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EXECUTIVE SUMMARY 

Gas foil bearings (GFBs) are finding widespread usage in oil-free turbo expanders, APUs and 

micro gas turbines for distributed power due to their low drag friction and ability to tolerate high 

level vibrations, including transient rubs and severe misalignment, static and dynamic. The static 

load capacity and dynamic forced performance of GFBs depends largely on the material 

properties of the support elastic structure, i.e. a smooth foil on top of bump strip layers. 

Conventional models include only the bumps as an equivalent stiffness uniformly distributed 

around the bearing circumference. More complex models couple directly the elastic deformations 

of the top foil to the bump underlying structure as well as to the hydrodynamics of the gas film. 

This report details two FE models for the top foil supported on bump strips, one considers a 2D 

shell anisotropic structure and the other a 1D beam-like structure. The decomposition of the 

stiffness matrix representing the top foil and bump strips into upper and lower triangular parts is 

performed off-line and prior to computations coupling it to the gas film analysis governed by 

Reynolds equation. The procedure greatly enhances the computational efficiency of the 

numerical scheme.  

Predictions of load capacity, attitude angle, and minimum film thickness versus journal speed 

are obtained for a GFB tested decades ago. 2D FE model predictions overestimate the minimum 

film thickness at the bearing centerline, but underestimate it at the bearing edges. Predictions 

from the 1D FE model compare best to the limited tests data; reproducing closely the 

experimental circumferential profile of minimum film thickness.  The 1D top foil model is to be 

preferred due to its low computational cost. Predicted stiffness and damping coefficients versus 

excitation frequency show that the two FE top foil structural models result in slightly lower 

direct stiffness and damping coefficients than those from the simple elastic foundation model.  

A three lobe GFB with mechanical preloads, introduced by inserting shims underneath the 

bump strips, is analyzed using the 1D FE structural model. Predictions show the mechanical 

preload enhances the load capacity of the gas foil bearing for operation at low loads and low 

shaft speeds. Energy dissipation, a measure of the bearing ability to ameliorate vibrations, is not 

affected by the preload induced. The mechanical preload has no effect on the static and dynamic 

forced performance of GFBs supporting large static loads. 
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NOMENCLATURE 
Cαβ  Damping coefficients; , ,X Yα β =  [N·s/m] 
 c Nominal radial clearance [m] 

Jc  Measured journal radial travel [m] 
mc  Assembly radial clearance [m] 

D  Top foil (bearing) diameter,  2D R= ×  [m] 
E  Top foil elastic modulus [Pa] or [N/ m2] 
eX, eY Journal eccentricity component [m], 2 2

X Ye e e= +  
eF , GF  FE element nodal force vector and global nodal force vector 
1f  Normal load vector for a four-node finite shell element. 

 h Gas film thickness [m] 
th  Shell thickness [m]  
bh  Bump height [m] 

I  Moment of inertia [m4] 
i   Imaginary unit, 1−  
j   Node number along circumferential direction 

eK , GK  FE top foil element stiffness matrix and global nodal stiffness matrix 
sK  FE bump element stiffness matrix 
fK  Structural stiffness per unit area [N/m3] 

fK ′  Complex structural stiffness per unit area, ( )1f fK K iγ′ = +  [N/m3] 

lK  Structural stiffness per unit bump element [N/m] 
Kαβ  Stiffness coefficients; , ,X Yα β =  [N/m] 
k   Node number along the axial direction 

ijk  Stiffness matrices for a four-node finite element plate stiffness matrix 
tk  Shear correction coefficient (=5/6) in a shear deformable plate model [-] 

L  Bearing axial width [m] 
xl   Pad circumferential length, ( )t lR Θ −Θ  [m] 
0l  Half bump length [m] 
exl  FE thin foil length in the circumferential direction [m] 
eyl  FE thin foil length in the axial direction [m] 

MNM  Bending moment per unit element length in a thin shell [N] 
1,2m  bending moment vectors for a four-node finite shell element 
MNN  Membrane or in-plane force per unit element length in a thin shell [N/m] 
bN  Number of bumps [-] 

 p Hydrodynamic pressure in gas film [Pa] 
pa Ambient pressure [Pa] 
pA Average pressure along axial direction [Pa] 

mQ  Shear force per unit element length in a thin shell [N/m] 

1,2
eQ  Shear forces at the boundary of a FE element 

3,4
eQ  Bending moments at the boundary of a FE element 
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q  Transversely distributed load [N/m2]. 
 rP Preload on bearing [m] 
R   Top foil (bearing) radius [m] 

faS , fcS  Stiffening factors for elastic modulus in the axial and circumferential directions [-] 
0s  Bump pitch [m] 

t Time [s] 
bt  Bump foil thickness [m] 
tt  Top (thin) foil thickness [m] 

eU , GU  FE nodal displacement vector and global nodal displacement vector 
u  Shell circumferential displacement (x direction) 

eu  FE nodal displacement 
w  top foil transverse deflection [m] 

,X Y   Coordinate system for the inertial axes [m] 
,x z   Coordinate system on plane of bearing [m] 
xφ , yφ  Shell rotation angles about the y and x axes 
Φ  Journal attitude angle, tan-1(ex/ey) [rad] 
γ   Structural damping loss factor [-] 
μ Gas viscosity [Pa-s] 
ν  Shell axial displacement (y direction) 

1,2ν  Weight function for FE formulae 
pν  Poisson’s ratio [-] 
eψ  Hermite cubic interpolation function 

Θ Top foil angular coordinate [rad] 
Θp Preload offset position [rad] 
Ω  Rotor angular velocity [rad] 

thresholdΩ  Threshold speed of instability [Hz] 
ω  Whirl frequency [rad] 

thresholdω  Whirl frequency of unstable motions[Hz] 
nω  Natural frequency of system [Hz] 

WFR thresholdω / thresholdΩ .Whirl frequency ratio [-] 
 
Subscripts 

,α β = ,X Y  Directions of perturbation for first order pressure fields 
,M N = ,x y  Directions of shell membrane and moment force 

 
Superscripts 
i,j =1-3  Row and column numbers for a four-node finite element plate stiffness matrix  
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I. INTRODUCTION 

Implementing gas foil bearings (GFBs) in micro turbomachinery reduces system 

complexity and maintenance costs, and increases efficiency and operating life [1, 2]. 

Since the 1960s, tension tape GFBs and multiple leaf GFBs with and without backing 

springs, as well as corrugated bump GFBs, have been implemented as low friction 

supports in oil-free (small size) rotating machinery. In comparison to rolling element 

bearings and for operation at high surface speeds, both leaf GFBs and bump GFBs have 

demonstrated superior reliability in Air Cycle Machines (ACMs) of aircraft 

environmental control systems [3-6], for example. Figure 1 shows the configurations of 

two GFBs. In multiple overleaf GFBs, the compliance to bending from staggered 

structural foils and the dry-friction at the contact lines define their operational 

characteristics [5]. In corrugated bump GFBs, bump-strip layers supporting a top foil 

render a tunable bearing stiffness with nonlinear elastic deformation characteristics. In 

this type of bearing, dry-friction effects arising between the bumps and top foil and the 

bumps and the bearing inner surface provide the energy dissipation or damping 

characteristics [6]. 

 
(a) Multiple leaf GFB                                             (b) Corrugated bump GFB 

 
Figure 1. Typical Gas Foil Bearings for oil-free turbomachinery 

 

The published literature notes that multiple leaf GFBs are not the best of supports in 

high performance turbomachinery, primarily because of their inherently low load 

capacity [6]. A corrugated bump type GFB fulfills most of the requirements of highly 

Thin foil
Structural bump

Rotor spinning

Housing

Leaf foil
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efficient oil-free turbomachinery, with demonstrated ultimate load capacity up to 680 kPa 

(100 psi) [7, 8]. 

