν ν ν
ν

φ ν ν
ν

φ ν ν
ν

⎡ ⎤⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= + − − −⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ ⎢ ⎥⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞− ⎢ ⎥= − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
⎡⎛ ⎞ ⎛ ⎞
⎢= − +⎜ ⎟ ⎜ ⎟+ ⎝ ⎠ ⎝ ⎠⎣

2

4
1( , , ) 1 1

1 2
i i i i i

i i
i i i i

L z z z zz L
L L L L

φ ν ν
ν

⎤
⎥

⎢ ⎥⎦
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞− ⎢ ⎥= − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

   (17) 

Since the responses are not measured exactly at the bearing centerline locations, the 

identification procedure [7] is modified to incorporate the measurements at the displacement 

sensor locations. Using the interpolation functions equations (15), the bearing response vectors 

zB1 and zB2 are expressed in a simplified notation, in terms of the measured responses near the 

corresponding bearings, i.e., 

 

         uB1 m1

uB2 m2

a
b

= +

= +

z  z A z
z  z B z

     (18) 

where zm1 and zm2 are the measured response vectors near the bearing locations (at the location 

of sensors), a and b are scalar functions of the interpolation functions and A and B are the 

matrix functions of the interpolation functions.   

Substituting equations (18) in (14) and expanding terms and rearranging, results in the 

following system of equations. 
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( )
( )

a b a
a b b
a b

= −

= −

=

R11 m1 R12 m2 R13 u B1 m1 u

R21 m1 R22 m2 R23 u B2 m1 u

R31 m1 R32 m2 R33 u u

 H  z  +  H  z  + H  z H  z  + A z
 H  z  +  H  z  + H  z H  z  + B z
 H  z  +  H  z  + H  z  Q

   (19) 

where the sub-matrices with super index ¯are defined as given below, 

 

        

3b

=

=

=

R13 R11 R12 R13

R23 R21 R22 R23

R33 R31 R 2 R33

H H  A + H  B + H
H H  A + H  B + H
H H  A + H  B + H

    (20) 

The rotor response (internal nodes) vector zu is calculated from (15), 

 

   1
3      a b− ⎡ ⎤= − −⎣ ⎦u R3 u R31 m1 R32 m2z H Q H z H z    (21) 

The equivalent reaction forces at the bearings are defined as,  

 

                  +    +  
   +    +  

a b
a b

− =

− =
B1 R11 m1 R12 m2 R13 u

B2 R21 m1 R22 m2 R23 u

f H z H z H z
f H z H z H z

    (22) 

There are eight unknown complex bearing impedances and only four equations to solve the 

system of equations (18). Hence, a minimum of two linearly independent imbalance 

experiments (mu, ru, φ) j=1, 2 are needed to solve all the unknown bearing coefficients. m1
jz  and 

  j=1, 2m2
jz  are the two linearly independent responses measured at the drive end and free end 

bearings, respectively. Since the equivalent reaction forces are functions of the recorded 

responses, the corresponding equivalent bearing reaction forces are denoted by B11f  and B21f  for 

the first imbalance test, and, B21f  and B22f for the second imbalance test. Thus, 

 

   
1 1 2 2

u uB1 m1 m1 B11 B12

1 1 2 2
u uB2 m2 m2 B21 B22

         

         

a a

b b

⎡ ⎤ ⎡ ⎤⎦⎣⎣ ⎦
⎡ ⎤ ⎡ ⎤⎦⎣⎣ ⎦

+ + =

+ + =

H z A z z A z f f

H z B z z B z f f

M M

M M

   (23) 

where 1
uz  and 2

uz  are obtained from equation (20) for the two imbalance test responses 1mz  

and 2mz , and for the two imbalance excitations 1
uQ  and 2

uQ . Equation (23) yields bearing 

coefficient matrices HB1 and HB2.   
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IDENTIFICATION OF BEARING COEFFICIENTS FOR IDENTICAL BEARINGS 