The forced performance of a GFB depends upon the material properties and 

geometrical configuration of its support structure (the top foil and bump strip layers), as 

well as the hydrodynamic film pressure generated within the bearing clearance. In 

particular, the underlying support structure dominates the static and dynamic 

performance of high speed, heavily loaded GFBs [9]. For example, due to the elastic 

deflection of the bump strip layers, GFBs show relatively small changes in film thickness 

as compared to those in journal eccentricity. The GFB overall stiffness depends mainly 

on the softer support structure, rather than on that of the gas film, which “hardens” as the 

shaft speed and applied load increase. Material hysteresis and dry-friction dissipation 

mechanisms between the bumps and top foil, as well as between the bumps and the 

bearing inner surface, appear to enhance the bearing damping [10]. 

The envisioned application of GFBs into midsize gas turbine engines demands 

accurate performance predictions anchored to reliable test data. Modeling of GFBs is 

difficult due to the mechanical complexity of the bump-foil structure, further aggravated 

by the lack of simple, though physically realistic, energy dissipation models at the contact 

surfaces where dry-friction is prevalent.  

In this report, the top foil, modeled as a structural shell using Finite Elements (FE), is 

integrated with the bump strip layers and in conjunction with the hydrodynamic gas film 

to predict the static and dynamic load performance of GFBs. Model predictions for two 

types of top foil structures, one and two dimensional, are compared to limited test results 

available in the literature. The effects of a mechanical preload on the GFB forced 

performance and stability characteristics are also studied. Shims installed under a bump 

strip layers at selected circumferential locations provide the preloads, thus modifying the 

nominal film thickness of the gas foil bearing. The objective is to determine 

enhancements in load capacity and rotordynamic instability for operation with small 

static loads and at high rotor speeds. 
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II. LITERATURE REVIEW 

In 1953 Blok and van Rossum [11] introduce the concept of Foil Bearings (FBs). The 

authors point out that bearing film thickness, larger than that of rigid gas bearings, can 

improve operational reliability and provide a solution for problems related to the thermal 

expansion of both a journal and its bearing. Field experience has proved, since the late 

1960’s, that Gas Foil Bearings (GFBs) are far more reliable than ball bearings that were 

previously used in Air Cycle Machines (ACMs) installed in aircrafts. Therefore, GFBs 

have since been used in almost every new ACM installed in both civil and military 

aircraft [1]. This literature review discusses previous work related to the analysis of 

corrugated bump type GFBs.  

Implementation of GFBs into high performance applications demands accuracy in 

modeling capabilities. Engineered GFBs must have a dimensionless load capacity larger 

than unity, i.e. specific pressure (W/LD) > Pa [2].  

Heshmat et al. [9,12] first present analyses of bump type GFBs and detail the bearings 

static load performance. The predictive model couples the gas film hydrodynamic 

pressure generation to a local deflection (wd) of the support bumps. In this simple of all 

models, the top foil is altogether neglected and the elastic displacement wd = α (p-pa) is 

proportional to the local pressure (p-pa) and a structural compliance (α) coefficient which 

depends on the bump material, thickness and geometric configuration. This model, 

ubiquitous in the literature of GFBs, is hereby known as the simple elastic foundation 

model. 

Peng and Carpino [13,14] present finite difference formulations to calculate the 

linearized stiffness and damping force coefficients of GFBs. The model includes both 

fluid (gas) film and structural bump layers used to simultaneously solve the Reynolds 

equations, and a simple equation to calculate iteratively gas film thickness for compliant 

GFBs. In the model of the underlying foil structure, a perfectly extensible foil is placed 

on top of the corrugated bumps. The model considers two neighboring bumps are not 

connected, i.e. no relative motion between them is assumed to occur.  

Carpino et al. [15-17] have advanced the most complete computational models to date, 

including detailed descriptions of membrane and bending effects of the top foil, and 

accounting for the sub-foil structure elastic deformation. In [15,16], the authors build FE 
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models for the gas film and the foil structure, couple both models through the pressure 

field and get solutions using an iterative numerical scheme. 

The bending and membrane rigidity terms of the FE model for the foil structure are 

not coupled so that the former and the latter render both the displacements for the 

bending plate and elastic plane (or membrane) models, respectively. On the other hand, 

[17] introduces a fully coupled finite element formulation for foil bearings. The FE 

formulations are based on moment, tension, curvature, and strain expressions for a 

cylindrical shell so that the membrane and bending stresses in the shell are coupled. This 

model incorporates both the pressure developed by the gas film flow and the structural 

deflections of the top and bump foils into a unique finite element. The predictions exhibit 

irregular shapes of pressure and film thickness due to foil detachment in the exit region of 

the gas film. Note that references [15-17] model the structural bump layers as a simple 

elastic foundation and do not present FE models to calculate the stiffness and damping 

coefficients of GFBs, but rather analyze GFBs at their steady state.  

San Andrés [10] presents an analysis of the turbulent bulk-flow of a cryogenic liquid 

foil bearing (FB) for turbopump applications. The model uses an axially averaged 

pressure to couple the flow field to the structural bump deflection. The foil structure 

model consists of a complex structural stiffness with a structural loss factor arising from 

material hysteresis and dry-frictional effects between the bumps and top foil, and the 

bumps and the bearing’s inner surface. The predictions show that the liquid oxygen FB 

reduces the undesirable cross-coupled stiffness coefficients and gets rid of potentially 

harmful half rotating frequency whirl. This paper reveals an important advantage of the 

FB that it has nearly uniform force coefficients and increasing damping coefficients at 

low excitation frequencies.  

Kim and San Andrés [18] validate the simple elastic foundation model predictions in 

comparison with limited experimental test data in [19]. The model uses an axially 

averaged pressure enabling a journal to move beyond the nominal clearance when 

subjected to large static loads. The predictions demonstrate that a heavily loaded gas foil 

bearing may have journal eccentricities over three times greater than its nominal 

clearance. Predictions for film thickness and journal attitude angle for increasing static 

loads are in good agreement with test data for moderately to heavily loaded GFBs with 

journal eccentricities greater than the nominal clearance. In lightly loaded regions, there 
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are obvious discrepancies between predictions and test data because of the fabrication 

inaccuracy of test GFBs [19,20]. At the ultimate load condition, the predictions show a 

nearly constant GFB static stiffness, indifferent to rotor speed, and with magnitudes close 

to the underlying bump support stiffness determined in contact conditions without rotor 

spinning.  

Lee et al. [21] present the effects of bump foil stiffness on the static and dynamic 

performance of foil journal bearings. To consider the deflection of a foil structure, the top 

foil is modeled as an elastic beam-like model and the bump is modeled as a linear spring. 

Predictions call for optimal bump stiffness magnitudes at specific rotor speeds to 

maximize the bearing load capacity. Furthermore, bump stiffness affects the GFB 

stability for operation at high rotor speeds. 

High operating speeds of a rotor supported on GFBs lead to relatively stiffer gas films 

in relation to the stiffness of the support bumps. Thus, the overall stiffness of GFBs 

depends mainly on the sub-foil structure stiffness and the damping arising from material 

hysteresis and dry-friction effects at the contact surfaces between bumps and top foil and 

bumps and bearing casing. An accurate modeling of the sub-foil structure is necessary to 

advance a more realistic predictive tool for the performance of GFBs.  
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III. DESCRIPTION OF GAS FOIL BEARINGS 

Gas foil bearings (GFBs) are compliant-surface hydrodynamic bearings that use 

ambient air or any process gas as the lubricating fluid. A hydrodynamic pressure builds 

up within the small gap or film between the rotating shaft and the smooth top foil. Figure 

2 shows the configuration of a “first generation” bump type GFB [7]. The GFB consists 

of a thin (top) foil and a series of corrugated bump strip supports. The leading edge of the 

thin foil is welded to the bearing housing, and the foil trailing edge is free. Beneath the 

thin foil, a bump foil structure is laid on the inner surface of the bearing. The thin foil of 

smooth surface is supported by a series of bump foils acting as springs, thus making the 

bearing compliant. The bump strips provide a tunable structural stiffness [9]. Coulomb-

type damping arises due to material hysteresis and dry-friction between the bumps and 

top foil, as well as between the bumps and the bearing inner surface [10]. 

 
 

  

 
 

Figure 2. Schematic view of first generation bump type foil bearing  
 
 

Housing 

Structural bump 

Thin foil 

Gas film 

Rotor 
spinning 
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The Reynolds equation describes the generation of the gas pressure (p) within the 

film thickness (h). For an isothermal, isoviscous ideal gas this equation is  

         
( ) ( )3 3 6 12

ph php pph ph R
x x z z x t

μ μ
∂ ∂∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = Ω +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

                                (1) 

where (x, z) are the circumferential and axial coordinates on the plane of the bearing. The 

pressure takes ambient value (pa) on the side boundaries of the bearing. The film 

thickness (h) for a perfectly aligned journal is  

( )cos cos( ) sin( )p p X Y dh c r e e w= − Θ −Θ + Θ + Θ +                                            (2)   

where c and rp are the assembled clearance and preload, respectively; and (eX, eY) are the 

journal center displacements. w is the elastic deflection of the underlying support 

structure, a function of the hydrodynamic pressure field and the material and geometric 

characteristics of the support structure comprised of the top foil and the bump strip layers.  

IV. MODELING OF FOIL SUPPORT STRUCTURE 

IV.1 CONVENTIONAL SIMPLE ELASTIC FOUNDATION MODEL 

Most published models for the elastic support structure in a GFB are based on the 

original work of Heshmat et al. [9,12]. This analysis relies on several assumptions which 

most researchers [10,13,14,18] also reproduce: 

(1) The stiffness of a bump strip is uniformly distributed throughout the bearing 

surface, i.e. the bump strip is regarded as a uniform elastic foundation.  

(2)  A bump stiffness is constant, independent of the actual bump deflection, not 

related or constrained by adjacent bumps. 

(3) The top foil does not to sag between adjacent bumps. The top foil does not have 

either bending or membrane stiffness, and its deflection follows that of the bump.  

With these considerations, the local deflection of a bump (wd) depends on the bump 

structural stiffness (Kf) and the average pressure (δpA) across the bearing width, i.e.  
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d A fw p Kδ=               (3) 

where ( )
0

1 L
A ap p p dz

L
δ = −∫      , and  pa is the ambient pressure beneath the foil.  

 Coupling of the simple model, Eq. (3), with the solution of Reynolds Eq. (1) is 

straightforward, leading to fast computational models for prediction of the static and 

dynamic force performance of GFBs, see [8-10] for example. 

Presently, the simple foundation model is extended to account for and integrate with 

the elastic deformation of the top foil. The top foil is modeled as a flat shell, i.e.  without 

curvature effects since the transverse deflections are  roughly ~0.001 of the top foil 

assembled radius of curvature.  Two structural models for the top foil follow: 

a) one-dimensional model which considers an axially averaged gas film pressure 

acting along the top foil width and thus no structural deformation along the 

bearing axial direction; and, 

b) two-dimensional model which considers the whole gas pressure field acting on 

the top foil with transverse deformations along the bearing circumferential and 

axial directions.  

 

The first model is simpler and less computationally intensive. Both top foil strutucal 

models incorporate the bump strip layer as a series of linear springs, not connected with 

each other.  Interactions between adjacent bumps are altogether neglected, as is usual in 

most predictive models. The stiffness of each bump is regarded as constant (irrespective 

of the load) does denoting no change in the nominal or manufactured bump pitch.  

 

IV.2 ONE DIMENSIONAL ELASTIC MODEL FOR TOP FOIL 

In their extensive GFB experimental work, Ruscitto et al. [19] report relatively small 

differences in axial gas film (minimum) thickness for heavily loaded conditions. This 

means that an average pressure causes a uniform elastic deformation along the top foil of 

width (L). Hence, a one dimensional structural model, with infinite stiffness along the 

bearing width, may suffice to model the top foil, as shown in Figure 3. One end of the top 

foil is fixed, i.e. with transverse deflection and rotation equal to nil; while the other end is 
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free. Figure 3 also shows the idealization of the 1D model with its degrees of freedom, 

namely transverse deflections (w) and rotations (φ). 

 

 

 
Figure 3. Configuration of top foil supported on a bump strip and its 1D 
structural model. Generalized displacements: 1

eu =w1, 2
eu =φ1, 3

eu =w2, and 
4
eu =φ2 

 

Figure 4 displays schematic representations of the actual and idealized structural 

deformations for the top foil and adjacent bumps. In actual operation, the bumps are 

flattened under the action of the acting pressure, the contact area with the top foil 

increases, and this effect increases locally the stiffness of the top foil. Hence, an 

anisotropic elastic model may compensate for the overestimation of top foil deflections 

between adjacent bumps. Presently, the elastic modulus for the top foil (Et) is artificially 

increased, E* = Et × Sfc, where (Sfc) as a stiffening factor in the circumferential direction. 

Note that the curvature radius of the top foil deflected shape (sagging) cannot exceed that 

of the original bumps shapes, thus suggesting the appropriate range of stiffening factors 

for known GFB configurations.  

lex 

1
eu  3

eu  2
eu  4

eu  

q(x)·L 

w x (=RΘ) 

Smooth Top Foil 

Bump supports Weld 

ΩR 

ΩR 
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Figure 4. Schematic representations of deformations in actual and idealized 
top foil and bump strips 

 

The top foil transverse deflection (w) along the circumferential axis (x) is governed 

by the fourth order differential equation: 

( )
2 2

2 2
d d wEI q x L
dx dx

⎛ ⎞
= ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 (4)

 

where E and I are the elastic modulus and moment of inertia, and q·L=(p-pa) ·L is the 

distributed load per unit circumferential length. Note that Eq. (4) is the typical 

formulation for the deflections of an Euler-like beam. Appendix A and reference [22] 

detail the weak form of Eq. (4) when integrated over the domain of one finite element. 

 

IV.3 TWO DIMENSIONAL MODEL FOR TOP FOIL  

The second model regards the top foil as a two dimensional flat shell supported on 

axially distributed linear springs located at every bump pitch, as shown in Figure 5. 

Figure 6, graphs (a) and (b), depicts the membrane force (N), shear force (Q) and bending 

moment (M) per unit element length, and external pressure difference (q=p-pa) acting on 

(a) Foil deflections in actual GFBs (b) Foil deflections for equivalent model  

∆wactual

∆wactual  ≤ ∆wequiv 

Kbump Kbump

∆wequiv“Sag” 
“Bump  

flattened” 

bump spring

Flexible Top foil 

Pressure 



 11

the shell element OABC. The generic displacements are denoted as u, v and w along the x, 

y and z directions, respectively [23]. 

 

 

 

 
 
Figure 5. Configuration of top foil supported on a bump strip and its 2D 
structural model 
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(a) Normal plane (membrane) stresses 

 
(b) Bending and shear stresses 

Figure 6. Resultant membrane forces and bending moments per unit shell 
element length for a distributed load in the domain of a shell finite element 

 

Timoshenko and Woinowsky-Krieger [23] detail the differential equations for the 

general cases of deformation in a cylindrical shell.  In the present structural configuration, 

membrane or in-plane forces per unit element length (N) are negligible since the axial 

(side) ends of the top foil are regarded as free (not constrained) and because the gas film 

pressure acts normal to the top foil. Gas film shear forces between the film and top foil 
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and dry-friction forces between the top foil and bumps underneath do induce membrane 

forces. However, these are neglected for simplicity.  