Fluid film bearings are considered identical when they have the same physical properties 

and lubricant conditions, and when supporting the same static load. By assuming identical 

bearings, the number of unknowns in the system of equations (23) is reduced from sixteen to 

eight, thus making the algebraic system over-determined. The Least squares (LS) procedure 

can be used to estimate synchronous force coefficients. Equation (23) for identical bearings is 

written as  

 
H  DM = RFB       (24) 

where DM and RF are measured data matrices and reactive force matrices formed by 

augmenting the two equations of (23) i.e., 

 
1 1 2 2 1 1 2 2[         ]u u u um1 m1 m2 m2

[ ]B11 B12 B21 B22

a a b b= + + + +

=

z A z z A z z B z z B z

f f f f

DM
RF

M M M

M M M   (25) 

Since there is no exact solution to these over-determined set of equations with relation to its 

unknowns, the solution by LS which corresponds to the best fit to the given data gives [24] 

 
†H   = B DMRF      (26) 

where     
H -1 H † =  DM (DM DM) DM               (27) 

is the pseudo-inverse of DM. Superscript H denotes the complex conjugate transpose 

(Hermitian) of a matrix. The optimal solution (26) is the one which minimizes the norm 
2H  DM - RFB  . 

Ill-conditioning happens often in engineering problems and is usually related to the 

elements of a matrix with very different magnitudes from each other.  A single number, called 

the condition number would be able to asses the “amount” of ill-conditioning usually obtained 

from the norm of the matrix.  Condition number (CN), defined as the product of the Euclidean 

norm of a matrix A and A-1, provides a measure of the sensitivity of the linear system of 

equations to variations in the elements of A, due to noise or uncertainty in measurements. 

Condition numbers close to 1 indicate that the matrix is well conditioned and presents no errors 

in inverse calculations. The larger the condition number, the more ill-conditioned the matrix is, 

rendering inaccurate calculation of inverse (or Moore Penrose inverse) in solving the system of 

equations.  
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CHAPTER VI  

VALIDATION OF IDENTIFICATION PROCEDURE  

 

6.1 VALIDATION OF THE METHOD WITH NUMERICAL DATA 

A numerical simulation is performed to check the validity of the proposed identification 

method. Numerical predictions of rotor response near the bearing locations are obtained from 

an assumed set of bearing force coefficients. Table 5 shows the bearing synchronous stiffness 

and damping force coefficients used in the simulation.  

 

Table 5 Assumed bearing coefficient values to predict rotor responses  
 

Kxx Kxy Kyx Kyy Cxx Cxy Cyx Cyy 
Location 

N/m N/m N/m N/m N-s/m N-s/m N-
s/m N-s/m 

Drive-end 
bearing 1 x  107 1 x 106

 -1 x 106 1 x  107 105 0 0 105 

Free-end 
bearing 0.5 x 107 0.5 x  106 -0.5x  106 0.5 x  107 0.5x105 0 0 0.5 x105 

 

 

 Table 6 shows the amount of imbalance used in the estimation of imbalance responses 

in the numerical simulation. The responses are calculated at the drive-end bearing and rotor 

mid-span for a few speeds, particularly near the system critical speed.  

 
 

Table 6 Imbalance mass excitation to predict responses – Numerical simulation  
______________________________________________________________________ 
Imbalance Test    Location Imbalance mass amount  phase angle (deg) 

 (g-mm) 
      1     drive-end disk    742              00 

      2   free-end disk                 742              00 

     (10.5 g x 70 mm) 
         

  

 Figures 13-14 show the predicted response for both imbalance tests at the drive-end bearing 

and the rotor mid-span. The responses from the numerical experiment are then input in to the 

identification procedure to extract the bearing stiffness and damping coefficients from the 

imbalance responses. 
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Figure 13. Rotor response at drive-end bearing for assumed set of bearing coefficients – 

Numerical simulation 
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Response at the rotor mid-span

0

4

8

12

16

1000 1500 2000 2500 3000 3500 4000 4500 5000

Speed (rpm)

A
m

pl
itu

de
 (u

m
)

(X1,Y1) - Probes near drive-end bearing        
(X2,Y2) - Probes near free-end bearing 
(CX,CY) - Rotor mid-span probes 
(B1,B2) -  Drive-end and free-end bearings 

 u 

X1, Y1 CX, CY X2, Y2 

B1 B2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Rotor response at mid-span for assumed set of bearing coefficients – Numerical 

simulation 

 