Presently, an anisotropic shell model will compensate the simplification. A stiffening 

factor (Sfa) for the top foil elastic modulus (Et), i.e. Et* = Et × Sfa, in the axial direction 

and a stiffening factor (Sfc) in the circumferential direction will prevent the 

overestimation of the top foil deflections near the foil unconstrained (free) edges and 

between adjacent discrete bump structures, respectively. The stiffening factors are 

determined by trial and error! 

Thus, the present analysis retakes the anisotropic, shear deformable plate model based 

on first-order shear deformation theory. As given in [22], the governing equations are 

0yx QQ
q

x y
∂∂

+ − =
∂ ∂

;   

0yxx
x

MM
Q

x y
∂∂

+ − =
∂ ∂

;    

0yx y
y

M M
Q

x y
∂ ∂

+ − =
∂ ∂

 

(5)

where  

11 12
yx

xM D D
x x
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∂ ∂
; 12 22

yx
yM D D

x y
φφ ∂∂

= +
∂ ∂

; 66
yx

xyM D
y x

φφ ∂⎛ ⎞∂
= +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

   

55x x
wQ A
x

φ ∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠
;  44y y

wQ A
y

φ
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(6)

and  
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132 1
t
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=
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;   
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23
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232 1
t

t
E h
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ν

=
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(7)

 

xφ  and yφ  in Eq. (6) denote rotation angles about the y and x axes, respectively. ht, Eij, νij, 

in Eq. (7) represent the shell thickness, anisotropic elastic modulii and Poisson’s ratios, 

respectively [24]. kt (=5/6) is  a shear correction coefficient, introduced to account for the 

discrepancy between the distribution of transverse shear stresses of the first-order theory 

and actual distribution [22].  
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Note that, in Eqs. (5-7), neglecting the deflections (w, yφ ) along the y axis leads to the 

governing equations for Timoshenko’s beam theory [23]. Appendix B details the weak 

form of Eqs. (5-7) when integrated over a two-dimensional finite element domain. 

Figure 7 presents a four-node, shell element supported on an axially distributed linear 

spring on one end, as taken from Fig. 5. lex, ley, and ht represent the element length, width, 

and thickness, respectively. At each node, there are three degrees of freedom, a transverse 

deflection and two rotations. Note that the axially distributed linear spring reacts only to 

the transverse deflection, w. 

 
Figure 7. Four-node, shell finite element supported on an axially distributed 
linear spring 
 

Equation (8) below details the stiffness matrix [Ks] for one structural bump 

supporting a top foil at one of its edges. This matrix is integrated into the shell element 

stiffness matrix [Ke] given in Appendix B. 
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where 0l f eyK K s l= × × ; s0 is the bump pitch and Kf, the bump stiffness per unit area, is  
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estimated using Iordanoff’s [25] analytical expressions for a bump with both sides free, 

or one end free and the other fixed.  Although the formulas in [25] include provisions for 

a dry friction coefficient, at present none is being used. Note that when considering the 

dynamic behavior of a bump support, a complex stiffness, ( )' 1f fK K iγ= + , is easily 

defined to account for a  material loss factor (γ) arising from hysteresis and dry-friction.  

Adding the bump stiffness matrix [Ks] at the appropriate locations while assembling 

the shell element stiffness matrices [Ke] by using a connectivity array leads to a global 

stiffness matrix [KG] = [ ] [ ]{ } se KK +U  . The global stiffness matrix [KG] is reduced by 

considering the geometric constraints, w = xφ  = yφ  = 0, along the top foil fixed end.  

Without journal misalignment, the pressure field is symmetric about the bearing mid 

plane. In this case, the FE procedure models only one half side of the top foil and support 

bumps, thus reducing computational costs significantly. 

The global system of equations for deflections of the top foil and bump supports is 

given by 

{ } { }G G GK U F⎡ ⎤ =⎣ ⎦  (9)

 

where [KG] is a symmetric, positive definite matrix, {UG} is the vector of generalized 

deflections (transverse displacements and rotations), and {FG} is the vector of 

generalized forces, namely pressures acting on the top foil.  

Prior to computations coupling the structure deflections to the thin film gas flow 

governed by Reynolds Eq. (1), the global stiffness matrix, derived from the 1D and 2D 

FE models, is decomposed  using Cholesky’s procedure [26], i.e. 

 

Note that the FE structural model analysis is performed off-line. In this manner, the 

computational efficiency of the numerical scheme is greatly enhanced. 

Numerical solution of Eq. (9), using the decomposition, is quite fast since it involves 

two procedures, first a forward substitution solving [L]{x}={FG}, and next a  backward 

substitution solving [L]T{UG}={x}. The transverse deflection field (w) is extracted from 

{UG} and used to update the film thickness for solution of Reynolds equation within the 

framework of an iterative scheme. 

T GL L K⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (10)
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V. COMPARISONS OF PREDICTIONS TO PUBLISHED TEST 
DATA 

V. 1 CONFIGURATION OF TEST GFB 
 
      The validity of the analysis and computational program is assessed by comparison of 

predictions to experimental data available in the open literature. Table 1 provides 

parameters for the test foil bearing given in [19] and Figure 8 depicts the configuration of 

the bump foil strip. The foil bearing is a “first generation” type with one 360º top foil and 

one bump strip layer, both made of Inconel X-750. The top foil and bump layer are spot 

welded at one end to the bearing sleeve. The other end of the top foil is free as well as the 

end of the bump strip layer. The journal rotational direction is from the free end of the top 

foil towards its fixed end.  

 

               Table 1 Design details of foil bearing, reference [19] 

Bearing radius, R=D/2 19.05 mm    (0.75 inch) 

Bearing length, L 38.1 mm      (1.5 inch) 

Foil arc circumferential length, lx 120 mm       (4.7 inch) 

Radial journal travel, cJ  (~ clearance) 31.8 μm       (1.25 mil) 

Top foil thickness, tt 101.6 μm     (4 mil) 

Bump foil thickness, tb  101.6 μm     (4 mil) 

Bump pitch, s  4.572 mm    (0.18 inch) 

Half bump length, l0  1.778 mm    (0.07 inch) 

Bump height, hb  0.508 mm    (0.02 inch)  

Number of bumps*, Nb  26 

Bump foil Young’s modulus, E  214 Gpa      (31 Mpsi) 

Bump foil Poisson’s ratio, ν 0.29 

 

All tests in [19] were performed with air at ambient condition. Because the bearing 

clearance for the test bearing was unknown, the journal radial travel ( Jc ) was measured 

by performing a static load-bump deflection test. Details of the measuring procedure are 

described in [19]. The journal radial travel refers to the displacement where the journal 

                                                 
* The number of bumps (Nb) is calculated by dividing the foil arc circumferential length (lx) by the bump 
pitch (s). 
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can sway under an arbitrary static load condition†. Hence, in [19], the journal radial travel 

(2 Jc =63.6 μm) is obtained from the total displacement of the bearing when a 0.9 kg (2 

lb) load was applied first downward, and then upwards.  

 

Figure 8. Configuration of top foil and bump foil strips 
 

The structural stiffness per unit area (Kf) is estimated from Iordanoff’s formulae [25]. 

The bump pitch (s) is regarded as constant and the interaction between bumps is 

neglected. The calculated structural stiffness coefficients per unit area for a free-free ends 

bump and a fixed-free end bump are Kff = 4.7 GN/m3 and Kfw = 10.4 GN/m3, respectively.  

 

V.2 MINIMUM FIILM THICKNESS AND JOURNAL ATTITUDE ANGLE  

The GFB computational tools integrating the 1D and 2D finite element top foil 

structural models, as well as the earlier simple elastic foundation model, predict the static 

and dynamic force performance of the test GFB.  

The 2D FE model uses a mesh of 78 and 10 elements in the circumferential and axial 

directions, respectively. The same mesh size is used for the finite difference numerical 

scheme solving Reynolds Eq. and calculating the hydrodynamic gas film pressure. On the 

other hand, the 1D FE model uses a mesh of 78 elements in the circumferential direction. 

A mesh of 78 and 10 elements, in the circumferential and axial directions, respectively, is 

used to analyze the gas film pressure. Predictions using the simple elastic foundation 

model, for a mesh of 90 and 10 elements in the circumferential and axial directions, 

respectively, are directly taken from [18].  

                                                 
† This ad-hoc procedure reveals the region where the foil structure is apparently very “soft.” 

tt

 tb

l0

s

 hb
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Top foil stiffening factors Sfc= 4 and Sfa= 1 in the circumferential and axial directions, 

respectively, were obtained through parametric studies based on the recorded test data in 

[19]. In the 2D FE model, foil deflections along its edges are calculated using the axial 

upstream pressures modified by the local Peclet number [27], a procedure based on 

physical reasoning which improves the accuracy in the prediction in the gas film 

thickness. Note that FE predictions underestimate the top foil deflections when compared 

to the test data in [19]. This behavior is caused by the omission of membrane stresses in 

the current model.  

Figure 9 presents the minimum film thickness versus applied static load for operation 

at shaft speeds equal to (a) 45,000 rpm and (b) 30,000 rpm. The graphs includes the test 

data [19], and predictions for three increasingly complex structural models; namely, the 

simple elastic foundation, 1D top foil acted upon an axially averaged gas pressure, and 

the 2D top foil with circumferential stiffening.  In the tests, film thicknesses were 

recorded at both the bearing mid-plane and near the bearing exit-planes, i.e. 1.6 mm from 

the bearing axial ends. The 2D model predictions show minimum film thicknesses along 

the bearing mid-plane and near the bearing edges, i.e. 1.9 mm away. Both the simple 

elastic model and the 1D FE model predictions show a film thickness not varying across 

the bearing width since the models rely on an axially averaged pressure field.  

In general, all model predictions agree fairly with the test data [19]. Incidentally, the 

measurement errors reported in [19] render a precision uncertainty of ~15 % for film 

thickness.  
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(b) 30,000 rpm 

Figure 9. Minimum film thickness versus static load. Predictions from three 
foil structural models and test data [19] 
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Over the whole range of static loads, 2D top foil model predictions overestimate the 

minimum film thickness at the bearing mid-plane, and slightly underestimate this 

parameter at the top foil edge. The discrepancies are due to membrane forces preventing 

the extension of the top foil. Membrane forces force a uniform deflection along the 

bearing width, in particular for heavy static loads. This effect is most notable for a 

uniform pressure field along the bearing width. See Fig. 10 for a comparison of the 

axially averaged minimum film thickness calculated from the 2D model and the test data 

(simple arithmetic average of film thicknesses recorded at the bearing mid-plane and near 

edges). The predictions correlate very well with the test data at 45,000 rpm and 30,000 

rpm, respectively. 

The assumption of an axially uniform minimum film thickness in the 1D top foil 

model results in a significant reduction of computational costs, as discussed in more 

detail later. More importantly, the 1D top foil model predictions show the best correlation 

to the collected experimental results. The simpler model predictions slightly overestimate 

the minimum film thickness, especially for heavy static loads.  
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Figure 10. Axially averaged minimum film thickness versus static load. 
Predictions from 2D top foil model and test data [19] 

 

Figure 11 depicts the journal attitude angle versus applied static load for speeds equal 

to (a) 45,000 rpm and (b) 30,000 rpm, respectively. The graph includes predictions from 



 21

the three structural models and test data [19]. All model predictions slightly 

underestimate the test data above 60 N. The notable discrepancy between predictions and 

test results for static loads below 60 N can be attributed to foil bearing fabrication 

inaccuracy [19]. The 1D top foil structural model predictions demonstrate the best 

correlation to the test data. In general, all model predictions agree well with the test data.  

Figure 12 presents the predicted journal eccentricity versus applied static load for 

operation at a rotational speed of 45,000 rpm. Reference [19] does not provide test data 

regarding journal eccentricity. For static loads above 60N, i.e. specific load of 41.4 kPa 

(6 psi), where the journal eccentricity exceeds the nominal clearance (cJ), the journal 

displacement is proportional to the applied load. The simple elastic foundation model 

predicts an ultimate static stiffness KG=5.2×106 N/m, which is nearly identical to the 

structural stiffness KS =5.3×106 N/m. See [18] for a comparison of the journal eccentricity 

predicted using the simple model to the structural deflection for load contact without 

journal spinning. Similar trends in predicated journal eccentricity are evident for the 1D 

and 2D top foil structural models. However, for heavy static loads, the 2D top foil model 

shows a slightly larger eccentricity since the top foil, being flexible, “sags” in between 

adjacent bumps.  
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(b) 30,000 rpm 

Figure 11. Journal attitude angle versus static load. Predictions from three 
foil structural models and test data [19] 
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Figure 12. Journal eccentricity versus static load at 45 krpm, Predictions 
from three foil structural models for GFB in [19] 
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Figure 13 displays the predicted dimensionless pressure field (p/pa) and the 

corresponding film thickness derived from the 2D top foil structural model. A static load 

of 200 N, specific pressure = 138 kPa (20 psi), acts on the rotor operating at a speed of 

45,000 rpm. The hydrodynamic film pressure builds up within the smallest film thickness 

region. During operation, the top foil could detach, not allowing for sub-ambient 

pressures, i.e. p ≥ pa. For the heavily loaded condition (200 N) and due to the bearing 

inherent compliance, the model prediction shows a large circumferential region of 

uniform minimum film. The film thickness is nearly constant along the bearing axial 

length except near the axial edges, as in the experiments [19]. The softness of the top foil 

in between individual bumps, as shown in the film thickness field causes the local 

pressure field to sag between consecutive bumps, i.e. the appearance of a “ripple” like 

effect. 
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Figure 13. Predicted (a) dimensionless pressure field and (b) film thickness 
field from 2D top foil structural model. Static load: 200 N, rotor speed:  45 
krpm. Bearing configuration given in [19] 
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Figure 14 presents the predicted film thickness versus circumferential location for the 

1D top foil model and the measured film thickness [19] for a static load of 134.1 N and 

rotor speed of 30 krpm. Along the zone of smallest film thickness, the predictions match 

very well with the test data. Recall that the model does not account for the interaction 

between adjacent bumps, thus showing a slight difference in the pitch of the ripple shapes. 

Note that the test GFB has a nearly constant film thickness along the bearing axial length 

(Δh < 1μm) for both load and speed conditions, as shown in Fig 9 (b). 

Although the test GFB has a largely unknown radial clearance, due to a fabrication 

inaccuracy, and its nominal bearing clearance is experimentally determined through a 

simple load-deflection test, the comparisons demonstrate a remarkable correlation 

between predictions and test data in the region of minute, nearly uniform, film thickness. 

These comparisons validate the 1D top foil model for accurate prediction of GFB static 

load performance.  

   

 
 

Figure 14. Film thickness versus angular location at bearing mid-plane. 
Prediction from 1D top foil model and test data [19]. Static load: 134.1 N. 
Rotor speed: 30 krpm 
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V. 3 PREDICTED STIFFNESS AND DAMPING FORCE COEFFICEINTS  

To date there is no published experimental data on GFB force coefficients, stiffness 

and damping. 