  

 Predicted responses at the drive-end bearing for the first imbalance test are larger when 

compared to the second imbalance test when the imbalance is near to a bearing location. Notice 

that there is not much difference in the rotor mid-span displacements for both imbalance 

responses. Figures 15-16 show the identified force coefficients obtained from the predicted 

rotor responses. Identification procedure renders identical bearing coefficients as those assumed 

to obtain the predicted rotor response.  
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Figure 15. Identified bearing stiffness coefficients as a function of shaft speed. Results of 

numerical experiment  

(1) Drive-end bearing (2) Free-end bearing 
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Figure 16. Identified bearing damping coefficients as a function of shaft speed. Results of 

numerical experiment 

 

 

6.2 PREDICTIONS OF BEARING COEFFICIENTS OF A TWO-LOBE BEARING BASED 

ON ISOVISCOUS AND ISOTHERMAL FLUID FLOW MODEL 

 Table 8 shows predictions of the bearing force coefficients based on iso-viscous, 

isothermal, fluid flow model [18]. The bearings have uneven wear around their inner surface 

which makes it difficult to determine the preload with accuracy. A small nominal preload value 

of 0.05 is used in the calculations of the bearing coefficients presented in Table 7. Values of 

bearing radial clearance and static load (fraction of rotor weight) given in Table 1 are used in 

the prediction of the bearing force coefficients.  
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Table 7. Predicted bearing coefficients of two-lobe bearings based on isoviscous, 

isothermal fluid flow model 

 

Speed Kxx Kxy Kyx Kyy Cxx Cxy Cyx Cyy 
rpm MN/m kN-s/m 
400 1.11 -0.47 -3.02 5.55 17.05 -31.18 -31.13 131 

1000 1.1 0.03 -2.44 3.27 10.22 -11.69 -11.68 44.68 
1500 1.12 0.26 -2.32 2.74 7.98 -7.31 -7.3 28.96 
2000 1.14 0.47 -2.26 2.38 6.77 -5.15 -5.14 21.47 
2500 1.17 0.64 -2.27 2.24 6.07 -3.9 -3.89 17.54 
2750 1.18 0.73 -2.28 2.17 5.81 -3.45 -3.43 16.12 
3000 1.19 0.82 -2.29 2.11 5.61 -3.06 -3.05 14.97 
3250 1.2 0.91 -2.33 2.12 5.48 -2.73 -2.72 14.27 
3500 1.21 1 -2.37 2.13 5.37 -2.45 -2.43 13.66 
3750 1.23 1.09 -2.41 2.14 5.28 -2.2 -2.18 13.14 
4000 1.24 1.19 -2.45 2.15 5.2 -1.98 -1.97 12.68 
4250 1.25 1.28 -2.49 2.16 5.13 -1.79 -1.78 12.28 
4500 1.26 1.37 -2.53 2.17 5.06 -1.62 -1.6 11.92 
4750 1.27 1.47 -2.58 2.19 5 -1.47 -1.45 11.61 
5000 1.28 1.56 -2.63 2.23 4.94 -1.3 -1.28 11.39 

 

 

 The predicted direct stiffness coefficient Kxx slowly increase with speed whereas, Kyy 

decreases with speed by 50% over the speed range. The magnitude of the stiffness in the 

vertical (y) direction is about twice the magnitude in the (x) horizontal direction since the static 

load is along the (y) direction. Direct damping coefficients decrease with speed although 

damping in the direction of the loaded pad is about three times the direct damping in the other 

direction.  Cross coupled stiffness coefficients are of opposite sign throughout the operating 

speed range. The magnitude of cross-coupled damping coefficients is of the same order as for 

the direct damping coefficients in the horizontal (x) direction.  
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CHAPTER VII 

IDENTIFICATION OF BEARING SYNCHRONOUS FORCE COEFFICIENTS 

FROM TEST MEASUREMENTS 

 

7.1 IDENTIFIED BEARING COEFFICIENTS FROM THREE DIFFERENT VALUES OF 

IMBALANCE EXCITATION 

 The experimentally recorded imbalance responses (Figures 6-9) for the three cases of 

imbalances are used in the identification procedure to extract bearing stiffness and damping 

coefficients for the test rotor shown in Figure 3. Equations (23) in Chapter V enable 

identification of the bearing dynamic coefficients from imbalance response measurements. 