Figure 15 displays the bearing stiffness coefficients versus excitation frequency as 

determined by the three structural support models. A static load of 150 N, i.e. specific 

load of 1 bar (15 psi), is applied at 45,000 rpm. Synchronous excitation corresponds to a 

frequency of 750 Hz. The results correspond to a negligible structural loss factor, γ = 0.0, 

known to have an insignificant effect on the direct stiffness coefficients [10]. The direct 

stiffness coefficients (KXX, KYY) increase with excitation frequency due to the “hardening” 

of the gas film. All models predict very similar direct stiffness coefficients.  

The simple elastic foundation model predicts the largest direct stiffness, KXX, while 

the 2D top foil model renders the smallest. The “sagging” effect of the top foil in 

between adjacent bumps in the 1D and 2D FE models is thought to reduce slightly the 

bearing stiffness KXX. All predictions of cross-coupled stiffness coefficients show positive 

values. Note that cross-coupled stiffness coefficients with same sign do not have 

destabilizing effects [28]. The 1D top foil model predicts the largest KXY and the smallest 

KYX. The 2D model predicts the smallest KXY, while the simple model predicts the largest 

KYX. All model predictions demonstrate much greater direct stiffnesses, KXX and KXX, than 

cross-coupled stiffnesses, KXY and KYX. Note that the difference in vertical axis scales in 

Figure 15(a-c).  
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(c) KYX 

Figure 15. Predicted GFB stiffness coefficients versus excitation frequency 
for three structural models. Rotor speed: 45 krpm, Static load: 150 N. 
Structural loss factor γ = 0.0.  
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Figure 16 displays predicted damping coefficients versus excitation frequency as 

determined from the three structural models. Static load and rotor speed are as in the last 

figure. The structural loss factor γ = 0.4 represents a hysteresis damping effect in the 

bump strip layer. With a structural loss factor (γ = 0.4), the direct damping coefficients 

(CXX, CYY) increase significantly when compared to those for γ = 0.0, i.e. without material 

damping. Regardless of the structural loss factor, the 2D top foil model predicts the 

smallest direct damping coefficients (CXX, CYY). The simple elastic foundation model 

prediction shows the largest coefficients, except for excitation frequencies lower than 500 

Hz, where the 1D FE model predicts the largest CXX and CYY  for a null loss factor (γ = 0). 

Predictions of cross-coupled damping coefficients, CXY and CYX, do not show a 

discernible difference among the three models. Generally, cross-coupled damping 

coefficients (CXY, CYX) decrease in magnitude as the excitation frequency increases. Note 

that the vertical axes of Figs. 16 (a) and 16 (b) show a log scale, while Figs. 16 (c) and 16 

(d) show a linear scale along the vertical axes.  

All model predictions demonstrate much greater direct damping, CXX and CXX, than 

cross-coupled damping, CXY and CYX. In particular, for γ = 0.4, note the rapid reduction in 

direct damping as the excitation frequency increases.  
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Figure 16. Predicted GFB damping coefficients versus excitation frequency 
for three structural models. Rotor speed: 45 krpm, Static load: 150 N. 
Structural loss factors, γ = 0.0 and 0.4  
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VI.  COMPUTATIONAL TIME 

In the present study, all analyses were conducted in a personal computer, Pentium® 4 

processor (2.40 GHz CPU). The 1D structural model analysis requires much less 

computational time than the 2D model, due to a reduction in the degrees of freedom. 

While the 2D top foil model has 2,547 degrees of freedom, the 1D FE model has only 

156. Therefore, in a particular case, the time to complete the 2D model analysis is ~10 

seconds, while the 1D structural model analysis takes less than 1 second.  

The perturbation analysis for calculation of force coefficients and implementing the 

FE stiffness matrices increases the computational cost as compared to the performance of 

the simple elastic foundation model analysis. For example, to find the static journal 

eccentricity and the synchronous force coefficients for an applied load of 50 N at 45,000 

rpm, the 1D and 2D FE structural models need ~14 seconds and ~180 seconds, 

respectively, while the simpler model takes 9 seconds. Thus, the introduction of the 1D 

and 2D top foil structural models into the GFB predictive computational code increases 

the computational cost by 50% and 2000%, respectively. Note that the increase in 

computational time depends mainly on the number of degrees of freedom in the FE 

structure models.  
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VII.  EFFECT OF MECHANICAL PRELOAD ON THE FORCED 
PERFORMANCE OF A GFB 
 

Machined preloads in fluid film journal bearings aim to enhance the hydrodynamic 

wedge to generate a pressure field that produces a centering stiffness even in the absence 

of an applied static load [29].  The easiest way to introduce a preload into a GFB is by 

inserting metal shims underneath a bump strip and in contact with the bearing housing 

[30], as shown in Figure 17(a). The bump strip layers can also be manufactured with 

varying bump heights to introduce a preload more akin to those in a multiple lobe rigid 

surface bearing, see Figure 17(b). This second procedure is costly and probably 

inaccurate.  

 
 
Figure 17. Schematic views of gas foil bearing with (a) shims and (b) with 
machined preloads 
 

For analysis purposes, a GFB is construed as a “three lobe” configuration. Table 2 

presents the material and dimensional characteristics of the bearing studied. The nominal 

clearance of the GFB equals 32 μm. Three shims of thickness 16 μm (~ 0.5 ×c) are 

inserted at the circumferential locations 60º, 180º, and 360º. Hence, the mechanically 

modified GFB has a dimensionless preload and offset ratio equal to 0.50 and 0.5, 

respectively. Design details for the top foil and the bump layer in GFBs are identical to 

those presented in Table 1. Predictions, derived from the uniform elastic foundation 

(a)  

 Ω 
 

Shim 

Θ (b) Θ 

 Ω 
 

Machined mechanical preload
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model and from the 1D top foil model, show differences in performance characteristics 

for a GFB with and without the mechanical preload, i.e. simple GFB.   

 

      Table 2 Geometry of foil bearing with mechanical preload (shims) 

Bearing radius, R=D/2 19.05 mm    (0.75 inch) 

Bearing length, L 38.1 mm      (1.5 inch) 

Top foil arc circumferential length, lx 120 mm       (4.7 inch) 

Radial journal travel, cJ  (~ clearance) 31.8 μm       (1.25 mil) 

Lobe arc angle  120 º 

Shim arc angle* 40 º  

Preload ratio**, rp/cJ  0.5 

Preload offset ratio  0.5 

Shim thickness, ts 16 μm     (0.63 mil) 

Number of shims, Ns  3 

Shim material  Inconel X-750 
 * ~13 mm length in the circumferential direction.  

       ** The clearance (c) for a GFB with preload uses the shim thickness. The nominal gap between the top 

foil and shaft follows the simple relationship ( ) ( )θθ 3cos
24

3 P
J

r
cc +=    for θ E {0, 2π}. 