These equations are programmed into MATHCAD® to ease the computational effort in 

determining eight dynamic bearing stiffness and eight damping coefficients. As mentioned 

earlier, the only requirement for the enhanced identification procedure is that the rotor model 

has nodal positions at the bearing locations. 

 The test rotor is supported on two identical, two lobed fluid film bearings.  It is thus 

reasonable to expect that the bearings have similar dynamic force coefficients since both of 

them carry similar static loads and operate at similar static journal eccentricities. Assuming that 

the bearings have identical dynamic force coefficients also reduces the number of unknowns 

from sixteen to eight. The least squares procedure is implemented to identify the bearing 

dynamic force coefficients. 

 Figures 17-19 depict the estimated bearing dynamic force coefficients from measured 

responses for three increasing imbalance masses, along with the predicted coefficients for the 

two-lobe bearing based on isoviscous and isothermal fluid model (Table 8). Similar patterns of 

bearing coefficients are observed from all the three increasing imbalance mass excitations.  The 

direct stiffness coefficients (Kxx,Kyy) are similar at low shaft speeds and then Kyy increases, 

whereas Kxx remains almost constant throughout the identification speed range. The test direct 

stiffness Kxx agrees well with the predictions. At low speeds, damping coefficients are larger in 

the horizontal direction (Cxx) than in the vertical direction (Cyy) and as the speed approaches 

2400 rpm and from thereon, the damping coefficients remain invariant. The direct damping 

coefficients (Cxx) show best agreement with predicted direct damping coefficients in the 

horizontal directions (x).  
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Figure 17. Identified rotordynamic force coefficients of two-lobe bearing. Identification 

from imbalance measurements with an imbalance mass of 10.5 gram. Comparison with 

predicted coefficients. 
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Bearing coefficients estimated from imbalance mass = 7.25 gram 
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Figure 18. Identified rotordynamic force coefficients of two-lobe bearing. Identification 

from imbalance measurements with an imbalance mass of 7.25 gram. Comparison with 

predicted coefficients. 
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Figure 19. Identified rotordynamic force coefficients of two-lobe bearing. Identification 

from imbalance measurements with an imbalance mass of 3.88 gram. Comparison with 

predicted coefficients. 
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 The cross coupled stiffness coefficient (Kxy) is negative and decreases slightly as the 

identification speed increases, where as the other cross-coupled stiffness coefficient (Kyx) is 

positive and increases slowly over the speed range considered. Note that the cross coupled 

stiffness coefficients are of opposite sign, indicating the presence of a follower force in the two 

lobe cylindrical bearings. Predicted cross-coupled stiffness coefficients show the same trend as 

the identified coefficients.  Cross coupled damping coefficients are small compared to the direct 

damping coefficients and are of opposite sign.  

Recall that Equation (26) is solved at each speed considered, and thus a system of equations 

results. The measurement data matrix changes as a function of speed and so does the condition 

number of the identification matrix. Figure 20 shows the condition number of the measurement 

data matrix DM, defined in equation (27), for the three imbalance test cases.  A large value of 

the condition number implies that the measurement data matrix DM is ill-conditioned and 

propagates errors in the calculation of its inverse to obtain the bearing parameters.  

 

Figure 20. Condition number of the quadratic form of the measurement data matrix 

for all test cases (identification response matrix) as a function of identification speed.  
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 The condition number of the identification measurement data matrix from a low 

imbalance mass (3.88 gram) is higher than the corresponding condition numbers of the 

identification matrices for higher imbalance masses at shaft speeds less than 2000 rpm. Note 

that 3.88 gram imbalance mass gives good coefficients in the speed range of 2.0 to 3.5 krpm. 

Large values of the condition number for shaft speeds greater than 3800 rpm indicate numerical 

ill-conditioning and results in unreliable (poor) identified coefficients in the noted speed range. 

Notice that the amplitudes of vibration for 3.88 gram of imbalance mass excitation are small 

compared to the responses from large imbalance mass (7.25 gram and 10.5 gram) excitations. 

Thus, it is likely the measurements from small imbalances are affected by noise resulting in 

poor identification when compared to the identification results from 7.25 gram and 10.5 gram 

imbalance mass excitations.  

 At the rotor critical speeds i.e., around 4000 rpm, the condition number for all the cases 

of imbalance mass rises up to 15 times the average value, indicating that slight changes in the 

measurements of the responses near the critical speeds largely affect the accuracy of the 

identified bearing coefficients. Numerous peaks in the condition number for the case of 3.88 

gram of imbalance mass at low rotational speeds i.e., below 2000 rpm, explains the reason for 

the scatter of identified coefficients, particularly for damping coefficients. This explains the 

reason for few negative values of damping coefficients, which are not feasible in reality.  

 Returning to Figures 17-19, the direct stiffness coefficients increase with the amount of 

imbalance excitation used to determine those coefficients. Direct stiffness coefficients (Kyy) 

estimated from 10.5 gram imbalance mass excitation on average 7% larger compared to the 

corresponding coefficients obtained from 3.88 gram imbalance mass excitation.  Direct 

stiffness coefficients (Kxx) are 20% larger for the same comparison of imbalance cases. Direct 

stiffness (Kxx) identified from an imbalance mass excitation of 3.88 gram are negative at the 

operating speed of 4000 rpm, due to the ill-conditioning of the measured data matrices 

explained by high values of condition number matrices at those speeds. 

 The direct damping coefficients (Cxx) identified from imbalance mass of 10.5 gram, are 

on average 6% larger when compared to the coefficients determined from 7.25 gram imbalance. 

A similar increase is observed in the other direct damping coefficient (Cyy). Thus, the bearing 

direct coefficients are found to increase with the amount of imbalance mass.  

  Cross-coupled coefficients are found to increase in magnitude although the trend is not as 

well defined as with the bearing direct coefficients. For a 40% increase in the imbalance mass, 

cross-coupled damping coefficients (Cxx) are 20% larger. Cross-coupled damping coefficients 
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(Cyy) are negative in the speed range considered and, on average 23% larger in magnitude for an 

increase in the imbalance mass.  

 Identification of bearing synchronous coefficients from various imbalance mass excitations 

proves that the procedure is very sensitive to the smallest imbalance mass (3.88 gram). All the 

bearing synchronous force coefficients increase with the amount of imbalance mass. The 

identification method is robust for the case of large imbalance mass excitation (10.5 gram), 

which provides reliable results of bearing force coefficients. Identified coefficients are scattered 

at low speeds for lower imbalances where the sensitivity of the algorithm to the presence of 

noise is large, as will be shown in the upcoming section.  

 The bearing synchronous force coefficients are identified for an increased number of rotor 

sub-elements. The rotor is subdivided into 22 elements in contrast to the previous rotor model 

of just 9 elements and then the identification is carried out. The resulting coefficients are found 

to increase in magnitude to the above observed bearing force coefficient values. As with any 

finite element model, increasing the number of elements the structure is subdivided into, the 

accuracy of the solution is enhanced. Table 9 compares identified bearing dynamic coefficients 

for increased number of rotor sub-stations with previously carried out identification with n=9 

rotor stations, from responses obtained from imbalance mass excitation of 10.5 gram.  

 

Table 8. Comparison of identified coefficients at various shaft speeds for number of rotor 

stations (n=22) to the coefficients obtained with (n=9) stations. 

 

      Imbalance mass = 10.5 gram (test case 3) 

Speed(rpm) Kxx (MN/m) Kyy (MN/m) Kxy (MN/m) Kyx (MN/m) 

 n = 9 n = 22 n = 9 n = 22 n = 9 n = 22 n = 9 n = 22 

1500 0.1548 0.174 1.123 1.176 -0.573 -0.581 1.744 1.775 

2500 0.396 0.526 2.348 2.621 -1.032 -1.052 2.820 2.971 

3000 0.813 1.11 3.780 4.461 -1.424 -1.452 3.893 4.277 

3500 0.791 1.332 4.860 6.413 -1.382 -1.12 5.893 7.101 

Speed(rpm) Cxx (kN-s/m) Cyy (kN-s/m) Cxy (kN-s/m) Cyx (kN-s/m) 