 

     Figure 18 displays, for increasing static loads, the predicted mid-plane pressure, 

structural deflection, and film thickness versus angular location. The film thickness is 

zoomed in between 90 º and 270 º. For a small static load of 5 N (specific load of 3.4 kPa 

or 0.5 psi), the GFB with preloads ensures hydrodynamic pressure generation and even 

deflects the foil structure, while the simple GFB does not, due to its mainly uniform film 

thickness (h ~ c) along the circumferential direction. As the static load increases, both the 

pressures and the structural deflections increase, and the minimum film thickness 

decreases. With increasing static loads, the preload effect in the GFB with shims vanishes 

due to the compliance of the bump strip layer. At high loads, the mechanical preload has 

little effect on the structural deflection, pressure and film thickness. The GFB whether it 

integrates shims (preload) or not shows identical performance for static loads exceeding 

the journal nominal clearance, as shown in Figures 19-22 for journal eccentricity and 

attitude angle, minimum film thickness and power loss. 
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Figure 18. Dimensionless mid-plane pressure, structural deflection, and 
film thickness versus angular location for GFB with and without 
mechanical preload. Rotor speed: 45 krpm  
 
 
 

-10

0

10

20

30

40

50

60

70

80

0 120 240 360

S
tru

ct
ur

al
 d

ef
le

ct
io

n 
[μ

m
]

W= 300 N

W= 5 N

W= 150 N
Simple GFB 3 lobe GFB

Structural deflection 

0

20

40

60

80

100

120

140

0 120 240 360
Angular location [deg]

Fi
lm

 th
ic

kn
es

s 
[μ

m
]

W= 300 N

W= 5 N
W= 150 N

Simple GFB 3 lobe GFB

 

0

10

20

30

40

50

90 120 150 180 210 240 270
Angular location [deg]

Fi
lm

 th
ic

kn
es

s 
[μ

m
]

W= 300 N

W= 5 N

W= 150 N

Simple GFB 3 lobe GFB

Film thickness (loaded zone) 

1

10

0 120 240 360

D
im

en
si

on
le

ss
 p

re
ss

ur
e,

 p
/p

a
[-]

W= 300 N

W= 5 N

W= 150 N

 Ω

X

Y

Θ

Simple GFB 3 lobe GFB

Θ

Ω

X

Y

Film pressure 



 36

Figure 19 depicts the GFB journal eccentricity versus static load applied along the X 

direction. With a mechanical preload, the GFB shows a linear relationship between load 

and journal position, i.e. a constant and uniform stiffness, since the gas film is stiffer even 

at low loads. The opposite behavior is evident for the GFB without shims, i.e. the journal 

eccentricity is not proportional to the applied load due to the softness of the gas film. For 

large loads, a linear behavior is notorious for journal eccentricities exceeding the bearing 

nominal clearance, c = 31.8 μm. The GFB with mechanical preload leads to consistently 

smaller journal static displacements than the simple GFB. From Figure 19, the difference 

between eccentricities is approximately equal to the mechanical preload, 16 μm; in 

particular at large loads.  
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Figure 19. Journal eccentricity versus static load for GFB with and without 
mechanical preload. Rotor speed: 45,000 rpm  
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Figure 20. Journal attitude angle versus static load for for GFB with and 
without mechanical preload. Rotor speed: 45,000 rpm  
 

0

10

20

30

0 50 100 150 200 250 300

Static load [N]

M
in

im
um

 fi
lm

 th
ic

kn
es

s 
[μ

m
]

Ω

X

Y

Θ

Simple GFB

3 lobe GFB

Θ

Ω

X

Y

 
Figure 21. Minimum film thickness versus static load for GFB with and 
without mechanical preload. Rotor speed: 45,000 rpm  
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Figure 22. Drag power loss versus static load for GFB with and without 
mechanical preload. Rotor speed: 45,000 rpm  
 

 

Figure 23 shows, for operation at 45 krpm, the synchronous stiffness and damping 

coefficients versus static load for the studied GFB, with and without a preload (shims). 

The predictions correspond to a structural loss factor γ = 0.2. In figures 23(a), the thick 

solid line with squares represents the bearing structural stiffness coefficient, Kstruc. The 

GFB with preload, as expected, has larger direct stiffness coefficients, KXX and KYY, than 

the simple GFB, in particular at low static loads. The cross-coupled stiffness coefficients, 

KXY and KYX, for both bearing configurations are comparable in magnitude.  

For the GFB with preload the direct damping coefficients, CXX and CYY shown in 

Figure 23(b), increase dramatically for low static loads.  The damping increases effect is 

more pronounced for CXX than for CYY, and due to the reduced local clearance because of 

the shims. The magnitudes of cross-coupled damping coefficients, CXY and CYX, increase 

slightly for small static loads. In brief, the GFB with mechanical preload shows a 

significant increase in direct synchronous stiffness and damping coefficients for low 

static loads. This obvious advantage becomes less noticeable for large static loads.  
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Figure 24 displays the stiffness and damping coefficients versus excitation 

frequency. The operating speed is 45 krpm and small static load, just 5 N, applied along 

the X direction. As the excitation frequency increases, the direct stiffness coefficients, 

KXX and KYY, increase due to the hardening of the hydrodynamic gas film. Most 

importantly, while the cross-coupled stiffness KXY > KXX and KYY at low frequencies in the 

simple GFB; KXX increases for the bearing with preload and is larger than the cross 

coupled stiffness. Direct damping coefficients, CXX and CYY, for the bearing with preload 

are larger at low frequencies than those of the simple GFB. The differences become 

minimal as the excitation frequency increases.  
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Figure 23a. Synchronous stiffness coefficients versus static load for GFB 
with and without preload. Rotor speed: 45,000 rpm, loss factor, γ=0.2 
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Figure 23b. Synchronous damping coefficients versus static load for GFB 
with and without preload. Rotor speed: 45,000 rpm, loss factor, γ=0.2 
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Figure 24(a) Stiffness coefficients versus excitation frequency for GFB with 
and without mechanical preload. Static load: 5N, rotor speed: 45 krpm, loss 
factor, γ=0.2 
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Figure 24(b) Damping coefficients versus excitation frequency for GFB with 
and without mechanical preload. Static load: 5N, rotor speed: 45 krpm, loss 
factor, γ=0.2 
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The energy imparted to the rotor (per period of motion) is, 

( ) ( )cycle X Y X YE F dX F dY F Xdt F Ydt= + = +∫ ∫ & &� �  

where X XX XY XX XY

Y YX YY YX YY

F K K C CX X
F K K C CY Y

⎧ ⎫⎧ ⎫ ⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎪ ⎪= − −⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎣ ⎦ ⎩ ⎭

&

&  
(8)

 

Consider rotor motions describing a forward whirl circular orbit, of amplitude A 

and frequency ω, i.e., ( )cosX A tω=  and ( )sinY A tω= . Hence [31]:. 

( ) ( ){ }cycle cycle XX YY XY YXE Ar C C K Kω= − + − −  

where 2
cycleAr Aπ=  

(9)

 

The energy dissipated ( cycleE− ) by the GFB uses the predictions of stiffness and 

damping coefficients for increasing frequencies and static loads. Figure 25 shows the 

predicted energy dissipated per unit area of circular orbit for a GFB with and without 

mechanical preload operating at 45,000 rpm (750 Hz). For low loads, 5N and 50 N, the 

GFB with and without shims are unstable (negative dissipated energy) and with identical 

threshold frequencies, namely  270 Hz and 350 Hz, respectively. The threshold frequency 

notes when the energy turns positive, thus actually dissipating energy to reduce vibrations.  

Regardless of preload, the GFB is stable for the largest load (150 N) over the entire 

frequency range. Although there is not a significant difference in the threshold frequency 

(ωthreshold), the threshold speed of instability (Ωthreshold) will increase when including a 

mechanical preload (shim) because the bearing direct stiffness will increase the system 

natural frequency (ωn) of the rigid rotor-GFB system, i.e., Ωthreshold = ωn/WFR. This 

observation is strictly applicable to a rigid rotor-bearing system. 
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Figure 25. Energy dissipated by a GFB with and without mechanical 
preload for increasing static loads. Rotor speed: 45 krpm (750 Hz), loss 
factor, γ=0.2 
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VIII. CLOSURE 

Conventional analyses of GFBs neglect the elasticity of the top foil and consider the 

bump strip layers support structure as an elastic foundation with uniform stiffness. This 

simple model has been most useful for decades; however, stringent applications of gas 

bearings into commercial oil-free turbomachinery demands the development of more 

realistic models to better engineer them as reliable supports.  

Presently, the report introduces two finite element models for the top foil elastic 

structure. The simplest FE model assumes the top foil as a 1D beam with negligible 

deflections along the axial coordinate, i.e. infinitely stiff and acted upon by a uniformly 

distributed pressure field. The second FE model, 2D, takes the top foil as a flat shell with 

anisotropic material properties. The underlying bumps modeled as a uniform elastic 

foundation along the edge of a typical finite element representing a top foil, are directly 

integrated into a global stiffness matrix that relates the top foil (and bumps) deflections to 

applied gas film pressure or contact pressure, depending on the operating condition. The 

decomposition of the symmetric stiffness matrix into upper and lower triangular parts is 

performed off-line and prior to computations coupling it to the gas bearing analysis. The 

procedure greatly enhances the computational efficiency of the numerical scheme.  

Predictions of load capacity, attitude angle, and minimum film thickness versus 

journal speed are obtained for a gas foil bearing tested decades ago [19]. This reference is, 

to date, the only one with full details on bearing configuration and structural properties. 

The predictions presented correspond to three models: (a) simplest elastic foundation 

with no accounting for top foil structure, (b) 1D FE model with top foil as a thin beam, 

and (c) 2D FE model with top foil as a shell.  

2D FE model predictions overestimate the minimum film thickness at the bearing 

centerline, but underestimate it at the bearing edges. Predictions from the 1D FE model 

compare best to the limited tests data; reproducing closely the experimental 

circumferential profile of minimum film thickness reported in [19].  The 1D top foil 

model is to be preferred due to its low computational cost. The FE models predictions 

show local ripples in the top foil supported in between bumps. The ripples are a pathway 

for gas to escape out of the bearing, thus decreasing the hydrodynamic pressure and 

diminishing the bearing load carrying capacity. 
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Predicted stiffness and damping coefficients versus excitation frequency show that 

the two FE top foil structural models result in slightly lower direct stiffness and damping 

coefficients than those from the simple elastic foundation model.  

A three lobe GFB with mechanical preloads, introduced by inserting shims 

underneath the bump strips, is analyzed using the 1D FE structural model. Predictions 

show the mechanical preload enhances the load capacity of the gas foil bearing for 

operation at low loads and low shaft speeds. Energy dissipation, a measure of the bearing 

ability to ameliorate vibrations, is not affected by the preload induced although the direct 

stiffness of the bearings is of importance for operation at high speeds with low load 

conditions. Mechanical preload has no effect on the static and dynamic forced 

performance of GFBs supporting large static loads. 
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APPENDIX A. 1D FINITE ELEMENT FORMULATION FOR TOP 
FOIL 

The weak form of Eq. (4) over a finite element domain becomes [22]:  

1
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where v1(x) and L are weight function and top foil width, respectively. 1
eQ  and 3

eQ  denote 

the shear forces, and 2
eQ  and 4

eQ  denote the bending moments at the boundary of an 

element, i.e., 

2

1 2

e

e

x

d d wQ EI
dx dx

⎡ ⎤⎛ ⎞
≡ ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

;       
2

2 2
e

e

x

d wQ EI
dx

⎛ ⎞
≡ ⎜ ⎟⎜ ⎟
⎝ ⎠

;  

2

3 2
1e

e

x

d d wQ EI
dx dx

+

⎡ ⎤⎛ ⎞
≡ − ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

;   
2

4 2
1e

e

x

d wQ EI
dx

+

⎛ ⎞
≡ −⎜ ⎟⎜ ⎟

⎝ ⎠
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An appropriate interpolation function w must satisfy the essential boundary 

conditions, i.e.  
4

1 1 2 2 3 3 4 4
1

e e e e e e e e e e e
j j

j

w u u u u uψ ψ ψ ψ ψ
=

= = + + +∑  

     transverse deflection (w1, w2)     angle (θ1, θ2) 

(A-3)

 

where { }4e
j

ψ  is the set of Hermite cubic interpolation function [22]. 

Setting v= { }4e
j

ψ   and substitution of Eq. (A-3) into Eqn (A-1) yields the force 

equation  

{ } { }e e eK U F⎡ ⎤ =⎣ ⎦  (A-4)

where 
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Q
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F
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l Q

⎧ ⎫ ⎧ ⎫
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   (A-5)

 

with lex  is a FE (top foil) length.  Above [Ke] is the element stiffness matrix and {Fe} is 

the nodal force vector. 

The bump stiffness matrix [Ks] is added at the appropriate locations when assembling 

the global stiffness matrix [KG].  

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

s
lK K

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

   where 0l fK K L s= × ×  (A-6)

Kf, and s0 are the bump structural stiffness per unit area, and bump pitch, respectively. 

Note that when considering the dynamic behavior of bump supports, a complex stiffness 

( )' 1f fK K iγ= +  includes a bump structural loss factor (γ) arising from material hysteresis 

and dry-friction.  
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APPENDIX B. 2D FINITE ELEMENT FORMULATION FOR TOP 

FOIL 

Substituting Eq. (6) into Eq. (5) leads to 

55 44x y
w wA A q

x x y y
φ φ

⎡ ⎤⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞+ + + =⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
;  

11 12 66 55 0y yx x
x

wD D D A
x x x y y x x

φ φφ φ
φ

⎡ ⎤∂ ∂⎡ ⎤ ⎛ ⎞∂ ∂∂ ∂ ∂⎛ ⎞+ + + − + =⎢ ⎥⎜ ⎟⎢ ⎥ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
;    

66 12 22 44 0y yx x
y

wD D D A
x y x y x y y

φ φφ φ
φ

⎡ ⎤∂ ∂⎛ ⎞ ⎡ ⎤ ⎛ ⎞∂ ∂∂ ∂ ∂
+ + + − + =⎢ ⎥⎜ ⎟ ⎢ ⎥ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
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Over a FE, the weak form of Eq. (B-1) is  

1 1
55 44 1 10

e e
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v vw wA A v q dxdy v Q dx
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φ φ
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where νi, i=1-3 is a weight function. At the element boundary, Mn and Mns are bending 

moments, and Qn is the shear force. Within the domain of a FE, w, xφ  and yφ  are of the 

form 

1

1

n

j j
j

w w ψ
=

=∑ , 2

1
j

m

x x j
j

φ φ ψ
=

=∑ , 2

1
j

m

y y j
j

φ φ ψ
=

=∑  where 1 2
j j jψ ψ ψ= =   (B-3)

 

and using Lagrange’s bilinear interpolation functions yields the element stiffness matrix 

[Ke] and force vector {Fe} for a linear rectangular element. Note that n = m = 4 in Eq. (B-

3) for 4-node finite elements. The finite element structural equation for the shell element 

is: 
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[Ke] {Ue} = {Fe} (B-4)

where 

[Ke]  = 

11 12 13

22 23
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⎨ ⎬
⎪ ⎪
⎪ ⎪
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[kij]4×4 depicts direct and cross-coupled (symmetric) stiffness matrices for a four-node 

finite element. {w}4×1 represents the transverse deflection vector, and { xφ }4×1 and { yφ }4×1 

are rotations of the transverse normal about the y and x axes, respectively, for four-node 

linear rectangular elements. {f1}4×1 is the normal load vector, and {m1}4×1 and {m2}4×1 are 

bending moment vectors for the x and y axes, respectively. [Ke]12×12, {Ue}12×1, and 

{Fe}12×1 make up the element stiffness matrix, deflection vector, and force vector, 

respectively. The components of the sub-matrices, kij,
i,j = 1-3

 is given in [22]. 
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