 n = 9 n = 22 n = 9 n = 22 n = 9 n = 22 n = 9 n = 22 

1500 10.42 10.62 5.333 5.389 6.593 6.935 0.588 0.467 

2500 8.044 8.192 7.819 8.412 6.569 7.493 0.903 0.523 

3000 7.415 7.868 11.11 12.24 7.089 8.652 -0.662 -1.49 

3500 5.822 5.76 16.54 20.92 4.444 6.111 -0.128 -1.43 
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An increase in the number of rotor stations increases on average the values of bearing 

dynamic coefficients.  Direct stiffness values (Kxx) are found to increase by more than 15% on 

average with a near three-fold increase in the number of rotor stations. The increase in bearing 

direct damping coefficients is 3%-4% on average. Hence, a too fine finite element 

discretization of rotor shaft is shown to be not an important factor in the accuracy of identified 

bearing dynamic coefficients.  

 

7.2 NOISE STUDY ON IDENTIFICATION OF BEARING COEFFICIENTS 

 Measurement data is always contaminated by different types of noise, be it from 

mechanical or electrical instrumentation. The least squares procedure for estimating bearing 

dynamic coefficients has a bias problem whenever noise is included in the measurement data 

matrix DM [4]. Hence it is worthwhile studying the effect of noise on the identified bearing 

coefficients.  

 The noise to signal ratio (NSR) is defined as 

 

0

noise
]x

STD[ ]NSR =
STD[

     (28)  

where STD is the standard deviation, x0 is the measurement value, and Gaussian noise is added 

to the measurements as needed. Noise is added to the imbalance responses obtained from 10.5 

gram imbalance mass excitation and bearing dynamic coefficients are estimated. NSR = 1% 

and NSR = 10%. Gaussian noise is added to the original signal as a complex number and thus 

affecting both amplitude and phase of the rotor response.  

 Figures 21-22 depict identified bearing coefficients obtained from 1% and 10% noise added 

to the measurements obtained from imbalance mass excitation of 10.5 gram. Notice that the 

identified bearing coefficients follow the trend of the baseline coefficients identified without 

inclusion of noise (see Figure 17). Identified coefficients are estimated without much scatter 

even for a NSR of 10%, thus indicating that the identification procedure is robust for the noise 

magnitudes considered.  

  



 44

 

1000 2000 3000 4000
4 .106

2 .106

0

2 .106

4 .106

6 .106 Direct stiffness coefficients-equal ergs

Speed (rpm)

St
iff

ne
ss

 (N
/m

)

1000 1500 2000 2500 3000 3500 4000
4 .106

2 .106

0

2 .106

4 .106

6 .106 Cross coupleld stiffness -equal brgs

Speed (rpm)

St
iff

ne
ss

 (N
/m

)

1000 1500 2000 2500 3000 3500 4000
1 .104

0

1 .104

2 .104 Direct damping coefficients-equal brgs

Speed (RPM)

D
am

pi
ng

 (N
-s

/m
)

1000 1500 2000 2500 3000 3500 4000
1 .104

0

1 .104

2 .104 Cross-coupled damping -equal brgs

Speed (RPM)

D
am

pi
ng

 (N
-s

/m
)

 
 

Figure 21. Identified rotordynamic bearing coefficients from imbalance mass excitation of 

10.5 gram. Identification after the inclusion of Gaussian noise, NSR =1%, in the recorded 

responses. 
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Figure 22. Identified rotordynamic bearing coefficients from imbalance mass excitation of 

10.5 gram. Identification after the inclusion of Gaussian noise, NSR =10%, in the 

recorded responses. 
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Table 9. Identified bearing force coefficients with two different NSR (1% and 10%) in 

recorded responses.  Comparison with baseline identified coefficients from imbalance 

mass =10.5 gram test case. 

 
     Baseline 
 Bearing 

Coefficients 2250 rpm 3500 rpm 2250 rpm 3500 rpm 2250 rpm 3500 rpm
Kxx 0.44 0.66 0.46 0.83 0.72 0.62
Kxy -0.33 -0.38 -0.47 -0.15 0.55 -0.13
Kyx 1.94 2.79 2.32 2.04 0.68 3.13
Kyy 1.80 3.81 1.91 3.78 2.08 2.52

Cxx 6.42 4.48 7.29 3.34 2.08 3.29
Cxy 4.46 1.25 4.77 1.50 5.71 2.05
Cyx -1.47 -4.57 -1.66 -4.48 -2.46 3.57
Cyy 3.24 4.09 4.49 2.93 -0.99 3.43

M
N

/m
 

NSR = 0% NSR = 1% NSR = 10% 

kN
-s

/m
 

 
 

  

 Table 9 shows a comparison of the identified bearing parameters derived with noise (1% 

and 10% NSR) in the measurements and the baseline coefficients. The results are for a10.5 

gram imbalance mass test case. Large differences of about 130% in cross-coupled stiffness 

values for 10% inclusion of NSR are apparent. Direct stiffness coefficients are almost invariant 

to the largest inclusion of noise to signal ratio (10%) variation being 10%-15% from the 

identified values.  

 Notice that the bearing coefficients identified for the case of NSR=10% differ most 

with the baseline coefficients at shaft speeds ( > 4000 rpm) where the condition number of the 

measurement data matrix DM results in high values. Also notice that few direct damping 

coefficients are negative with the inclusion of noise. Identification of bearing dynamic force 

coefficients thus requires accurate measurement of phase angles and amplitudes of rotor 

responses. 
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CHAPTER VIII 

CONCLUSIONS  

  

 A procedure is presented, along with experimental validation, for identification of bearing 

synchronous force coefficients in flexible rotor-bearing systems over an operating speed range. 

The validity of the proposed enhancement to the original identification procedure [1] is 

demonstrated. Realistic bearing parameters as a function of rotor speed are necessary for 

predictions of rotor response to imbalances.  

 The identification from measurements of rotor imbalance response renders experimentally 

determined bearing force coefficient which agree with predictions. Assumption of identical 

bearings in reducing the number of unknowns is justified by the physical arrangement of the 

rotor-bearing system.  Identification by imbalance response measurements is largely influenced 

by shaft flexibility as confirmed by the deflections at rotor mid-span.  

Bearing force coefficients are identified for three different imbalance mass excitations. The 

effect of the imbalance mass amount, used for system excitation, on the identified coefficients 

is found to be mild. Insignificant differences are observed for identification from different 

values of imbalance masses, except with the lowest imbalance mass. An optimum amount of 

imbalance amount needs to be selected for identification such that the rotor responses are large 

enough to ensure low noise to signal ratios. In particular, the identification of bearing 

parameters from imbalance responses is quite sensitive at rotor critical speeds (rapid phase 

angle changes), although large rotor amplitudes at those speeds minimize the noise to signal 

ratio.  

The sensitivity of the procedure to the presence of noise in the measurements is assessed by 

incorporating 1% and 10% Gaussian noise in the responses and identifying the bearing dynamic 

force coefficients. The extracted bearing parameters do not vary significantly which attests to 

the robustness of the identification procedure.  

 The proposed identification method enhances the original method [1] by recognizing that in 

practice the measurement locations (eddy current displacement sensors) do not coincide with 

the bearing centerline locations.  
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APPENDIX A 
 

Comparison of bearing force coefficients from the enhanced method to those obtained from 

original procedure  

For the largest imbalance test case (10.5 gram), the bearing force coefficients were estimated 

in [1] and assuming the rotor response measurements were obtained at the bearing centerline 

locations. Figure A.1 shows the earlier bearing force coefficients and the present bearing 

coefficients identified from 10.5 gram imbalance mass (see Figure 17). The direct stiffness 

coefficient Kxx is almost invariant to the enhancement in the procedure. The other direct stiffness 

coefficient Kyy differs by 10% on average. The differences in the bearing force coefficients, 

estimated from the two procedures, increase at large shaft speeds, except for the direct damping 

coefficient (Cxx).   

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1. Bearing force coefficients estimated from measurements of 10.5 gram imbalance. 

Assumption: measurements recorded at bearing centerline locations. Original and 

enhanced identification methods 
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Lines : original identification method [1] 
Symbols: current - enhanced procedure 

 


